Distributed Databases

Concurrency Control

Topics

= Concurrency Control
—Schedules and Serializability
—Locking
—Timestamp control

Example

B~ W N

XY constraint: X=Y
Node1” " Node?
Tl T2
a1 X S c X
X a+100 6 X~ 2c
b= Y 14 d— Y
Y =7 b+100 8 Y- 2d

Possible Schedule

(node X)

1 (T) a1 X

2 (Ty)) X~=— a+100
5 (T,) c— X

6 (T,) X1 2c

If X=Y=0 initially, X=Y=200 at end

(node Y)

3 (Ty)
4 (Ty)

7 (Ty)
8 (T)

b= Y

Y 7, b+100
d— Y

Y 2d

Precedence: intra-transaction
Inter-transaction

Definition of a Schedule

Let T={T,, T,,..., Ty} be a set of transactions.
A schedule S over T is a partial order with
ordering relation <¢ where:

- S=ET

N\

- <E E <

- for any two conflicting operations p,q 1 S, either
P<sgqoOrq<sp

Note: In centralized systems, we assumed S was a
total order and so condition (3) was
unnecessary.

T1)
T2)
T3)

Example

ri[X] ® wi[X]

r2[X] ® wz[Y] ® wz[X]

r3[X] ® ws[X] ® wa[Y] ® ws[Z]
r2[X] ® wz[Y] ® wz[X]

r3[Y] ® ws[X] ® ws[Y] ® ws[Z]

ri[X] ® wi[X]

Precedence Graph

= Precedence graph P(S) for schedule S is a directed
graph where

—Nodes = {T, | T, occurs in S}
—Edges ={T,® T; | $p| T, ql T, such that
P, q conflict and p <¢ q}

r3[X] ® wslX] r_\

PS): T,® T, ® T,
S: [X]® w,[X] ® w,[Y]

L[X] ® w,[Y]

Serializability

Theorem: A schedule S is serializable iff P(S) Is
acyclic.

Enforcing Serializability
= | ocking
= Timestamp control

Distributed Locking

= Each lock manager maintains locks for local
database elements.

= A transaction interacts with multiple lock
managers.

scheduler 1 scheduler N

locks locks

ol % o %
1 D1 N DN

node 1 @:& node N
2CCess lock data

lock data T

Locking Rules

= Well-formed/consistent transactions
— Each transaction gets and releases locks appropriately

= |egal schedulers
— Schedulers enforce lock semantics

= Two-phase locking

— In every transaction, all lock requests precede all
unlock requests.

These rules guarantee serializable schedules

10

Locking replicated elements

= Example:
— Element X replicated as X; and X, on sites 1 and 2
— T obtains read lock on X;; U obtains write lock on X,
— Possible for X; and X, values to diverge
— Possible that schedule may be unserializable

« How do we get global lock on logical element X
from local locks on one or more copies of X?

11

Primary-Copy Locking

= For each element X, designate specific copy X; as
primary copy
= | ocal-lock(X;) P Global-lock(X)

Synthesizing Global Locks
= Element X with n copies X; X

e Choose “§”’and “%’’such that
m 2X >n
" S+ X>n

» Shared-lock(s copies) P Global-shared-lock(X)
= Exclusive-lock(x copies) b Global-exclusive-lock(X)

12

n

Special cases

Read-Lock-One; Write-Locks-All (s = 1, X = n)
= Global shared locks inexpensive

= Global exclusive locks very expensive

= Useful when most transactions are read-only

Majority Locking (s = x = n+1)/2U)

= Many messages for both kinds of locks

= Acceptable for broadcast environments

= Partial operation under disconnected network
possible

13

Timestamp Ordering Schedulers

Basic idea: Assign timestamp ts(T) to transaction T.
If ts(T,) < ts(T,) ... < ts(T,), then scheduler
produces schedule equivalent to serial schedule

T, T,T;...T,.

TO Rule: If pi[X] and q;[X] are conflicting operations,
then pi[X] <5 q;[X] Iff ts(T;) < ts(T)).

Supply proof.

Theorem: If S is a schedule that satisfies TO rule, P(S)
IS acyclic (hence S is serializable).

14

Example

ts(T,) < ts(T,)
(Node X) (Node Y)
(Ty)) a1, X (T,) d— Y
(T) X= a+100 (T,) Y- 2d
(T) ¢ X (T) b= Y
T) X~ 2 (T) Y- b+ioo reject!

abort T, «——~—_——abort T,

¢

abort Ty ~—_ »abort T,

15

Strict T.O

=« Problem: Transaction reads “tlirty data’’ Causes
cascading rollbacks.

