Using Java for Network Programming
Practice Course
1998

TEMPUS_SJEP-12495-97

Jozsef VOros
Kando Polytechnic of Technology
Institute of Informatics

TEMPUS S_JEP-12495-97 Network Computing

Contents

LAB 1: WORKING WITH INTERNET ADDRESSES AND DNSNAMES.................... 6
ODJECLIVES. ...ttt ettt e st e e st e e e e bt e e e enee e e ente e e nneeeeenneas 6
(S 0= 0 (1S =SSP 6

TOOLSIN JAVA FOR PROCESSING INTERNET ADDRESSES.......uuuteiireeaieeeasseeessseeesssessssesssses 6
Java s Javanet. | NEtadareSS ClasS:uieiiiie e 6
CoMMON ProgramIMING € OISccoiueeeireeeareeeareeeareeesseeeaasseeasssesassseeassseessssessssseesssseeens 7

EXERCISES. ...ttt ettt ettt ettt et e et e e et e e st e e s bt e e eabe e e e bt e e e bee e e eate e e enbe e e enne e e anneeennneeeanes 7
Exercise 1 Find IP address and hostname of the local machine...............ccccoiiiiiiienens 7
Exercise 2 Find IP address or hostname like NSl0OKUPcceoiiiiiiiii e 7

LAB 2: WRITING CONNECTION-ORIENTED CLIENTS.....cooiiiieeee e 8
(@ o)1 o1 Y= RPR 8
S 0= 0 (1S =S PPROPRR 8

TOOLSIN JAVA FOR CONNECTION-ORIENTED COMMUNICATION ...cveiautieeeereeesieeeesiseeesneeeesneeas 8
The Java' s JavaNet.SOCKEL ClaSS.........veiiiiiieiiiie e 8
CoMMON ProgramMIMING € OIScciiuueeeireeeareeeareeeaseeesnseeeaaseeeassseeassseeassseessssessssseessnseeens 9
A typical client does the folloWiNg SLEPS:ooveieiiiie i 9

g L0 1S = F R RPPR 9
Exercise 1 Command line Daytime ClIENt.........cccueiiiiiieiiie e 9
Exercise 2 Command line DateAthost Clientcceeiiieiiin e 10
Exercise 3 Command line@ €Cho ClIeNtccoeviiiiiiiieee e 10
Exercise 4 Command line finger Client............oooiieiiie e 11

LAB 3: WRITING CONNECTION-ORIENTED SERVERS........cccooiiiiiieeieeeiee 12
ODJECLIVES. ...ttt e e e bt e e e at e e e nnae e e snte e e anreeennes 12
PrErEOUISIEES ..ottt et e et e ettt e e ssb e e e sate e e snbe e e snseeesnseeesnneeens 12

TOOLSIN JAVA FOR CONNECTION-ORIENTED COMMUNICATIONceeiiiieaireeesireessireeesneeeennns 12
The Java' s java.net.ServerSOCKEL ClaSs........cocvii i 12
CoMMON ProgramIMING ETOISccoiuueeeireeeaeeresteresseeesseeesaseeeassseeassseesssseesssesessseessnsees 13
A typical iterative server does the following StEPS:evvviieeiiiieii e 13
A typical concurrent server does the following SLEPS:cooveeeiiiiiiiiii e 13

EXERCISES. ...ttt ittt ettt ettt ettt ettt ettt et e et e e st e e st e e e be e e e bt e e e st e e e nte e e enbe e e enteeennneeeanreeens 13
EXEICISE 1 DAY TIME SEIVENcoiiiieeeiieeeeiie et s ettt e e e sbe e e st e e e snne e e snseeeenseeeenneas 13
EXErciSe 2 DAtEATHOSE SEIVEYcooiiieeiiie ettt e e 14
EXEICISE 3 ECNO SEIVEN ...t 14
Exercise 4 SIMpIe fINQEN SEIVEY ...t 15
EXErcise 5 SIMPIE HT TP SEIVES ...ttt 15
EXErcise 6 FUMNEr EXEICISES.vii et 16

LAB 4: WRITING CONNECTION-ORIENTED CLIENT-SERVER APPLICATION 17
ODJECLIVES. ...ttt et e e et e e e ate e e snne e e ente e e enreeennes 17
PrErEOUISIEESceieeie ettt e et et e e e ssb e e e sate e e snbeeesnseeesnneeeanneeens 17

