
Reliability and Security in the Distributed
Databases

Source : S.Ceri-G. Pelagatti: Distributed Databases

How can the quality and security of a DDBMS ensured?

Quality:
- functionality
- reliability
- flexibility
- services

Security:
- access control
- audit

Reliability:
Measure of the success with which the system conforms to some
authoritative specification of its behavior. When the behavior
deviates from that which specified is, this is called failure .

Levels of reliability:
- application dependent
- application independent

The application dependent part refers mainly to the integrity
constraints.
The application independent part refers mainly to the ensuring of
the ACID concepts.

Reliability

Main aspects of reliability:
- correctness : the system works in accordance with the
corresponding specifications
Some kind of software testing methods () can be used.
There is no appropriate tool to proof the correctness of a
complex software system.
- availability : fraction of the time that the system meets its
specification

Usually the requirements of the correctness and of the availability
can not be met at the same time.

Increasing correctness decreasing availability
Increasing availability ⇒ decreasing correctness

Correctness oriented applications (banking, simulations)
Availability oriented applications (tourist information system)

Trade-off problem : which of the two aspects should get higher
priority?

2-Phase Commit example:
A distributed transaction is performed. Some of the participating
nodes sent a 'ready to commit' message to the coordinator. The
network connection is getting now down to a site which did not
give an answer yet. What should the coordinator do?
- waiting for answer : high correctness, low availability
- take a decision : high availability, low correctness

Main problem areas of reliability

To provide an appropriate protocol for transaction commitment
A such method is need which could provide a good trade-off in the
case of failures too.

To provide an appropriate protocol for data replication
A data element may be replicated at different sites. How can the
different instances managed in the case of failures?

Determining the state of the network
How could we ensure that every participant has the correct
information regarding the operational states of the other partners?

Detection and resolution of inconsistencies
How can we detect and resolute the inconsistencies caused by a not
fully correct decision of the coordinator?

Checkpoints and cold restarts
How can the global consistency of the distributed database ensured
in the case of a cold restart?

Commission errors
How can we detect and correct actions that seem formally well but
semantically are incorrect?

Nonblocking Commitment Protocols

Blocking commitment protocol:
in the case of failure, the participants should wait until the failure is
repaired.
Pending state : the site waits for decision from the coordinator

State diagram of the 2PC
coordinator site:

participant site:

Every state is associated with input/output messages
input message → state transition → output message

If the failure occurs after input message, the site remains in the
previous state, the input message will be lost. No output message
will be generated.
If the failure occurs after the state transition, the site has a new
state, but no output is generated.

Initial
state

Waiting
state

Commit

Abort

Initial
state

Waiting
state

Commit

Abort

The 3-Phase-Commitment Protocol

The new protocol is needed to reduce the blocking effect of the
2PC.

Failure with blocking:
We assume both the coordinator and a participant has a failure. If
only the coordinator would be in a failure state, one of the
participants could replace it to resume the transaction. But in this
case it is not possible. We assume, that all of the working
participants are in ready to commit state.

The global transaction may
- aborted if the failed site aborted yet (but the others no received
message yet)
- commited if the failed site made a commit yet (as he received the
message from the coordinator, but the others no yet)

The others have to wait until the failed site can be repaired.

To resolve this type of problem, a new commitment protocol was
introduced, the 3-phase commitment protocol.

The 3PC contains and additional state, phase between the ready to
commit state and the commited state. This state is called prepared
to commit state.

Using the 3CP protocol, the failed site is in this PtCS state. This
state can be revoked unlike the Commited state in 2PC.
The 3-Phase-Commitment Protocol

State diagram of the 3PC[]
coordinator site:

participant site:

Main steps of execution:

- Every site receives the task from the coordinator
- Coordinator and participants are in uncertain state
- Every participant performs the received tasks with success or
with failure

Initial
state

Waiting
state

Commit

Abort

Prepare to
commit

Initial
state

Waiting
state

Commit

Abort

Prepare to
commit

The 3-Phase-Commitment Protocol

- Every participant gets in ready or abort state, and notifies the
coordinator
- If the coordinator receives an abort message, it gets into
abort state
- If every message is ready message, it gets into before
commitment state, and send messages to participants
- Participants get into prepare to commit state, and send
message to the coordinator
- If coordinator receives OK message from every participants,
it gets into the Commit state, and sends Commit message
every participants.
- The participants after receiving the message perform the
Commit statement

Avoiding blocking

If none of the operating participants received the prepare to
commit message, the participants can abort because there can not
be a participant (that may be at this time unavailable) which
executed a commit. Thus every participants can abort the local
transaction.

