
THE TUXEDO
SYSTEM

TUXEDO =
Transaction for UniX Extended for
Distributed Operations

A well known middleware product

It provides an
- efficient
- secure
- flexibe
- controlled

operation in distributed system
configuration

The development of TUXEDO dates
back to the late 1970's

Services of the TUXEDO
The applications using the services of the
TUXEDO are running in client-server
configuration

services of the TUXEDO:
- it provides site independency, the client
needn't know the location of the required
server
- it provides a balanced server workload
in the whole network
- it provides a standard and open
interface to the datasources and to the
clients
- it provides several API alternatives to
the client components
- it provides security services

Application areas of
TUXEDO

The TUXEDO is a useful tool for the
following types of applications:

- distributed applications without any
database access
- single server type OLTP application
- distributed application with OLTP
operations

It can manage
- heterogeneous data source types
- heterogeneous display modes
- heterogeneous network protocols
- distributed transactions
- access to the different database
management systems

Structure of the
TUXEDO

the main TUXEDO components
- System/T : core system
- System/D : data management
- System/Q job management
- System/WS connection to the

clients
- system/DOMAIN

connection to other
TUXEDO

TUXEDO
client

client

client

server

server

server

System/T

System/D

System/Q

System/HOST

System/WS

System/
DOMAINS

OLTP monitor

OLTP: Online Transaction Processing

OLTP monitor =
DP monitor + DTP monitor

DP monitor =
distributed environment + no data
management or only local data
management

DTP monitor =
distributed environment + distributed
transaction management

Simple TUXEDO
structure

The configuration contains:
- clients
- application servers
- database or service servers
- one TUXEDO module

Application server Service Server? X,Y,Z

X=3,Y=5,Z=4

Q = X + Z - Y

GET(X,Y,Z)

Q=2
PUT(Q)

Cmp

Client TUXEDOCmp

Cmp

Complex TUXEDO
structure

The configuration contains:
- clients
- application servers
- database or service servers
- more than one TUXEDO modules

Application server Service server? X,Y,Z

X=3,Y=5,Z=4

Q = X + Z - Y

GET(X,Y,Z)

Q=2
PUT(Q)

CmpP

Client TUXEDOCmp

Cmp

TUXEDO Application server

CmpP

cmpP
…

Cmp

The functionality of the
SYSTEM/T module

The SYSTEM/T module manage the the
following information:

- clients with active connections
- the list of services requested by the
clients
- access path to the servers
- list of services provided by the
servers
- work load of the services
- message passing
- data passing
- message form conversation

The SYSTEM/T module contains several
sub modules

The structure of
SYSTEM/T

System/ T

Client ServerA
T
M
I

A
T
M
I

Bullet
in

Board

Message
Queue

Message
Queue

Bridge

BBL DBBL

Admin

SYSTEM/T components

- Bulletin Board
repository, description of the system
state

- Message Queue
list of messages sent by the clients or
servers

 Bridge
communication service between the
System/T moduls

- BBL
administration of the BB structure

- DBBL:
distributed administration of the
cooperating BB structures

- ATMI
API interface library for the client
application

Communication Process
The main steps of the communication
process at the client site:

- registration of the client
- client decides to use a service
- message generation
- sending the message to the
TUXEDO
- receiving the reply message
- release the registration

FORM
System
/T

registration

data input

preparation

m. sending

r. receiving

r. processing

data output

new req.

disconnect

Communication Process
The main steps of the communication
process at the server site:

- registration of the server
- registration of the available services
- listening to the service requests
from the TUXEDO
- message processing
- sending reply to the TUXEDO
- stopping the listening cycle
- release the registration

System
/T

DBMS
server

connection

registration

listening

m. processing

sending reply

halt

disconnect

sending reply

ATMI function calls
tpinit registration
tpalloc allocation of the

communication buffer
tpfree release the communication

buffer
tpacall sending an asynchron

service request
tpcall sending a synchron service

request
tpgetrply waiting for the reply
tpconnect opening a communicatiob

channel
tpsend sending data
tprecv receving data
tpreturn sending a reply of the

server after processing a request
tpbegin starting a transaction
tpcommit committing the transaction
tpabort aborting the transaction

Communication models
There is an intensive information and
data exchange between the clients and
the servers

The server should receive the following
data elements:

- data and services to be processed
- process parameters
- authentication data

Two alternatives of the communication:
- RPC : remote procedure call

§ lower network traffic
§ higher autonomy

- Messsage based
 More flexible service
processing

RPC communication
The RPC can be work in synchron or in
asynchron mode

In synchron RPC, the client gets in a
waiting state, it will be continue only
after receiving the reply from the server

The execution steps of a tpcall call:
- look up the servers providing the

requested service
- selecting an available server from

the list above
- generating a message to the selected

server
- sending this message to the inbox

of the selected server

A timeout method is used to avoide an
infinite waiting loop

RPC communication
In synchron mode, the server processes
only one service request at the same
time.