EXERCISES. ...ttt tittte sttt ettt ettt ettt s it e e st e e s bt e e e bt e e e be e e e ne e e e bee e e nbe e e enbeeeenneeennreeens 17
EXEICISE L NELT OB QAIMEeiiiieieeiiie e eitee et e st e sttt e e sbe e e sse e e e snne e e enreeesnneeesnneas 17
EXErciSe 2 TOIPEUO QAIME......ccoiiiieiiiieeiiieeeiee et ettt e e e s e snne e e snsee e snseeesnneas 18
EXErCiSE 3 SNaIl QAIMEoiiiiie ettt neas 19

TEMPUS S_JEP-12495-97 Network Computing

LAB 5: CONNECTIONLESS COMMUNICATION IN JAVA. ... 20
ODJECLIVES. ...ttt e et e e et e e e ate e e nnse e e ente e e nnreeennes 20
PrErEOUISIEESceiieie ettt et et e et e e e ssb e e e sate e e snseeeenseeesnseeennneeeas 20
TOOLSIN JAVA FOR CONNECTIONLESS COMMUNICATION .cuuvveeavieeeieeeesseeeesnseessnseessnseessnns 20
Java s javanet.DatagramSOCKEL ClaSS.........coiiueiiiiiieiiiie e 20
CoMmMMON ProgramIMING €I OISccoiuueeeiieeeaeereareeesseeesseeeaaseeeassseessseeesssseessseesssseeessees 21
EXERCISES. ...ttt tittte sttt ettt ettt ettt s it e e st e e s bt e e e bt e e e be e e e ne e e e bee e e nbe e e enbeeeenneeennreeens 21
Exercise 1 HeartBeat Programeeiiieeeiiiee i e sieee st ettt e e e sneeeesnsee e snseeesnseas 21
EXercise 2 ECNOING PrOQraIMeeiiiiie ettt ettt e e e e snneas 21
Exercise 3 Reliable COMMUNICALONoiiiiiieiiiieeiiee e 22
LAB 6: USING JAVA REMOTE METHOD INVOCATIONcooiiiiiiiiie e 23
ODJECLIVES. ...ttt e e st e e e bt e e e bte e e snbe e e snne e e anreeennes 23
PrErEOUISIEESce ettt et e et e ettt e e sab e e e sate e e snseeesneeeesnseeennneeens 23
TOOLSFOR JAVA RIMI ...ttt sttt e st e e nsa e et e e s nre e e s nneeennes 23
Make an RMI application Step DY SEEP.....ccveiiiiee e 23
EXERCISES. ...ttt ettt ettt ettt ettt et e st e e st e e st e e e bt e e e be e e e nt e e e Ree e e enbe e e enbeeeenneeennreeens 24
Exercise 1 Distributed Hello World program...........c.ooee e 24
Exercise 2 Distributed event 10ggercoo i 26
EXErCiSE 3 Chal SYSLEIM ... nneas 28
Exercise 4 Distributed white Doard.............ccoeeriiiiniii e 28
APPENDIXES ...ttt ettt sttt ettt et e e e st e e s anb e e e anb e e e e nbe e e enreeeanneeeenes 29
FIND | P ADDRESS AND HOSTNAME OF THE LOCAL MACHINE.......cciiuieariieeasieeeesieeesseeeseeeens 29
FIND | P ADDRESS OR HOSTNAME LIKE NSLOOKUP........uvttiiieeaireeaireeesiressssseesssseessseessnseeens 29
COMMAND LINE DAY TIME CLIENT ..etiiutiieaiiieesiteeesiteeessteeesseeesseessseesssssessssseessssesssnsesssnses 31
COMMAND LINE DATEATHOST CLIENT ..eiittieeitieesiteeessteeesseeesseessnseesssssesssssesssssesssnsesssses 32
COMMAND LINE ECHO CLIENT .ttttutiteaiteeastteeesssesessseeessseesssseesssseesassesssssesssssesssssesssnsesssnsens 33
COMMAND LINE FINGER CLIENT ..ttteiutteeatteeesusesessteeessseesssseesssseessssesssssesssssesssssesssnsesssnsees 35
DAY TIME SERVER.......ctiittieiitieeasutteastteeessteeassseessnseaesseeesseassseesaassesaassessssseessnseessssesssnseeens 37
DATEATHOST SERVER......ctiitiieaiuiieasiteeesuteeassteeesseeesbeeeasseaesnssesasssesanssessssseessnsesssnsesssnsenens 38
ECHO SERVER ...ttt sttt ttee ettt ettt et e et e st e st e e et e e e bt e e e st e e e sbeeaenbeeeanbeeesnneeeannanens 39
NETTOE GAMEetieiiteeeetteeesttee e satee e sttt e e sate e e aate e e sste e e s abeeeaaseeeebeeeeseeeeseeeeanseeeanseeesnseeeansenans 40
HEARTBEAT PROGRAM......ceiittitiittieastteeesuteeaaseeesseaesseeesseassassesasssessnssesssssesssnsesssssesssnsenens 50
ECHOING PROGRAMcoiutiiiiiiieasiieeasiteessiteeassseeessseaessseeesseassseesanssesansseessnseesanseeesnseessnsenens 51

