
Transaction Models of DDBMS

•Topics covered:
–Transactions
–Characterization of transactions
–Formalization of transactions
–Serializability theory
–Concurrency control models
–Locks

Transactions
• The concept of transaction is a unit of consistent

and reliable computation

• Transaction management: keeping the DB in
consistent state even when concurrent accesses
and failures occur

Begin transaction End transactionExecution of transaction

Database in a
consistent state

Database in a
consistent state

Database may be
temporarily in an
inconsistent state

Definition of a transaction

• A transaction makes transformations of system states
preserving consistency

• A transaction is a sequence of read and write
operations together with computation steps, assuming
that
– the transaction may be executed concurrently with others:

concurrency transparency must be provided
– failures may occur during execution: failure transparency

must be provided

Example of a transaction
• Example DB:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME, SPECIAL)

• Transaction
BEGIN_TRANSACTION RESERVATION
BEGIN
INPUT(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no
AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL)
VALUES(flight_no, date, customer_name, null);

END

Properties of transactions

• Atomicity
– all or nothing

• Consistency
– maps one consistent DB state to another
– the ´correctness´of a transaction

• Isolation
– each transaction sees a consistent DB

• Durability
– the results of a transaction must survive system failures

• Remember ACIDity

Atomicity

• Treated as a unit of operation
• Either all the actions of a transaction are completed or

none of them
– upon failure the DBMS can decide whether to terminate by

completing the pending actions or terminate by undoing the
actions that have been executed

• Maintainig atomicity requires recovery from failures
– transaction failures: data errors, deadlocks, etc. →

Transaction recovery
– system failures: media, processor failures, communication

breakages, etc. → Crash recovery

Classification of consistency (by Gray et al.)

• Dirty data: data values that have been written by a
transaction prior to its commitment

• Degree 0 (Transaction T sees degree 0 consistency if)
– T does not overwrite dirty data of other transactions

• Degree 1: Degree 0 plus
– T does not commit any writes before end of transaction

• Degree 2: Degree 1 plus
– T does not read dirty data from other transactions

• Degree 3: Degree 2 plus
– Other transactions do not dirty any data read by T before T

completes

Isolation (example)
• Possible execution schemes of T1 and T2

T1: Read(x) T1: Read(x)
T1: x = x + 1 T1: x = x + 1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T1: Commit
T2: x = x + 1 T2: x = x + 1
T2: Write(x) T2: Write(x)
T2: Commit T2: Commit

• Lost update: incomplete results can be seen by
other transactions

• Cascading aborts: if T1 decides to abort, all
transactions that have seen T1´s incomplete results
must be aborted

Reads 50
when x
is 51

Isolation
• An executing transaction cannot reveal it results to

other concurrent transactions before its commitment
• Isolation is related to serializability: if several

transactions are executed concurrently, the results
must be the same as if they were executed serially in
some order

• There is a strong relationship between isolation and
degrees of consistency:
– degree 0: low level of isolation, yet solves the problem of

lost updates
– degree 2: solves both lost updates and cascading aborts
– degree 3: full isolation

Durability

• Once a transaction commits, its results are
permanent and cannot be erased even if system
failure occurs

• Database recovery

Termination of transactions
• A transaction always terminates

– if the task is successful: commits
– if the task is incomplete (for some reasons): aborts

• either due to system failure or unsatisfied conditions
• rollback: undone the actions and return the DB to its state before

execution

• Commit
– the point of no return
– if a transaction is committed

• its results are permanently stored in the DB → durability
• its results can be made visible to other transactions → consistency,

isolation

Example of termination
BEGIN_TRANSACTION RESERVATION
BEGIN

INPUT(flight_no, date, customer_name)
EXEC SQL SELECT STSOLD, CAP

INTO temp1, temp2
FROM FLIGHT
WHERE FNO = flight_no
AND DATE = date;

IF temp1 = temp2 THEN
BEGIN

OUTPUT(„no free seats“);
ABORT

END
ELSE BEGIN

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight_no
AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL)
VALUES(flight_no, date, customer_name, null);

COMMIT;
OUTPUT(„reservation completed“);

END
END

Formalization of the transaction concept

• Characterization
– Data items that a given transaction

• reads: Read Set (RS)
• writes: Write Set (WS)
• they are not necessarily mutually exclusive
• Base Set (BS): BS = RS ∩ WS

• Insertion and deletion are omitted, the discussion
is restricted to static databases