The failed participant will abort the interrupted transaction after
the system restart.
During the third phase, when the coordinator fails during the
prepare to commit state. Every participants are waiting in the
prepare to commit state. Solution: a new coordinator is elected.
Termination protocol for 3PC

Rules of termination:
- If at least one operational participant has not entered the prepare
to commit state then the transaction can be safely terminated
- If at least one operational participant has entered the prepare to
commit state then the transaction can be safely committed

The preconditions of the two rules overlap each others, thus there
allows different alternatives

Protocol types:
- progressive : it tries always to commit when it is possible
- nonprogressive : it tries to abort when it is possible
- centralized : there is one coordinator
- decentralized : it allows local decisions too

Reenterable protocols:
In the case of coordinator failure the process can be continued after
the election of a new coordinator. The new coordinator can replace
the old one without any loss of functionality.

Strategy of the election:
There may be several variants
Example : priority order
Every participant has a priority value, the sites are totally ordered
by this priority value.
After failure of the coordinator, the participant with highest
available priority will replace it.
Termination protocol for 3PC

A centralized, nonprogressive protocol:
After failure of the coordinator, the activity depends on the current
state of the new elected coordinator:
- If it is in the prepare to commit state, it sends messages to every
participants to enter this state
- If it is in the commit state, it sends messages to every participants
to commit the local transactions
- If it is in the abort state, it sends messages to every participants to
abort the local transactions
- If it is in the commit state, it sends messages to every participants
to commit the local transactions
- otherwise it sends messages to every participants to abort the
local transactions

Modifications to make the protocol progressive
In the otherwise case, the new coordinator will ask the participants
to send their state descriptors. Depending on the descriptor value,
the coordinator sends an abort or commit message to the
participants.

Restart protocol
Performed during the site recovery.
The site must collect information about the global state of the
transaction to perform the correct activity (abort or continue).

2PC in case of Network Partition

Network Partition:
Due to a network failure the participants are separated into smaller
distinct groups. There is no communication between these groups.

2PC and network partition:
If the coordinator can not get answer from some of the participants
due to the network partition, the coordinator will wait until a
timeout occurs and after then sends an abort message → blocking
for timeout period
If the network partition happens after when the coordinator sent a
message, the participants in the isolated partitions should wait until
the network is repaired → blocking for unlimited time

Protocol to avoid blocking:
If one of the participants in the isolated partition received the
message from the coordinator, then the new local coordinator
elected by the isolated group will be able to coordinate the
participants in the partition.
The new local coordinator asks every participants if they received
a message from the original coordinator. If yes, it will continue the
coordination based on this message.

Independent Recovery Protocols

In the previous protocols a failed participant should usually get
information about the result of transaction to terminate the local
transaction correctly during the restart process.

Independent recovery protocol:
The failed site can terminate the local transaction correctly during
the startup without any information from the other participants.
Ideal case for failure of arbitrary site (maybe the coordinator):

- There exists an another site that can perform the coordination
- The failed site can perform the startup-recovery without any
external information

In the case of network partition for every participants seem the
participants in the isolated partitions to be in failure.
But the these two types of errors have different consequences.
In the case of network partition every partition should terminate in
the same way.

3PC and network partition
 - The network is divided into isolated groups
 - The participants may be in different states (ready or prepare
to commit)
 - Every group elects a new local coordinator
 - The termination of the group level transaction depends on the
state of the new coordinator elected by the group

 - Thus some of groups may commit, others may be abort the group
level transaction

Proposition of the Independent Recovery Protocols

There was a lot of effort invested into research of ideal
independent recovery protocol. The results are mainly negative.

Prop. 1
Independent recovery protocols exist only for single-site failures.
There exists no independent recovery protocol which is resilient to
multiple-site failures.

Prop 2.
There exists no nonblocking protocol that is resilient to a network
partition if messages are lost when the partition occurs.

Prop 3.
There exist nonblocking protocols which are resilient to a single
network partition if all undeliverable messages are sent back to the
sender.