DISTRIBUTED HELLO WORLD PROGRAM.cccutttiiuteeesteeesseeesseesssssesasssesssssesssssesssssesssnseeens 55

TEMPUS S_JEP-12495-97 Network Computing

Preface

Course Description

The primary objective of this practise course is to teach students to develop simple networking
applications and applets using Java. After this course students will be able to develop client-
server networking applications using TCP/IP and distributed systems using Java RMI. The
examplesuse Javal.1 APls.

Prerequisites

Potential students should meet the following prerequisites:

Java programming fundamentals such as syntax, structure, java.lang and java.util package
knowledge.

Optional Java development environment knowledge (Java Development Kit is
recommended).

Object-oriented programming terminology and concepts such as objects, properties, and
methods.

Essential networking terminology and concepts such as TCP/IP networking, client-server
theory and distributed computing fundamentals.

Objectives

At the end of this course, the student will be able to:

Describe the fundamental concepts of TCP/IP networking in Java.
Programming sockets and streams in Java.

Develop smple TCP/IP server applications.

Programming concurrent TCP/IP server applications.

Develop client-server networking applications.

Describe the fundamental concepts of Java RMI.

Develop distributed applications using Java RMI.

Classroom Requirements

This course requires a classroom with a minimum of one computer for the instructor and one
computer for each student. You can use any kind of computer with any kind of operating
system on which the Java Development Kit runs. Typically used platform, for example,
Windows 95/NT, Solaris.

Before class begins, instal and configure JDK 1.1 and your favour word processor on all
computers by using instalation instruction in README of related product. Y ou can use other
JVM 1.1 compatible Java Development Environment.

TEMPUS S_JEP-12495-97 Network Computing

Related books

[1.] Sridharan, Prashant: Advanced Java Networking, Prentice-Hall, 1997

[2.] Courtois, Todd : Java Networking and Communications, Prentice-Hall, 1998

[3.] Friedrichs, Jurgen: Java Thin-Client Programming for the Network Computing
Environment, Prentice-Hall, 1998

[4.] Hughes, Merlin: JAVA Network Programming, Prentice-Hall, 1998

[5.] Umar, Amjad: Object-Oriented Client/Server Internet Environments, Prentice-Hall, 1998

[6.] Jm Farley: Java Distributed Computing, O’ Reilly, 1998

[7.] Elliotte R. Harold: Java Network Programming, O’ Reilly, 1997

[8.] David Flanagan, et al.: Javain a Nutshell, O’ Rellly, 1997

[9.] Deitel, Harvey: Java How to Program, Prentice-Hall, 1998

TEMPUS S_JEP-12495-97 Network Computing

Lab 1: Working with Internet addresses and DNS names

In this lab you will write code to processing Internet addresses and DNS names.
Estimated time to complete this lab: 30 minutes.

Objectives

After completing this lab, you will be able to:
process Internet addresses

Prerequisites
Before working this lab, you should be familiar with DNS operational mechanism.

Tools in Java for processing Internet addresses

In Java, you can use java.net.Inetaddress class to represent Internet addresses. This class
provides methods to get information related to Internet addresses.