= Solution: Enforce “Strict’’schedules in addition to
T.0 rule

Lock written items until it is certain that the writing
transaction has committed.

Use a commit bit C(X) for each element X. C(X) =1
Iff last transaction that last wrote X committed. If
C(X) = 0, delay reads of X until C(X) becomes 1.

16

Revisit example under strict T.O

ts(T,) < ts(T,)

(Node X) (Node Y)
(T,)) a— X (T,) d— Y
(T)) X— a+100 (T,) Y- 2d

(Tz)@delay (Ty) —b—=—¥—"reject!

abort T
abort T, +—— :

(T,) c— X
(T,) X 2c

17

Enforcing T.O

For each element X:
MAX_ R[X] ® maximum timestamp of a
transaction that read X
MAX_ W[X] ® maximum timestamp of a
transaction that wrote X
rL[X] ® number of transactions currently
reading X (0,1,2,...)
WL[X] ® number of transactions currently
writing X (0 or 1)
queue[X] ® queue of transactions waiting on X

18

T.0. Scheduler

I [X] arrives:

< |f (ts(T)) < MAX_WIX]) abort T,
< |If (ts(T;) > MAX_R[X]) then MAX_ R[X] = ts(T))
« |f (queue[X] is empty and wL[X] = 0)
orL[X] = rL[X]+1
=begin r;[X]
« Else add (r,Ti) to queue[X]

Note: If a transaction Is aborted, it must be restarted
with a larger timestamp. Starvation is possible. 19

T.0. Scheduler

w;i[X] arrives:

e If (ts(T) < MAX_WI[X] or ts(T) < MAX_ R[X])

abort T.
« MAX W[X] = ts(T)

= |f (queue[X] is empty and wL[X]=0 AND rL[X]=0)

—wL[X] =1
— begin w;[X]
— walt for T,to complete
= Else add (w, Ti) to queue

Work out the steps to be
executed when r,[X] or
w.[X] completes.

20

Thomas Write Rule

MAX_R[X] MAX_W[X]

i)

|

ts(T)
T, wants to write X

w;i[X] arrives:

= If (ts(T;) < MAX_R[X]) abort T,

= |f (ts(T.) < MAX_W]X]) ignore this write.

e Rest as before.....

21

Optimization

= Update MAX_R and MAX_W when operation is
executed, not when engueued. Example:

queue[X] | W, ts=9
W, ts=8

= Multi-version timestamps

X - | Value written with ts=9

Value written with ts=7

MAX WIX] =7
Instead of 9

W, ts=7 |«— active write

n[x] ts(T;)=8

/

22

2PL* T.0

T.0. schedules

Think of i
examples for
these cases.

2PL schedules

| /
Ty wy[Y]

T, 1 [X] o[Y] wy[Z] ts(T)<ts(T,)<ts(T,)
T3 wi[X]
Schedule S: r [X] w,[X] wy[Y] ro[Y] wy[Z] 23

Timestamp management

MAX_R MAX_W

«Too much space
= Additional 10s

24

Timestamp Cache

ltem MAX R MAX W

X
Y tSyin

/

= |f a transaction reads or writes X, make entry in cache for X
(add row if required).

= Choose tsy, » current time —d

= Periodically purge all items X with MAX_R[X] < tsy,;y &
MAX_WI[X] < tsy and store ts,,-

= |f X has cache entry, use those MAX R and MAX W values.
Otherwise assume MAX_R[X] = MAX_WI[X] = tSyy -

Distributed T.0 Scheduler

scheduler 1 scheduler N
-— D, -— Dy
1J |cache NJ lcache
node 1 node 2

=Each scheduler is “tndependent”
= At end of transaction, signal all schedulers involved,
Indicating commit/abort of transaction.

Resources

= Bernstein, Hardzilacos, and Goodman,
“‘Concurrency Control and Recovery”’

— Avallable at
http://research.microsoft.com/pubs/ccontrol/

= [For timestamp control:
Garcia-Molina, Ullman, and Widom,
‘Database System Implementation”; chapter 9.
Prentice-Hall, 2000

e CS347 course material of Stanford University
—http://www.stanford.edu/class/cs347

27

