Transaction Models of DDBMS

*Topics covered:
—Transactions
—Characterization of transactions
—ormalization of transactions
—Serializability theory
—Concurrency control models
— ocks



Transactions

« The concept of transaction isaunit of consistent
and reliable computation

Databasein a Database may be Databasein a

consistent state temporarily in an consistent state
inconsistent state

| -

Begin transaction Execution of transaction End transaction

 Transaction management: keeping the DB In
congstent state even when concurrent accesses
and failures occur



Definition of atransaction

e A transaction makes transformations of system states
preserving consistency

* A transaction is a sequence of read and write
operations together with computation steps, assuming
that

— the transaction may be executed concurrently with others:
concurrency transparency must be provided

— fallures may occur during execution: failure transparency
must be provided



Example of atransaction

 Example DB:
FLI GHT( FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST( CNAMVE, ADDR, BAL)
FC( FNO, DATE, CNAME, SPECI AL)

e Transaction
BEG N_TRANSACTI ON RESERVATI ON
BEG N
| NPUT(flight _no, date, custoner_ nane),;
EXEC SQL UPDATE FLI GHT
SET STSOLD = STSOLD + 1

VWHERE FNO = flight _no
AND DATE = dat e;
EXEC SQL | NSERT
| NTO FC(FNO, DATE, CNAME, SPECI AL)
VALUES(fl i ght _no, date, custoner nane, null);

END




Properties of transactions

e Atomicity
— all or nothing

e Consistency

— maps one consistent DB state to another
— the "correctness of atransaction

e | solation
— each transaction sees a consistent DB

e Durability
— the results of atransaction must survive system failures
 Remember ACIDity



Atomicity

* Treated as aunit of operation

 Either all the actions of atransaction are completed or
none of them

— upon failure the DBMS can decide whether to terminate by

completing the pending actions or terminate by undoing the
actions that have been executed

e Maintainig atomicity requires recovery from failures

— transaction failures: data errors, deadlocks, etc. ®
Transaction recovery

— system failures. media, processor failures, communication
breakages, etc. ® Crash recovery



Classification of consSISteNCY e e «a)

Dirty data: data values that have been written by a
transaction prior to its commitment

Degree O (Transaction T sees degree O consistency if)
— T does not overwrite dirty data of other transactions
Degree 1. Degree O plus

— T does not commit any writes before end of transaction
Degree 2. Degree 1 plus

— T does not read dirty data from other transactions

Degree 3. Degree 2 plus

— Other transactions do not dirty any dataread by T before T
completes



| sol ation (example)

e Possible execution schemesof T1and T2

T1: Read(x) T1: Read(x)

Tl:x=x+1 TlLx=x+1 Reads 50
T1: Write(x) T2: Read(x) when x
T1: Commit T1: Write(x) 'sol
T2: Read(x) T1: Commit

T2 x=x+1 T2 x=x+1

T2: Write(x) T2: Write(x)

T2: Commit T2: Commit

 Lost update: incomplete results can be seen by
other transactions

e Cascading aborts. if T1 decidesto abort, all
transactions that have seen T1 sincomplete results
must be aborted



| solation

* An executing transaction cannot reveal it resultsto
other concurrent transactions before 1ts commitment

o |solation isrelated to seriaizability: if several
transactions are executed concurrently, the results

must be the same as if they were executed serially in
some order

 Thereisastrong relationship between isolation and
degrees of consistency:

— degree O: low level of isolation, yet solves the problem of
lost updates

— degree 2. solves both lost updates and cascading aborts
— degree 3: full isolation



Durability

e Once atransaction commits, its results are

permanent and cannot be erased even if system
failure occurs

o Database recovery



Termination of transactions

e A transaction always terminates
— If the task i1s successful: commits

— 1If the task isincomplete (for some reasons). aborts
 ether dueto system failure or unsatisfied conditions

» rollback: undone the actions and return the DB to its state before
execution

o Commit
— the point of no return

— If atransaction is committed
* itsresults are permanently stored inthe DB ® durability

* itsresults can be made visible to other transactions ® consistency,
Isolation




Example of termination

BEGA N _TRANSACTI ON RESERVATI ON
BEGQ N
| NPUT(flight _no, date, custoner_nane)
EXEC SQL SELECT STSOLD, CAP
| NTO t enpl, tenp2
FROM FLI GHT
VWHERE FNO = flight _no
AND DATE = dat e;
| F tenpl = tenp2 THEN
BEGQ N
QUTPUT(,no free seats”);
ABORT
END
ELSE BEGA N
EXEC SQL UPDATE FLI GHT
SET STSOLD = STSOLD + 1
VWHERE FNO = flight _no
AND DATE = dat e;
EXEC SQL | NSERT
| NTO FC(FNO, DATE, CNAME, SPECI AL)
VALUES(fl i ght _no, date, custoner nane, null);
COWM T,
QUTPUT(,reservati on conpl eted“);
END
END



