
Parallel Query Optimisation



Contents

Objectives of parallel query optimisation

Parallel query optimisation

Two-Phase optimisation

One-Phase optimisation

Inter-operator parallelism oriented optimisation

Search strategies used in optimisations

Load balancing



Objectives of Parallel Query Optimisation

For a relational database query

⇓

Several relational operators are executed

⇓

Several execution orderings of the operators are possible

⇓

Select the best ordering!



The meaning of „best ordering”

The trivial goal: the shortest response time for the query

In multi-user databases: achieve maximal throughput with
acceptable response time for every query

Another goal: the least resource consumption

A cost metric should be defined for the parallel system
considering the resources shared either in time or in space
for different operations.

The optimiser counts the cost of the execution plans based
on the given metric and searches for the minimum.



Parallel Query Optimisation

From sequential to parallel optimisation

Two-Phase optimisation methodology

One-Phase optimisation methodology

Inter-operator parallelism oriented optimisation

Summary

From single-query to multi-query optimisation



Schema of sequential relational query
optimisation

Execution of
the query

Normalisation
Relational

algebra
expression

Rewriting

− Integration of
integrity
constraints

− Push-down of
selections and
projections

Normalized

expression

Processing

Tree

Join Ordering

− Method choice

Mapper

Physical

operator
tree

Parser
Submitted

Query



Two-Phase parallel query optimisation

Parallel resouce
allocation

− Allocation of the
processors and the
memory

To the
execution
engine

From the

rewriter

Annotated

Processing
Tree

Join Ordering
Module

− Join ordering

− Method choice

Simplifies the optimisation process

First phase can be a uni-processor optimiser ⇒ industrial products
choose such an approach

Difficult to achieve optimal method choice without considering parallel
resources



Two-Phase optimisation in XPRS

First phase

A collection of good sequential
processing trees for various
memory sizes and processor
numbers is retained

If the optimiser cannot decide
between two alternative
strategies, a choose node is
used

hash probe

index scan

hash build

R1

CHOOSE

R1

R2

seq scan index scan



Two-Phase optimisation in XPRS

Second phase

The tree is split into tasks which could be executed in parallel (inter-
operator parallelism)

At any time only two tasks must be run in parallel
(an I/O intensive and an another one)

The processors and disks operate as close to their full utilisation as
possible

Dynamic parallel adjustment algorithm is used for the allocation of new
tasks

Good for shared-memory architecture and simple cost
models



„Two and a half Phase” method in
Tandem NonStop SQL

Two Phase method

+

post-pass optimisation
to the join ordering (first phase)
to optimise redistribution cost

Developed for distributed memory systems
(shared-nothing or shared-disk)

First phase generates an optimal join ordering by taking into account the
impact of redistribution



„Two and a half Phase” method in
Tandem NonStop SQL

Post-pass

− Coloring away the
communication

− Method choice

Parallel

resouce

allocation

To the
execution
engine

From the

rewriter

Estimated
cost of the
Processing

Tree

Generated
Processing

Tree

Annotated

Processing
Tree

Join

Ordering

Module



„Two and a half Phase” method in
Tandem NonStop SQL

Special annotations in the processing tree

partition attribute

strategy to achieve the desired partitioning
(i.e. sorting and/or building an index)

method choice for each operator,
for which the redistribution costs are optimised

Colors are associated to the nodes in the tree

color = (partition attribute, sorting attribute, indexing attribute)

If the output color of an operator and the input color of the successor is the
same, the costs of inter-operator communications are zero

Goal: Find the optimal processing tree with the coloring meaning minimal
redistribution cost



„Two and a half Phase” method in
Tandem NonStop SQL

Experiments: single queries (one join operation and an
aggregate function) were executed with optimised
redistribution costs three times faster than without
optimisation

The post-pass optimisation has high computational
complexity

The processor allocation for join is specialised in Tandem,
with general allocation method the communication costs
can be integrated into the first phase in a more
complicated way



Three-Phase method in IBM DB2 V.3.

1. join ordering

2. computing the degree of inter-, intra-operator parallelism and possible
pipeline parallelism

3. At run-time, the degree of intra-operator parallelism is adjusted to the
actual memory space

Developed for shared memory systems

Third phase ensures dynamic control of execution and full utilisation of
the resources

Tested only for simple queries

Run-time optimisation for complex queries is cumbersome



Summary of the Two-Phase
optimisation methodologies

Developed for shared memory systems

Benchmarks only for small queries

For shared-nothing systems, the method may fail the optimal
solution

inter-operator parallelism must be exploited for complex
queries ⇒ the join ordering must be done with regard of
the parallel resources



One-Phase parallel query optimisation

 

To the
execution
engine

From the

rewriter
Search strategy

for the best

join ordering

parallelisation

method choice

resource alloc.
Estimated costs

of the Processing
Tree

Processing
Tree

(perhaps
incomplete)

One-Phase

Parallel scheduler and
allocation module

Processing tree
generator module



One-Phase parallel query optimisation

join ordering + parallelisation strategy + parallel resource
allocation in one phase

The complexity of optimum search increased significantly

⇓

Heuristical search should be done
(specific processing tree shapes are considered)

left-deep tree right-deep tree bushy tree

segmented right-deep tree zigzag tree serialized bushy tree



Left-deep tree

Query tree Physical representation

Left relation is the inner relation in a join

5� 5�5� 5�

SLSHOLQH�SDUDOOHOLVP

5� 5�5� 5�

3�%�

3�%�

3�%�



Right-deep tree

Query tree Physical representation

5� 5�5� 5� 5� 5�5� 5�

3�%�

3�%�

3�%�



Right-deep tree scheduling

Right-deep ⇒ maximal pipeline parallelism can be exploited

If all hash tables fit into memory ⇒ one pipeline chain
otherwise ⇒ static right-deep tree scheduling: segmenting the chain
that the hash tables of a segment fit into memory
(do not mix up with segmented right-deep trees)

