
The ODBC interface

key concepts
- the concept of ODBC
- the structure of ODBC
- the ODBC drivers
- the tasks of drivers
- the main steps of the request processing
- ODBC handlers
- connecting to the data source
- SQL statement execution
- reading data from the data source
- isolation levels of the ODBC
- conformity levels
- error handling
- sample programs

The concept of ODBC

ODBC: Open Database Connectivity

It offers a common API for different relational-like data
sources

It provides:
- data source independence
- conversion
- function extension
- network independence
- parallel data access
- unified data access functions
- simple data access functions
- SQL based data management commands

It is supported by several data sources like
- Oracle
- DB2
- Informix
- Sybase
- SQLServer
- Xbase
- Excel
- text files
- …

The structure of ODBC

Driver manager:

it accepts the ODBC CLI calls of the applications and
performs the following steps:

- syntax checking of the call statement
- it loads the required drivers into the memory
- it controls the connections
- it passes the SQL command
- it performs some kind of conversion
- it makes the API easier

application

Driver
manager

drivers

text driver

Oracle
driver

xbase driver
data sources

ODBC drivers

The driver converts the common API calls to data source
specific DBMS commands. The amount of conversion
work depends on the type of data source

Types of drivers:

- One layer drivers:
- Two layers drivers

One layer drivers

One layer drivers access the data source directly.

The driver should perform the DBMS functions, it
replaces the missing DBMS

application

driver manager

text file driver ISAM driver

data files

The one layer driver must contain a simple relational
DBMS motor.

It provides usually only a simple DMBS functionality (no
transaction management, no indexing)

The data source is usually located on the same node as the
ODBC driver.

The two layer drivers

The two layer drivers access the data source via a running
DBMS component.

application

driver manager

RDBMS driver

RDBMS

RDBMS middleware

The driver should only transform the SQL commands to
the existing RDBMS

It is based on the functionality of the existing DMBS
(with transaction management and indexing)

The data source may be located on different node as the
ODBC driver.

The driver usually access the network component of the
corresponding RDBMS

application

driver manager

Oracle driver

RDBMS

OracleNet Client

OracleNet Server

Tasks of the drivers

The main tasks of the drivers are

- management of connections to the specific data
sources
connection parameters:

- connection identifier
- data source identifier
- authentication
- transaction mode

- error handling
- it should provide standard error codes
- it should provide data source specific error

codes too
- conversion of the SQL commands

- it should perform conversion between the
different SQL dialects

- providing information about the data sources
- unified catalog identification
- it should provide access to the different system

meta-data tables

The main steps of the request processing

1. allocation of a session handler (connection to the
ODBC system)

2. allocation of a connection handler
3. connect to the data source
4. the driver manager loads the required driver
5. allocation the driver part of the connection handler
6. connection to the data source
7. allocation of the statement handler both in the

application and in the driver
8. sending the SQL statement to the ODBC
9. passing the SQL statement to the driver
10. transformation of the SQL statement to native

SQL or to low level code module
11. execution of the SQL statement at the driver or at

the data source
12. generating the status code
13. converting the error codes to standard form
14. passing status code back to the application
15. releasing the statement handler
16. releasing the connection handler
17. releasing the session handler

ODBC handlers

The ODBC objects are identified and accessed by
handlers

The handler is a data structure containing the object
attributes and access parameters. It hides the information
details.

Types of handlers:
- session
- connection
- statement

The relation among the handlers can be described by a
handler tree (hierarchy)

session handler

connection handler connection handler

statement handler statement handler

Benefits of the handler method

- parallel connections
- parallel statement execution
- information hiding
- OO concepts
- security aspects

Session handler:
- it contains the children handlers
- it stores the global information related to the user
- it describes the ODBC level transaction parameters

Connection handler:
- it describes the data access parameters
- it performs transaction handling
- and the error handling

Statement handler:
- it receives and executes the SQL statement
- it passes the result data back to the user
- error handling

SQLAllocEnv()
SQLAllocConnect()
SQLAllocStmt()

Connecting to the data source

The data source is configured by the ODBC control
module.

DSN : data source name, parameters:
- id name
- driver type
- location
- access parameters, authentication
- special parameters

Connection:
- direct connection

SQLConnect()
all required parameters are passed in the
arguments of the SQLConnect function

- driver connection
SQLDriverConnect()
not every required parameters are passed, the
ODBC asks for the missing values using a
standard GUI dialog window

- browse connection
SQLBrowseConnect()
not every required parameters are passed, the
ODBC asks for the missing values using the
return string value

SQL statement execution

Execution modes:
- direct, one phase
- two phases

One phase statement execution:
After generating the statement string, the statement is

executed by only one function call:
SQLExecDirect (..,statement,..)