Prop. 4
There exists no nonblocking protocol which is resilient to a
multiple partition.

Thus it exists no a general solution of this problem.

Practical solutions: the largest partition terminates the transaction
to be not blocked.
Problem: which partition is the largest?

Primary site approach and the majority approach

There are different methods to decide which partition is largest to
terminate the group level transaction.

Primary site approach:
A site is designated as primary site, and the partition containing
this primary site is allowed to terminate the transaction.
It is usual to denote the role of primary site to the coordinator. In
this case all transactions within this partition are terminated
correctly.

If the primary site differs from the coordinator site, then a 3PC
termination protocol should be used to terminate all transaction of
the group with the primary site.

Majority approach
Only the group containing the majority of sites can terminate the
transaction. The sites in the groups may vote for aborting or for
committing. The majority of sites must agree on the abort or
commit before the transaction terminates.
It may happen that no group can achieve this majority.
Quorum-Based Protocols

The quorum based protocol is an extension of the majority
protocol. A weight value is assigned to every participant, site. A
weight unit is called vote. A given number of votes is required to
terminate the transaction.

Rules of the quorum based protocol
- Each site i has associated with a positive vote value
- A transaction must collect Vc votes before committing
- A transaction must collect Va votes before aborting
- Va + Vc > V where V is the total sum of votes

Application of quorum-based protocol in 3PC.
The transition from the Prepare to Commit state into the Commit
state can be only performed the necessary Vc votes are collected.

The Prepare to Commit state of a site means voting for Commit

Which state should mean the voting for Abort?
The Ready state is not appropriate as it means an undecided case
where the state does not know which state to choose.

The solution : a new state is introduced to vote for Abort

Ready to Abort state:
This state lies between the Ready and the Abort states. It indicates
that the site agrees to abort the transaction.

Quorum-Based Protocols

The termination depends on the result of the voting. Thus from the
Prepared states can be transited into both direction.

voting

Rules of operation:
- if at least one site has committed send a Commit message to the
participants
- if at least one site has aborted send an Abort message to the
participants
- if the number of votes of sites in Prepare to Commit state (Nc) is
greater then or equal to Vc, send a Commit message
- if the number of votes of sites in Prepare to Abort state (Na) is
greater then or equal to Va, send an Abort message
- if the Nc plus the number of votes of sites in Ready state is
greater then or equal to Vc, send a Prepare to Commit message
- if the Na plus the number of votes of sites in Ready state is
greater then or equal to Va, send a Prepare to Abort message

Transaction management in the case of failure

Initial
state

Waiting
state

Commit

Abort

Prepare to
commit

What is the requirement to perform a transaction regarding site
failures?

The site failures may restrict the data access.

Let's take a T transaction. The data accessed by the transaction
may be subdivided into two groups : read-only and write data.
RS(T) - read set of T
WS(T) - write set of T
A failure may restrict the access to both types of data elements.
But the two types of errors can be managed differently.

Access failure to RS(T) : fatal error, the transaction is aborted
Access failure to WS(T) : not fatal error as the data written out is
known for the transaction if it would needed.

Deferred update : as the data element to be updated is not available
at prompt, the new value is stored in an intermediate structure. If
the data element gets available later again, the update will deferred
executed.

Nonredundant database:
Every data element is stored in only one instance, no data
replication.
In this case, the failure of a site will cause the aborting of all
transactions requiring read data from this site.

Redundant databases

Although the user-level redundancy causes anomalies in the
applications, the redundancy controlled by the DBMS has several
benefits:
- better efficiency, better access time to the data elements, less
network traffic
- increase the reliability and availability

There are several aspects to be considered during the planning of
the replications. The replication of x ∈ RS(T) on a site S has the
following benefits:

- if T runs on S, there is no network messages needed for
locking, terminating.
- if T runs on S, there is a shorter access time needed.
- if T runs in partition containing S, the T may be executed
instead of aborted.

The disadvantages of this replication:
- a T' running on other site and accessing the x should send
messages to this site
- every update of x should be performed here too

The actual replication schema should depend on the
- access schema
- possible partitioning schema
- network and data access costs

Weighted majority locking

Majority locking:
A transaction can read or write an object in only that case when it
can lock the majority of the item replications.
Weighted majority locking:
A weight (vote) is assigned to every item replication. The
transaction should gain a given amount of votes to access the item.