Formalization of the transaction concept

• Oij(x): some atomic operation Oj of transaction Ti
that operates on DB entity x

• Oj ∈ {read, write}
• OSi = ∪ jOij, i.e. all operations in Ti

• Ni ∈ {abort, commit}, the termination condition
for Ti

• Transaction Ti is a partial ordering over its
operations and the termination condition

Formalization of the transaction concept

• Partial order P = {Σ, p} where
– Σ is the domain
– p is an irreflexive and transitive relation

• Transition Ti is a partial order {Σi, p i} where
– Σi = OSi ∪ Ni

– For any two operations Oij, Oik ∈ OSi, if Oij=R(x) and
Oik=W(x) for any data item x then either Oij p i Oik or
Oik p i Oij , i.e. ´there must be an order between
conflicting operations´

– ∀ Oij ∈ OSi, Oij p i Ni , i.e. áll operations must precede
the termination´

• The ordering relation p i is application dependent

Formalization of the transaction concept

• Example
Read(x)
Read(y)
x = x + y
Write(x)
Commit

– Σ = {R(x), R(y), W(x), C}
– p = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C),

(R(y), C)} where (Oi, Oj) means Oi p Oj

• Partial order: the ordering is not specified for
every pair of operations

R(x)

R(y)

W(x) C

Characterization of transactions

• According to application type
– regular or distributed
– compensating
– heterogeneous

• According to duration
– on-line (short life) or batch (long life)

• According to structure
– flat, nested or workflow

• According to the order of read and write operations
– general
– two-step: all read ops before any write ops
– restricted: a data item must be read before written
– restricted two-step
– action: restricted where each read-write pair is atomic

Structural types of transactions
• Flat

– a sequence of primitive operations between begin and
end markers

• Nested
– a transaction may include other transactions with their

own commit points
• more concurrency introduced
• recovery is possible independently for each subtransaction

– a subtransaction can be a nested one too
– nesting

• open
– subtransactions begin after their parents and finish before them
– commitment is conditional upon the commitment of the parent

• closed
– subtransactions can execute and commit independently
– compensation may be necessary

Architecture revisited

User Interface
Handler

Semantic Data
Controller

Global Query
Optimizer

Global Execution
Monitor

External
Schema

Global
Conceptual
Schema

GD/D

User processor

User

Scheduler (SC)

Transaction
Manager (TM)

Global Execution Monitor
(Distributed Execution Monitor)

Begin_transaction,
Read, Write,
Commit, Abort Results

To data processors

With other
TMs

With other
SCs

With other
data processors

Serializability theory
• Schedule (history) S: specifies an interleaved

execution order over a set of transactions T={T1,
T2,... Tn}

• Complete schedule ST
c: is a partial order ST

c ={ΣT,
pT} over a set of transactions T={T1, T2,... Tn}
that defines the execution order of all operations in
its domain
–

–

– for any two conflicting operations Oij, Okl ∈ ΣT, either
Oij pT Okl or Okl pT Oij

U n

i iT 1=
Σ=Σ

U pp
n

i iT 1=
⊇

Serializability theory
• Schedule (example): a possible complete schedule

– T1: T2:
Read(x) Read(x)
x = x + 1 x = x + 1
Write(x) Write(x)
Commit Commit

– Σ1 = {R1(x), W1(x), C1}, Σ2 = {R2(x), W2(x), C2}

– ΣT = Σ1 ∪ Σ2 = {R1(x), W1(x), C1, R2(x), W2(x), C2}

– pT = {(R1, R2), (R1, W1), (R1, C1), (R1, W2), (R1, C2), (R2,
W1), (R2, C1), (R2, W2), (R2, C2), (W1, C1), (W1, W2), (W1,
C2), (C1, W2), (C1, C2), (W2, C2)} R1 R2

W1 W2

C1 C2

Serializability theory
• Prefix: P´ = {Σ´, p´} is a prefix of partial order P =

{Σ, p} if
– Σ´⊆ Σ
– ∀ ei ∈ Σ´, e1 p´e2 iff e1 p e2

– ∀ ei ∈ Σ´, if ∃ej ∈ Σ and ej p ei, then ej ∈ Σ´

• Only the conflicting operations are relevant at
scheduling - redefine schedule:

• Schedule (incomplete) S: is a prefix of complete
schedule ST

c

Serializability theory
• Incomplete schedule (example)

– T1: T2: T3:
Read(x) Write(x) Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