- it provides simple execution model
- flexible, ad-hoc operations

Two phases statement execution:
After generating the statement string, the statement is

first prepared for execution by the function call:
SQLPrepare (..,statement,..)

and then it can be executed several times by the call:
SQLExec()

- it provides more efficiency in the case of repeated
executions

- flexible, ad-hoc operations

Execution of stored procedures:
SQLExecDirect (‘call procedure-name’)

Reading data from the data source

The result of a query can be:
- one field
- one record
- more records

reading one field into a host variable:

SQLGetData()

reading one record from the data source

- it is based on the cursor model
- binding the output of the query to host variables:

SQLBindCol()
- transfer the next record from the cursor into the

host variables
SQLFetch()

reading more records from the data source:

- it is based on the extended cursor model:
SQLExtendFetch()

Isolation levels of the ODBC

It is related to the transaction management capabilities of
the data source

Not every isolation level can be realized at every data
source

Transaction isolation levels:

- READ UNCOMMITTED
it allows to read data before committing the
transaction

- READ COMMITTED
data can be read only after committing the
transaction

- REPEATABLE READ
the same data value is read during the whole
transaction

- SERIALIZABLE
the transactions have no effect to each others

The transaction isolation parameter can be set by the

SQLSETStmtOption()

function call.

Conformity levels

The functionality of the ODBC may be vary in the
different versions and implementations

Two types of conformity:
- API level
- SQL level

API levels:
- core functionality

simple connection management
SQL execution
transaction settings
error handling

- first level
- second level

SQL levels:
- minimal

CREATE DROP SELECT
INSERT UPDATE DELETE

- core SQL
- extended SQL

stored procedures

Error handling:

the return value of the function calls depends on the result

x = SQLExecDirect()
if (x ==…)

In the case of error the error code and error message can
be get by recursive call of the

SQLError()

function.

Sample Programs

Host language and OS : C, Windows

Creating the ODBC driver:
- Control panel

- add USR DSN
Name: HELLO
Driver: MS Text Driver
Database Directory:
C:\MSVC20\peldak\HELLO

C source code

main block

BOOL C the App: initInstance()
{

void sqlproba();
…
m_pMainWnd=new CmainWindow;
m_pMainWnd→ ShowWindow(m_n(mdShow);
m_pMainWnd→ UpdateWindow();
Sqlproba();
Return TRUE;

}

sqlproba function

Void sqlproba()
{

RETCODE rc;
HEVN henv;
HDBC hdbc
HSTMT hstmt
Char szData[MAX_DATA]
SWORD cbData

SQLAllocEnv(&henv);
SQLAllocConnect(henv,&hdbc);
SQLConnect(hdbc,(unsigned char*)
”HELLO”,SQL_NTS,NULL,0, NULL,0);

SQLAllocStmt(hdbc,&hstmt);
SQLExecDirect(nstmt,(unsigned char*)
“SELECT * FROM Minta “, SQL_NTS);
for (rc=SQLFetch(hstmt);rc==SQL_SUCCESS;
rc=SQLFetch(hstmt)){
SQLGetData(hstmt,1,SQL_C_CHAR,SzData,

Siyeof(sydata),&cbData);
MessageBox(NULL,syData,”ODBC”,MB_OK);
}
SQLFreeStmt(hstmt,SQL_DROP);
SQLDisconnect(hdbe);
SQLFreeConnet(hdbe);
SQLFreeEno(henv)

}

Data Source:
C:\MSC20\peldak\HELLO – ban

Minta.txt

Access to RDBMS

Data source : Sybase RDBMS

C source code:

SQLAllocEnv(&henv);
SQLAllocConnect(henv,Rdbc);
Rc=SQLConnect(hdbe,(unsigned char*)”sybaseminta”,

“dba”, SQL.NTS,”sql”,SQL_NTS);
(nev)

 if (rc!=SQL_SUCCESS) {
char sqlst[10],
char msg[100];
SDWORD nNUM;
SDWORD cbm;
While
(SQLError(SQL_NULL_HENV,hdbe,SQL_NULL_HS
TMT,
(unsigned char *) sqlst,&nNUM,(unsigned shar *)msg,
siyeof(msg),

&chm)==SQL_SUCCESS){
Messagebox(NULL,msg,”ODBC hiba”,MB_OK);
}

}

SQLAllocStmt()

Type SWPD clols;
SQLExecDirect(hstmt,(unsigned char *)” select * from
auto”, SQL.NTS);
SQLNumResultCols(hstmt,&clols);
For (rc=SQLFetch(hstmt); rc==SQL_SUCCESS;

Rc=SQLFetch(hstmt)){
Inti;
For(i=1;i<=clols;i++){
SQLGetData(hstmt,i,SQL.C
SCAR,Szdata,Sizeof(szData))
MessageBox(NULL,szData,”ODBC”,MB.OK);
}

}