Java’s java.net.Inetaddress class:

public final class InetAddress extends Object implements Serializable {
public boolean isMulticastAddress();
public String getHostName();
public byte[] getAddress();
public String getHostAddress();
public int hashCode();
public boolean equals(Object oby));
public String toString();
public static InetAddress getByName(String host) throws UnknownHostException;
public static InetAddresy[] getAllIByName(String host) throws
UnknownHostException,
public static InetAddress getL ocalHost() throws UnknownHostException;

}

Applications should use the methods getL ocalHost, getByName, or getAlIByName to create a
new InetAddress instance. Functions of methods are the following:

public boolean isMulticastAddress(): Utility routine to check if the InetAddress is a IP
multicast address. |P multicast addressisa ClassD addressi.e first four bits of the address are
1110.

public String getHostName(): Returns the hostname for this address. If the host is equal to
null, then this address refers to any of the local machine's available network addresses.

public byte[] getAddress(): Returnsthe raw |P address of this InetAddress object.

public String getHostAddress(): Returns the IP address string "%d.%d.%d.%d".

public int hashCode(): Returns a hashcode for this | P address.

TEMPUS S_JEP-12495-97 Network Computing

public boolean equals(Object obj): Compares this object against the specified object. The
result is true if and only if the argument is not null and it represents the same IP address as
this object.

public Sring toString(): Convertsthis IP address to a String.

public static InetAddress getByName(String host) throws UnknownHostException: Determines
the IP address of a host, given the host's name. The host name can either be a machine name,
such as "www.kando.hu", or a string representing its |P address, such as "193.224.40.2".
public static InetAddress[] getAllIByName(String host) throws UnknownHostException:
Determines all the 1P addresses of a host, given the host's name. The host name can either be a
machine name, such as "www.kando.hu", or a string representing its IP address, such as
"193.224.40.2".

public static InetAddress getLocalHost() throws UnknownHostException: Returns the local
host.

Common programming errors

The getByName(), getAllByName() and getLocalHost() ~methods thrown
UnknownHostException if no | P address for the host could be found.

Exercises

Exercise 1 Find IP address and hostname of the local machine.

Write an application which prints to standard output the IP address and hostname of the local
machine. If any error occursit prints the proper error message.

Solution:
myAddress.java

Exercise 2 Find IP address or hostname like nslookup

Write an application which reads from standard input 1P addresses or hostnames. If the given
input is I P address it prints to standard output the hostname of given address. If the given input
is hostname it prints to standard output the IP address of given hosthame. If any error is
occurred it prints the proper error message. The program reads input by line and it is stopped,
if user type , exit”.

Solution:
nslookup.java

TEMPUS S_JEP-12495-97 Network Computing

Lab 2: Writing connection-oriented clients

In this lab you will write connection-oriented clients and using a low-level network
programming interface for communicating with TCP/IP over the network..
Estimated time to complete this lab: 60 minutes.

Objectives

After completing this lab, you will be able to:
make a client side TCP/IP network connection.
send and receive data over the connection.
make simple client programs.

Prerequisites

Before working this lab, you should be familiar with IP addressing protocol (hostname, IP
address, communication port, socket).

Tools in Java for connection-oriented communication

The client side communication socket is supported by Socket class in java.net package. To
communicate with server application we must know the following things:

hostname or | P adress of the machine or machines which provides the service

port number of the service on the host

The Java’s java.net.Socket class

public class Socket extends Object {
protected Socket()
protected Socket(Socketlmpl impl) throws SocketException
public Socket(String host, int port) throws UnknownHostException, |OException
public Socket(InetAddress address, int port) throws | OException
public Socket(String host, int port, InetAddress localAddr, int localPort) throws
| OException
public Socket(InetAddress address, int port, InetAddress locaAddr, int localPort)
throws |OException
public Socket(String host, int port, boolean stream) throws | OException
public Socket(InetAddress host, int port, boolean stream) throws | OException
public InetAddress getlnetAddress()
public InetAddress getLocalAddress()
public int getPort()
public int getL ocalPort()
public InputStream getl nputStream() throws |OException
public OutputStream getOutputStream() throws | OException
public void setTcpNoDelay(boolean on) throws SocketException
public void setSoLinger(boolean on, int val) throws SocketException

TEMPUS S_JEP-12495-97 Network Computing

public int getSoLinger() throws SocketException

public synchronized void setSoTimeout(int timeout) throws SocketException

public synchronized int getSoTimeout() throws SocketException

public synchronized void close() throws |OException

public String toString()

public static synchronized void setSocketl mplFactory(Socketl mplFactory fac) throws
| OException