Operation rules:
- every x item has a total number of votes : V(x)
- every xi replication has a vote V(xi), so that Σi V(xi) = V(x)
- every x item has a read quorum Vr(x) and a write quorum Vw(x)
- Vr(x) + Vw(x) > V(x)
- Vw(x) > V(x) /2
- a transaction can read x if it obtains lock on so many copies of x
that the total votes are greater than or equal to Vr(x)
- a transaction can write x if it obtains lock on so many copies of x
that the total votes are greater than or equal to Vw(x)

Only one transaction can gain the write access at the same time.

Several transaction can gain the read access at the same time.

The quorum protocol increases the network traffic as a transaction
should lock the majority of the data copies resident at remote sites.

Network Partitioning and Quorum Protocol

The quorum protocol is applicable in the case of network
partitioning too.

The transaction in the partition containing the majority of item
copies can be processed.

Only one partition is available for a transaction.

before partitioning

after partitioning

majority of votes
transaction can be processed

Consistent View of the Network

How can a site manage the actual state of the network, i.e. which
other sites are available? How can it get information about the
changes in the state of the network?

Usual solution of failure detection: time-out method
the requested answer does not arrive in time.
A site can not distinguish a failure from a network partitioning

Problem of the time-out method:
A site may delay with the answer although it is available
Consequence:
The information about the actual state of the network gets incorrect
and inconsistent.

2

1 3

The message from site 2 to site 1 is delayed.
The site 1 registers site 2 as unavailable
The site 3 registers site 2 as available

There should be used such a state registering method which
provides consistent and correct information.

State Table-Based Monitoring of the Network

State table:
Every site stores a table that contains the actual state of the
network from the viewpoint of this site. The table registers for
every site whether it is up (available) or down.

The different sites may have different state-views due to the
network partitioning.

The consistency can be provided only among the sites belonging to
the same network partition: a site and all of the sites registered as
up in its table should have the same state table value.

How is the consistency provided?
If we would assume that the state table would filled in separately, it
would led to inconsistency again.

Controlled state observation:
Every site has a controller site which will check whether the site is
up or not. The other sites should accept this view.

The controller uses the time-out method to detect a site failure or
partitioning. But instead of sending request to the controlled site,
this site should send regularly an I-am-up message to the
controller. If this message is delayed, the site is recorded as down.

State Table-Based Monitoring of the Network

After the recovery of a site, the site has to send again the 'I-am-up'
message to its controller.
The controller will update the state table after receiving the
message.

How is the controller assigned to a site?

Circular ordering method:
The sites are totally ordered by any arbitrary method. So we can
assign different integer numbers to the sites. Let us denote then
with S1,S2 and so on. The controller of the site Si is the site Si-1.
The controller of the first site is the last site.

If a site has failure then its controller function will also be down.
To continue the work, the failed controller should be replaced by
an another controller.
The new controller will be the next available ancestor in the
ordered circular list. This new controller is responsible for every
unavailable direct predecessor sites too.

1

3

2
4

5

State Table-Based Monitoring of the Network

How can the state-tables of the controllers synchronized. Every
controller is responsible for a subset of sites. The state values for
this subsets of sites should be propagated to the other sites too.

Broadcasting method:
If the state table is updated at a controller site, this site sends
messages to the other sites about the modifications.
As every sites should be informed the message is sent in a form of
broadcast.
The sites receiving this broadcast message will update their own
state table based on the new information.

Using this method every sites within a network partition will have
the same state-table.

Problem of broadcasting:
In the case of partitioning, a site may receive inconsistent
messages about the same site (from different partitions before or
after the partitioning occurs).
To solve this kind of concurrency, every broadcast is assigned an
unique time-stamp. The messages are processed in this order.

2
1

after part.
before partitioning

Inconsistency

Reason of inconsistency:
In the protocols mentioned before there is no risk of inconsistency.
The inconsistency may occur when the different copies of the same
date item are updated by such values that would not be allowed
according to the integrity rules.
The inconsistency may occur if we allow to process a transaction in
more than one partitions in the case of network partitioning.
Some systems allow this risk in order to increase the availability

Management of inconsistency:
The system should perform the following steps after repairing the
partitioning failure:
- detection phase: detecting the occurrences of inconsistency,
which data items are affected by the inconsistency.
- resolution phase: eliminating the inconsistent values and
assignment of a reasonable value to the affected data items.