• Complete schedule Partial schedule
– the partial schedule is a prefix of complete schedule and

equivalent to it
R1(x) W2(x) R3(x)

W1(x) W2(y) R3(y)

C1 R2(z) R3(z)

C2 C3

R1(x) W2(x) R3(x)

W2(y) R3(y)

R2(z) R3(z)

Serializability theory
• Serial schedule (serial history): if in a schedule S the

operations of various transactions are not interleaved, the
schedule is serial
– S = {W2(x), W2(y), R2(z), C2, W1(x), R1(x), C1, R3(x), R3(y),

R3(z), C3}
– T2 pS T1 pS T3

• Two schedules S1 and S2 are equivalent if for each pair
of conflicting operations Oij, Okl (i≠k) whenever Oij p1
Okl then Oij p2 Okl. (conflict equivalence)

• Schedule S is serializable if it is conflict equivalent to a
serial schedule (conflict-based serializability)

Serializability theory

• Transactions execute concurrently but the overall effect
of the resulted history upon the database is equivalent to
some serial scheduling

• Primary goal of concurrency control: generate a
serializable schedule for the pending transactions

• Two histories must be taken into account:
– local schedule (at each site)
– global schedule

Serializability theory

• When the DB is partitioned, if each local schedule
is serializable then the global schedule is
serializable

• When the DB is replicated, the global schedule is
serializable (one-copy serializable) if
– local schedules are serializable
– two conflicting operations are in the same relative order

in each local schedule where they appear

Replica control protocol
• Consistency in presence of replication: one-copy

serializability must be provided
– concurrency control plus
– replica control

• Assume data item x (logical data) is replicated as
x1, x2, ... xn (physical data items)
– each read(x) is mapped to one of the physical items
– each write(x) is mapped to a subset of the physical data

copies

• If read(x) is mapped to one and write(x) is mapped
to all physical copies, it is a read-once/write-all
(ROWA) protocol

Concurrency control models

• Pessimistic
– 2-Phase Locking based (2PL)

• Centralized
• Primary copy
• Distributed

– Timestamp Ordering (TO)
• Basic
• Multiversion
• Conservative

– Hybrid

• Optimistic
– Locking
– Timestamp ordering

Locks
• Locks ensure that data shared by conflicting operations are

accessed by one operation at a time - a simple way of
serialization

• The lock is
– set by a transaction before the lock unit is accessed
– reset at the end of the operation
– if the lock is set already, the lock unit cannot be accessed

• Lock modes
– read lock (shared lock)
– write lock (exclusive lock)

• Locks are controlled by the Lock Manager (LM) which is a part
of the Scheduler (see architecture revisited)

Read lock (x) Write lock (x)
Read lock (x) compatible not compatible
Write lock (x) not compatible not compatible

Locks
• Two-phase locking (2PL): no transaction should

request a lock after it releases one of its locks
• Transactions have

– growing phase
– lock point
– shrinking phase

• Theorem: any schedule that obeys 2PL rule is
serializable (Eswaran et al.)

• Difficult to implement Transaction Manager
(among others due to cascading aborts)

Lock point

Begin End

Obtain
lock

Release
lock

Locks

• Strict two-phase locking (S2PL): locks are
released if the operation is a commit or an abort

Begin End

Obtain
lock

Release
locks

Data in use

Locks in distributed DBSs: Centralized 2PL
• There is only one 2PL scheduler (lock manager) in

the distributed system
• All lock requests are addressed to it

• Important: TM must implement the replica control
protocol

Data processors Coordinating TM Centralized LM

1 Lock request

2 Lock Granted
3 Operation

4 End of Operation 5 Release Lock

Locks in distributed DBSs: Primary copy 2PL

• The centralized 2PL scheduler may form a bottleneck
• In PC2PL lock managers are implemented at a

number of sites
– they are responsible for a given set of lock units
– TMs send lock and unlock requests to the scheduler that is

responsible for the given lock unit
– one copy of the data item is treated as a primary copy
– the location of the primary copy must be determined prior

to sending lock and unlock requests - a directory design
issue

Locks in distributed DBSs: Distributed 2PL

• LMs are available at each site in D2PL
– if the DB is not replicated, it is the same as PC2PL
– if replicated, it implements the ROWA protocol
– operations are passed via LMs - there is no lock granted

message
Participating DPsCoordinating TM Participating LMs

1 Lock request
2 Operation

3 End of Operation

4 Release Lock