Common programming errors

Any method in Java throws exception if an error is occurs. Let us see the genera exceptions

what may are thrown when we try to make a client side socket connection:

- javalang.SecurityException: if the program don't have a permission to make connection.
Typically an applet try to communicate with a remote computer, but It is only alowed to
make network connection with local machine.
java.net.BindException: if the operating system couldn’t reserved the specified TCP port. It
is already in use or we specified an invalid Internet address.
java.net.SocketException: the operating system couldn’t process the specified operation on
the specified port.
javalang.lllegal ArgumentException: if the given TCP port is out of range 0-65535.
javaio.lOException: if any other communication error occurs.
java.net.Protocol Exception: if any protocol error occurs.
java.net.UnkownHostException: if it couldn’t find the specified hostname.
java.net.NoRouteException: if it couldn't make contact with remote computer. Probably, a
firewall filters our |1P packets or arouter out of order in the network.
java.net.ConnectException: if service isn't available on specified TCP port.

During transmitting data, java.io.l OException or java.io.lnterruptedException will be thrown if
any communication error occurs.

A typical client does the following steps:

It reserves an unused, free TCP communication port.

It makes a networking connection between itself and the server.

It makes stream over networking connection to provide data transmission.

It communicates with server, sending or receiving data.

After communications, It closes the network connection and releases reserved
communication port.

aghrwdNPE

Exercises

Exercise 1 Command line Daytime client

Write a client application which returns the time string of a given host. The application uses a
standard daytime service which available in TCP port 13. The arguments are hostname and
port number. The default value of port number is 13. If the program is ran without arguments
it prints day time of localhost. Program uses standard output to print information.

TEMPUS S_JEP-12495-97 Network Computing

Step by step solution:

. handling arguments

creating network connection

creating data stream

reading atime string and printing to standard output
closing network connection

aghrwDNPE

Solution:
daytimeClient.java

Exercise 2 Command line DateAthost client

Write a client application which sets machine time to a given host after that it prints new value
of date. The application uses a standard date at host service which available in TCP port 37.
The arguments are hostname and port number. The default value of port number is 37. If the
program is ran without arguments it communicates with localhost. Program uses standard
output to print information.

Important note:

dateAtHost service gives a signed 32 bit integer with number of seconds since 1% January,
1990.

Step by step solution:

. handling arguments

creating network connection

creating datastream

reading an integer

closing network connection

setting the time and printing a new value.

OUAWNE

Solution:
dateAtHostClient.java

Exercise 3 Command line echo client

Write a client application which connects to echo server the specified TCP port on the
specified host. After that it reads line from standard input to a string. If the string equalsto ‘.’
it closes connection and stops, otherwise it sends the string to the server. After sending, it
reads reply from the server to a string and printing the read string to standard output. The
arguments are hostname and port number. The hostname is required, the default value of port
number is 7. If the program is ran without arguments it prints usage help.

Step by step solution:

1. handling arguments

2. creating network connection

3. creating datastream

4. reading line from standard input and sending to the server if string doesn’'t equal to ‘..
Otherwise it closes network connection and stops.

5. reading string from the server and printing to standard output

1N

TEMPUS S_JEP-12495-97 Network Computing

6. go to step 4.

Solution:
echoClient.java

Exercise 4 Command line finger client

Write a client application which queries the specified user on the specified host. The client
connects to a specified host on default TCP port of finger service (Default port is 37.). After
the connection it sends the specified user name to the server. Finaly, it reads reply of the
server and printing the information to standard output. The program has one required
argument which consists of user name and hostname separated by ‘@' . If the program is ran
without arguments it prints usage help.

Step by step solution:

. handling arguments

creating network connection

creating data stream

sending user name

reading user information and printing to standard output
closing network connection

SUuhAwWNE

Solution:
fingerClient.java

11

TEMPUS S_JEP-12495-97 Network Computing

Lab 3: Writing connection-oriented servers

In this lab you will write connection-oriented servers and using a low-level network
programming interface for communicating with TCP/IP over the network..
Estimated time to complete this lab: 60 minutes.

Objectives

After completing this lab, you will be able to:
make a server side TCP/IP network connection.
send and receive data over the connection.
make iterative servers.
make concurrent servers.

Prerequisites

Before working this lab, you should be familiar with IP addressing protocol (hostname, |P
address, communication port, socket).