Problems in inconsistency management:
It is impossible to develop a general method which could detect
and resolute the inconsistencies exactly for all types of
applications.

Detection of inconsistencies

The detection rule:
The consistency can be ensured only if every data item is updated
by only one transaction copy after the occurrence of the network
partitioning.

Why can not the rule base on the comparison of the values at the
different item copies?
Because both the equality and the inequality of the values can
mean inconsistency:
- salary assignment : equality is required
- airline reservation : inequality is required

Method of inconsistency detection:
We denote the item copies in a selected partition or main partition
as master copies.
The copies contained in the other partitions are called isolated
copies.
For each data item copy is a couple of version number registered to
denote the sequence of updates. After every update the
corresponding version number increases by one.
Original version number:
The version number used by the normal state, i.e. before the
partitioning occurred.
Current version number:
The version number used by the partitioned state, i.e. after the
partitioning occurred.

Detection of inconsistencies

We take an example with four copies

Initial version numbers:
V1(0,0), V2(0,0),V3(0,0), V4(0,0)
After an update in normal status:
V1(0,1), V2(0,1),V3(0,1), V4(0,1)
After partitioning the copies No 1,3 remain in the master partition,
No 2 and No 4 get in different partitions.
V1(0,1), V2(1,1),V3(0,1), V4(1,1)

V1(0,1), V2(1,1),V3(0,1), V4(1,1) : no update occurred, consistent

V1(0,2), V2(1,1),V3(0,2), V4(1,1) : update occurred in one
partition, consistent

V1(0,1), V2(1,2),V3(0,1), V4(1,1) : update occurred in one
partition, consistent

V1(0,2), V2(1,2),V3(0,2), V4(1,1) : update occurred in more than
one partition, inconsistent

V1(0,2), V2(1,2),V3(0,2), V4(1,2) : update occurred in more than
one partition, inconsistent

Resolution of Inconsistencies

The resolution is always application depending. Sometimes the
eliminating of the inconsistent values is not desirable.

There exists no general resolution protocol.

The application should be extended with the application specific
resolution policy to avoid the inconsistency.

Avoiding inconsistency:
The application contains special methods to manage the different
transaction copies.

Airline reservation system:
In the case of network partitioning, to every partition is an amount
of available reservations assigned.
Every transaction copy can consume this amount of reservations.
As the total sum of amounts is less then the total available
reservations, every local reservation can be kept valid after the
repairing of the network too.

Cold Restart

Cold restart:
After a fatal failure of the system, the actual consistent state of the
DBMS is lost. An archived older consistent state is to be
recovered.

As a DDBMS has global consistent state, a site cannot change their
state independently from the other sites.
If one site has to make cold restart then all of the other sites must
make cold restart.

Local failure - global recovery

Consistent global state:
- Atomicity concept:
For each transaction T, the state contains the updates performed by
all subtransactions of T at any site (T is contained in the global
state), or it does not contain any of them.
- Serializability concept:
If the T transaction is contained in the global state, then all
conflicting transactions which have preceded T in the serialization
order, are also contained in the global state.

The duration in the ACID concept can not be guarantied as the
effect of some transactions will be lost due to the fatal failure. But
all of the transaction before a given point of time are recovered.
The consistency requirements are met as recovery replies the
earlier consistent transactions.
Checkpoint in recovery

Checkpoint:
A mechanism to provide global consistent state. The checkpoint
denotes a point of time when a snapshot is taken about a consistent
state of the database system.

A global checkpoint is a set of local checkpoints which are
performed at all sites of the system and are synchronized by the
following condition:
if a subtransaction of a transaction T is contained in the local
checkpoint at some time, then all other subtransaction of T must be
contained in the corresponding local checkpoints at other sites.

In the case of cold restart
- take the latest available local checkpoint
- take the corresponding global checkpoint and reestablish the local
states at every sites according to this global checkpoint

Generation of global checkpoint:
The snapshot, the checkpoint must be performed when there is no
active transaction. The exact solution needs a lot of idle time as
site A should wait for site B.

Loosely synchronized checkpoints:
The sites can perform the checkpoint within a given interval. Every
checkpoint is identified by an order number. The TM should
guarantee that if a T finishes before Ci then all of its
subtransactions should finishes before the local Ci.