The execution steps of a synchron tpacall
call is similar to the asynchron case
except the following aspects:

- In asynchron mode, the server
processes only one service request at
the same time.
- the clients can go on to work other

parts of the program
- the clients should request the reply

from the servers

RPC communication
The servers can forward the service
request to an another server for
processing

Application
client

App. server

h1=tpacall(SERV1)

read m.

exec. (SERV1)

tpreturn()
message
queue

App. server
read m.

exec. (SERV2)

tpreturn()

h2=tpacall(SERV2)

tpgetrply(h2,…)

tpgetrply(h1,…)

Message based
communication

The client and server are making a
conversation

The client can ask for information about
execution details to control or fine tune
the execution algorithm

The connection between the client and
server is established by the tpconnect
ATMI call

A client can have several connection at
the same time

The reply message is stored in the
message buffer

Message based
communication

During the conversion, a flag is used to
mark the speaking, active partner. This
flag can be set in the messages sent by
the active module.

The client can sand more than one
request, message without checking for
the reply message.

Application client Application server

id=tpconnect() connection

tprecv(id,data)

tpsend()

tpsend(id,data,RCV)

tprecv(id,data)

tprecv(id,data)

id

tpreturn()

Communication buffer
The problem of message and data
passing between the different
components requires a common data and
message format.

The communication buffer is used to
store the data and message in a common
format within the SYSTEM/T module.

The communication buffer is allocated
by the client using the tpalloc ATMI call.

The basic communication buffer types:
- string
- C array
- structure, view
- FML, flexible record structure

Communication buffer
The size of the communication buffer
can be dynamic changed

Application client Application server
buf=tpalloc(view,auto) Üzenet olvasása,

feldolgozása

sb = Request->obuf
sb.tipus = ‘Opel’

tpreturn(SUCC,sb)

buf->rendszam=’esd344’
buf->ar = 234555

id =tpacall(SERV1,buf)

tpgetrply(id,buf)

&b

System/T
B allocation

buf->tipus kijelzése

Workload balancing
To achieve a balanced server workload,
the actual workload for every server is
kept in the Bulletin Board.

The calculation of the actual workload is
based on the number of waiting services
at the server.

Calculation method:
- real-time, exact value
- round robin, estimation value

To achieve a better approximation for the
expected workload the different services
may be assigned to different weights

The weights are proportional to to the
average execution time

Real Time Method

The real time methos is used only when
only one Bulletin Board exists in the
system. This BB contains all information
about all servers.

The calculation method:
- Initial workload value is equal to

zero
- New incomming service increases

the workload value by the weigth
- When the service request leaves the

list, the workload value is decreased
by the corresponding weight value

A new incomming service request is
assigned by the SYSTEM/T to the server
with the lowest workload value

Round Robin Method
If there are several Bulletin Boards in the
system, the round robin method can be
used.
All af the BBs stores the workload status
of the every servers, but it takes only the
local assignments into account to
minimize the network traffic cost.

In some cases, the weight value is
increased if the server is located at a
remote node.

A new incomming service request is
assigned by the SYSTEM/T to the server
with the lowest workload value based on
workload status in the local BB.

DTP System
DTP: Distributed Transaction Processing

The DTP is based on the two-phase
commit protocoll

It communicates with the clients as with
the data sources.
ATMI: interface to the clients
XA: interface to the data sources

Application
client TUXEDO DP

monitor

Application
server

DBMS

TUXEDO
DTP monitor

1.

4.

5.

10.

9.

2., 6.

3.

6.

7.

8.

11.

XA function calls

xa_open connecting to a datasource
in the frame of a 2PC
protocoll

xa_close disconnect from the
datasource

xa_start starting a global t
ransaction

xa_end end of a global transaction
xa_prepare set the datasource to a

’ready to commit’ state
xa_commit commit a transaction
xa_rollback rollback a transaction
xa_forget release transaction

description data
xa_recover recover a failed transaction