Formalization of the transaction concept

e Characterization

— Dataitemsthat a given transaction
» reads. Read Set (RS)
o writes. Write Set (WS)
 they are not necessarily mutually exclusive
e Base Set (BS): BS=RSC WS

e |nsertion and deletion are omitted, the discussion
1S restricted to static databases



Formalization of the transaction concept

O J-(x): some atomic operation O of transaction T,
that operates on DB entity X

O, 1 {read, write}

OS =E 0, i.e. al operationsin T,

N | {abort, commit}, the termination condition
for T,

Transaction T, isa partial ordering over Its
operations and the termination condition



Formalization of the transaction concept

o Partial order P={S, <} where
— Sisthedomain

— < Isanirreflexive and transitive relation
o Trangtion T, isapartial order {S,, <} where

— For any two operations O;;, O, I OS, if O;=R(x) and
O,,=W(x) for any dataitem x then either O;; <; O;, or
O < G; , I.e. "there must be an order between
conflicting operations’

- " Q;l 0OS,0;< N;,i.e al operations must precede
the termination’

» The ordering relation <; is application dependent



Formalization of the transaction concept

Example

Read(x)
Read(y) \\\\*Wm————+c

X=X+Y 7

Write(x) RY)
Commit

- S={R(x), R(y), W(x), C}
- < ={(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C),
(R(y), C)} where (Q;, O;) means O, < O
 Partial order: the ordering is not specified for
every pair of operations

R(X)



Characterization of transactions

According to application type

— regular or distributed
— compensating
— heterogeneous

According to duration
— on-line (short life) or batch (long life)

According to structure
— flat, nested or workflow

According to the order of read and write operations
— generdl
— two-step: all read ops before any write ops
— restricted: adataitem must be read before written
— restricted two-step
— action: restricted where each read-write pair is atomic



Structural types of transactions

o Fat

— aseguence of primitive operations between begin and
end markers

e Nested

— atransaction may include other transactions with their
own commit points
e mMore concurrency introduced
* recovery is possible independently for each subtransaction

— asubtransaction can be a nested one too
— hesting
e Open
— subtransactions begin after their parents and finish before them
— commitment is conditional upon the commitment of the parent
e closed
— subtransactions can execute and commit independently
— compensation may be necessary



User

Architecture revisited

User Interface
Handler

Semantic Data
Controller

Global Query

Optimizer

Global Execution
Monitor

User processor

External
Schema

Global
Conceptual
Schema

Begin_transaction,

Read, Write,
Commit, Abort Results
A
With other
v *SCS
Transaction |
Manager (TM)
v\$
_ I With other
With other data processors
TMs <«+——» Scheduler (SC)
To data processors

Global Execution Monitor
(Distributed Execution Monitor)




Serializability theory

« Schedule (history) S. specifies an interleaved
execution order over a set of transactions T={ T,
T,,... T}

» Complete schedule S;: isapartia order S;© ={ Sy,
<1} over aset of transactions T={T,, T,,... T}
that defines the execution order of all operationsin
Its domain

_ ST U _1 i

- =< E =
— for any two conflicting operations O, O I S, either
O, <1 Oy or Oy =<1 G



Serializability theory

» Schedule (example): a possible complete schedule

— T1: T2:
Read(x) Read(x)
X=x+1 X=x+1
Write(X) Write(X)
Commit Commit

— S; ={Ry(X), Wi(X), Ci}, S, = {Ry(X), Wy(x), C;}

— $; =S, E S, = {Ry(X), Wy(x), Cy, Ry(X), Wy(x), C;}

— <1 ={(Ry, Ry, (R, Wy), (Ry, C)), (R, W), (Ry, G, (Ry,
W), (Ry, ), Ry, Wa), (R, C), (Wi, Cy), (Wi, W), (W,
Co), (Cp W), (Cyp, Cy), (W, Cy)} fl" fz

Wi >W,

. .