Tools in Java for connection-oriented communication

The server side communication socket is supported by ServerSocket class in java.net package.
After connection is established it uses Socket class to communicate with client. Server
appllcatlons have two type:

iterative server

It serves just one client at same time, another clients have to wait for a service in a queue.

The client requests are processed in arrival order.

concurrent server

It can serve more client in parallel at same time.

The Java’s java.net.ServerSocket class

Public class ServerSocket extends Object {
public ServerSocket(int port) throws | OException
public ServerSocket(int port, int backlog) throws |OException
public ServerSocket(int port, int backlog, InetAddress bindAddr) throws | OException
public InetAddress getlnetAddress()
public int getL ocalPort()
public Socket accept() throws | OException
protected final void implAccept(Socket s) throws | OException
public void close() throws | OException
public synchronized void setSoTimeout(int timeout) throws SocketException
public synchronized int getSoTimeout() throws | OException
public String toString()
public static synchronized void setSocketFactory(Socketl mplFactory fac) throws
| OException

19

TEMPUS S_JEP-12495-97 Network Computing

}

Common programming errors

Any method in Java throws exception if an error occurs. Let us see the general exceptions

what may are thrown when we try to make a server side socket connection:

- javalang.SecurityException: the program don’'t have a permisson to make connection.
Typically an applet program try to create server socket, but only application programs are
allowed to create server socket.
java.net.BindException: if the operating system couldn’t reserved the specified TCP port. It
is aready in use or we specified an invalid Internet address.
java.net.SocketException: the operating system couldn’t process the specified operation on
the specified port.
javalang.lllegal ArgumentException: if the given TCP port is out of range 0-65535.
java.io.lOException: if any other communication error occurs.

A typical iterative server does the following steps:

It reserves afree TCP communication port and assigning with the name of service.
It waits for a client request.

It makes a connection between itself and the client.

It servesthe client. After that, it closes the connection.

It goesto step 2.

aghrwDNPE

A typical concurrent server does the following steps:

1. It reserves afree TCP communication port and assigns with the name of service.

2. It always waits for a client request. If client request arrived it makes a thread to parallel
serve the client. While It’s serving the client like iterative server in step 3 and step 4, it's
waiting for another client request. After client is served it stops the serving thread.

Exercises

Exercise 1 DayTime server

Write a server application which listens on given TCP port and it sends date in string format to
clients like standard daytime service. The program argument is the port number. The default
value of port number is 13. Program uses standard output to print information.

Step by step solution:

. handling arguments

creating server socket

waiting client request

creating network connection with client
creating data stream

sending time string to client

closing client network connection

NogahkrowdrE

12

TEMPUS S_JEP-12495-97 Network Computing

8. gotostep 3

Solution:
daytimeServer.java

Exercise 2 DateAtHost server

Write a server application which listens on given TCP port and it sends date in 32 hit integer
format to clients like standard date at host service. The program argument is the port number.
The default value of port number is 7. Program uses standard output to print information.
Important note:

dateAtHost service gives a signed 32 bit integer with number of seconds since 1% January,
1990.

Step by step solution:

. handling arguments

creating server socket

waiting client request

creating network connection with client
creating data stream

sending date to the client

closing client network connection
gotostep 3

N~ WNE

Solution:
dateAtHostServer.java

Exercise 3 Echo server

Write a server application which listens on given TCP port. It reads string from client and
sending back the same string to client like standard echo service. The program argument is the
port number. The default value of port number is 7. Program uses standard output to print
information.

Step by step solution:

. handling arguments

creating server socket

waiting client request

creating network connection with client

creating data stream

reading string from client. After that sending back the string to the client
closing client network connection

gotostep 3

N~ WNE

Solution:
echoServer.java

11

TEMPUS S_JEP-12495-97 Network Computing

Exercise 4 Simple finger server

Write a UNIX based server application which listens on given TCP port. First, it reads a user
name to string. After that it seeks for the user in /etc/passwd file. If user is founded, the server
sends user login name and full name to client in string format. If no such as user on the
machine, the server sends ,,Sorry, no match to your query!”. The program argument is the port
number. The default value of port number is 79. Program uses standard output to print
information.