Propagation of estimation errors ⇒ dynamic scheduling: determining the
next segment in run-time

Implemented first in GAMMA, (Schneider and DeWitt)

Maximal pipeline parallelism is worth to exploit only with enough
memory

No inter-operator parallelism can be exploited



Bushy tree

Query tree Physical representation

5� 5�5� 5� 5� 5�5� 5�

3�%�

3�%�

3�%�



Segmented right-deep tree

Segmented right-deep tree = set of
right-deep trees

The result relation of a segment may be any of the
inner or outer relations of the next segment



Segmented right-deep tree
scheduling

Proposed by Chen et al.

Advantage over right-deep tree
More flexible optimisation

E.g. a small result relation of a segment can be
chosen to be the inner relation of the next
segment ⇒ the hash table may be built in the
memory while with right-deep tree scheduling
bucket processing would be needed

Advantage over bushy tree
Much simpler search space in optimisation

Problems
Redistribution costs are not integrated into the

optimisation

the loads of joins in a long pipeline chain are
difficult to balance

inter-operator parallelism cannot be exploited



Zigzag tree

Zigzag tree = segmented right-deep
tree

The result relation of a segment can be connected
only to the first join of the next segment



Serialized bushy tree

Bushy tree + precedence edges between operations to
serialize independent operators

5� 5�5�

VHULDOL]HG�RSHUDWRUV

5�



Inter-operator parallelism oriented
optimisation

Synchronised inter-operator parallelism

proposed by Lu et al.

no pipeline parallelism is taken into account

the query processing is divided into synchronised steps
the joins executed in the next step must wait for the termination of
the previous step

greedy optimisation algorithm with polynomial complexity

good for shared-everything systems

extended for shared-nothing architecture by Hua et al.



Inter-operator parallelism oriented
optimisation

PSA scheduling (Parallel Sheduling Algorithm)

proposed by Hamurlain et al. in the PARIS project

priorities are assigned to the operators ready to run

priority is computed by estimating supplement cost of delaying an
operator

operators are executed on disjoint sets of processors (no time sharing)

outperforms static right-deep scheduling and it is better than bushy
tree scheduling up to 200 processors

developed for single-query environments



Inter-operator parallelism oriented
optimisation

Prisma/DB

PRISMA focuses on the problem of finding the best parallel scheduling
for a given processing tree

it implements right-deep tree, segmented right-deep tree and bushy
tree scheduling

uses synchronized parallel execution and full parallel execution
strategies

pipelined version of hash based join is used

For many processors and for
complex queries

⇒ full parallel execution of bushy tree
plans is the best



Inter-operator parallelism oriented
optimisation

IBM DB2 Parallel Edition

designed for shared nothing systems

one-phase optimisation approach

bushy tree scheduling with pruning trees from search space which
exceed the best tree as of yet found

only one of the three sets of processors can be assigned to perform a
join: all processors, the processors accessing the inner relation ot
the processors accessing the outer relation

The best case for execution: if concurrent joins can be executed on a
disjoint sets of processors



Summary of optimisation

One-Phase optimisation integrates parallelism in the
optimisation process but suffers from combinatorial
explosion in comparing with the Two-Phase approach

Clear tendency: exploit pipeline and inter-operator
parallelism, especially for shared-nothing architectures

Two Phase One Phase

Shared-everything architecture Shared-nothing and hierarchial
architectures

Simple queries Complex queries



From single-query to multi-query
environments

Inter-query + intra-query parallelism must be exploited
Main problems

heterogeneous resouce availability

resource contentions between independent queries

additional costs due to sharing the resources among concurrent
operations of one query (intra-query par.) and among queries

Three step methodology
query execution frame (select resources for the given query)

scheduling + parallelising

dynamic control mechanism for run-time reoptimisation



Search strategies in
optimisation

Optimisation task

Generate possible physical operator trees (execution
plans)

Compute the execution cost of the plan

Search for the plan with (near) minimal cost

This is a combinatorial optimisation
problem

Algorithms for generating plans

Exhaustive search

breadth- and depth-first search with branch-
and-bound

randomised search

polynomial heuristic search



Exhaustive search
Generates all possible operator trees

It has combinatorial complexity

Feasible for joins on few relations (max. 6
relations)

Breadth- and depth-first
search with branch-and-

bound
Deterministic search strategies

Iterative
The operator tree of n relations is built from the
optimal subtrees of n-i relations combined with
the optimal subtrees of i relations

From a set of generated plans for i relations
are generated the plans for i+1 relations

Pruning function is applied at the expansion of
the plan

Feasible algorithm for 10-15 joins and linear
trees



Randomised search

1. The algorithm starts from a random state in the
search space

2. It walks trough the search space, evaluating the
cost of each state

3. The walking is controlled by transformation rules
between trees and global strategy

Developed for bushy trees (inter-operator
parallelism)

It cannot be guaranteed to be optimal

Polynomial heuristic search

Greedy algorithm: start from base relations and
in each iteration build a new tree that has the
lowest cost

Augmentation heuristic: adapt depth-first search
with starting from the base relation with the least
cardinality and at each expansion, only one
succesor with the least cost is generated

Uniform greedy heuristic: generate complete trees
starting from each base relation by augmentation
heuristic and choose the least costly one