C, C,



Serializability theory

o Prefix: P ={S’, <"} isaprefix of partial order P=
{S, <} if
- ST S
~-"el S,e<eliffe,<e,
-"ql S,if$el Sandeg <¢g,thengl S

* Only the conflicting operations are relevant at
scheduling - redefine schedule:

e Schedule (incomplete) S: isaprefix of complete
schedule S;¢



Serializability theory

 Incomplete schedule (example)

— T1: T2 T3:
Read(X) Write(x) Read(X)
Write(x) Write(y) Read(y)
Commit Read(z2) Read(z)
Commit Commit
e Complete schedule Partial schedule
— the partial schedule isaprefix of complete schedule and
equivalent to it
Rll(x)<7 WTX) — Rff(x) R1(X) «— WTX) — Rff(x)
W1(x) W2(y) ——» R3(y) W2(y) ——» R3(y)
Cl R2v(z)—> R\!S(z) R2(zy—> R3(2)

C2 C3



Serializability theory

o Serial schedule (serial history): if in aschedule Sthe
operations of various transactions are not interleaved, the

schedule 1s serid

— S={Wy(x), W,(y), Rx(2),

Rs(2), C3}
—Ty=<sT; <5 T3

C, Wi(x), Ri(X), Cp, Ry(X), Rs(y),

 Two schedules S, and S, are equivalent if for each pair
of conflicting operations O;;, O, (i* k) whenever O, i <1

O then O;; <, Oy. (conf
e Schedule Sisserializab
serial schedule (conflict-

1)
Ict equivalence)

eif itisconflict equivalent to a

pased serializability)



Serializability theory

 Transactions execute concurrently but the overall effect
of the resulted history upon the database is equivalent to
some serial scheduling

* Primary goal of concurrency control: generate a
serializable schedule for the pending transactions

e Two histories must be taken into account:
— local schedule (at each site)
— global schedule



Serializability theory

 When the DB is partitioned, if each local schedule
IS serializable then the global scheduleis
serializable

 When the DB isreplicated, the global scheduleis
serializable (one-copy serializable) if
— local schedules are serializable

— two conflicting operations are in the same relative order
In each local schedule where they appear



Replica control protocol

e Consistency in presence of replication: one-copy
serializability must be provided
— concurrency control plus
— replica control

 Assume dataitem X (logical data) isreplicated as
X1, Xo ... X, (Physical dataitems)
— each read(x) is mapped to one of the physical items
— each write(x) 1s mapped to a subset of the physical data
copies
 |If read(x) i1s mapped to one and write(x) is mapped
to all physical copies, it is aread-once/write-all
(ROWA) protocol



Concurrency control models

e Pessmistic

— 2-Phase Locking based (2PL)
e Centralized
* Primary copy
 Distributed

— Timestamp Ordering (TO)
 Basic
e Multiversion
» Conservative

— Hybrid
e Optimistic
— Locking
— Timestamp ordering



L ocks

L ocks ensure that data shared by conflicting operations are
accessed by one operation at atime - asimple way of

serialization
Thelock is

— set by atransaction before the lock unit is accessed
— reset at the end of the operation

— if thelock is set already, the lock unit cannot be accessed

Lock modes

— read lock (shared lock)
— writelock (exclusive lock)

Read lock (x)

Write lock (x)

Read lock (x)

compatible

not compatible

Write lock (x)

not compatible

not compatible

L ocks are controlled by the Lock Manager (LM) which is a part
of the Scheduler (see architecture revisited)




L ocks

Two-phase locking (2PL): no transaction should
request alock after it releases one of itslocks

Transactions have _ L ock pint
— growing phase Dowan e
— lock point Y
— shrinking phase
Begin End

Theorem: any schedule that obeys 2PL ruleis
Serl al | Zabl e (Eswaran et al.)

Difficult to implement Transaction Manager
(among others due to cascading aborts)



L ocks

o Strict two-phase locking (S2PL): locks are
released if the operation is a commit or an abort

Obtain Datain use

lock l

/ Release

locks

Begin End



Locksin distributed DBSs. Centralized 2PL

 Thereisonly one 2PL scheduler (lock manager) in
the distributed system

 All lock requests are addressed to it

Data processors Coordinating TM Centralized LM

W»
AW

M’

 Important. TM must implement the replica control
protocol



Locks in distributed DBSs. Primary copy 2PL

e The centralized 2PL scheduler may form a bottleneck

* In PC2PL lock managers are implemented at a
number of sites
— they areresponsible for a given set of lock units

— TMssend lock and unlock requests to the scheduler that is
responsible for the given lock unit

— one copy of the dataitem istreated as a primary copy

— the location of the primary copy must be determined prior
to sending lock and unlock requests - a directory design
Issue



Locks in distributed DBSs:; Distributed 2PL

e LMsareavalable at each sitein D2PL

— 1f the DB 1s not replicated, it is the same as PC2PL
— If replicated, it implements the ROWA protocol

— operations are passed via LMs - there is no lock granted
message
Coordinating TM  Participating LMs  Participating DPs

1 LOCI( request
%
4 End of operaiol ——