Note: You must open /etc/passwd file in Read Only mode. The file structure is the following:
login:x:UID:GID:Full name:Home directory:Shell

For example:

guest:x:600:600: Guest account:/home/guest:/bin/bash

Step by step solution:

1. handling arguments
2. creating server socket
3. waiting client request
4. creating network connection with client
5. creating data stream
6. reading user name
7. searching in passwd file

8. sending the result

9. closing client network connection
10.go to step 3

Exercise 5 Simple HTTP server

Write a server application which listens a given TCP port and it provides a simple http
services. It's only capahility is to pass back a requested file in the server's directory or sub-
directory. The request from a browser should be in the form: "GET /path/filename.xyz". If no
file name or only ,,/” in the request, the server passes the default index.html file from server’s
directory. If requested file is not found, it passes ,, 404 Object not found”. If requested file is
found but it don’'t have a permission to read, the servers passes 403 Forbidden”. If any other
error is occurred, the server passes ,400 Bad request”. The program argument is the port
number. The default value of port number is 1234. Program uses standard output to print
information.

Step by step solution:

. handling arguments

creating server socket

waiting client request

creating network connection with client in athread
creating data stream

reading and processing request

sending the result

closing client network connection

gotostep 3

CoNoO~WDNE

1=

TEMPUS S_JEP-12495-97 Network Computing

Exercise 6 Further exercises

Add a Frame to the http server application. Have it display the incoming requests in a
TextField.

Add domain restriction capabilities to the server. The restriction.cfg text file consists a list
of restricted html pages and the list of domains which can access these pages. Each page has
a different line which consists the name of page and the list of permitted domains separated
by space. For example, the example.html is accessible from only obudakando.hu and
jozsef.kando.hu domain, SO restriction.cfg has the following line:
example.html obuda.kando.hu jozsef.kando.hu

If aclient request arrives, first the server queries the client’s hostname and find out from
restriction.cfg that the requested file is restricted or not. If the requested file is not
restricted, the server passes the file to the client. If the requested file is restricted, the server
checks the client’s domain. If domain is allowed to accessfile, the server passesit otherwise
the server passes error403.html and prints to display ,,403 Forbidden”.

1

TEMPUS S_JEP-12495-97 Network Computing

Lab 4: Writing connection-oriented client-server application

In this lab you will write connection-oriented client-server application and using a low-level
network programming interface for communicating with TCP/IP over the network..
Estimated time to complete this lab: 120 minutes.

Objectives

After completing this lab, you will be able to:
make a client-server application over TCP/IP network connection.

Prerequisites

Before working this lab,
you should be familiar with 1P addressing protocol (hostname, |P address, communication
port, socket).
you should be familiar with writing connection-oriented clients
you should be familiar with writing connection-oriented servers

Exercises

Exercise 1 NetToe game

Write a client-server NetToe game which provides TicTacToe game for two player against
each other over TCP/IP network connection. The program has two main part, the server and
the client. The server handles the game. It controls moves and events and checks moves and
result.

The server is available trough a specified TCP port on specified machine by TicTacToe client.
The server communicates the clients through socket connection and prints information such as
player connected, player move and so on, to standard output. Only two player can connect to
server at same time and they can play with each other. If any additional player try to connect to
server, he will be refused. After the game each player going to be disconnected and they have
to connect again to play another game.

The first connected player’s mark is ‘X’ and the second one’s is ‘O’. The game starts when
both player ready for game, therefore both is connected. The game goes on 10x10 grid board
and each player put down own mark to one free square in each round. The winner is who has
five mark side by side down, across or diagonal. Player ‘X’ begins game after that they take
turns at moving until someone win the game or the board is full. In second case the game is
dawn.

Players use the NetToe Client to play game. It has a Graphical User Interface to handle user
interactions. The user interface is a simple window and the window has four part. First is title
field which shows the player’s mark. Second is the connect field, where the user can give the
machine name and TCP port number to access NetToe server. Third one is the board to show
current score on board and it handles user’s moves which are given by mouse. Fourth one is
the information panel to show events and related information.

17

TEMPUS S_JEP-12495-97 Network Computing

Step by step solution

define object and class hierarchy

NetToeServer NetToeClient

Player

NetToeServer
execute() run the game
validMove() check player’s move
gameOver() check the winner. It’strue if someone win the game
isOccupied check board's sqaure. It’strue if square isn't empty.

Player
otherPlayerMoved() send message
otherPlayerWin() send message
run() handle player’s move

NetToeClient
execute() run the game
processM essage() process recelved messages
handle user input

Solution
NetToeServer.java
NetToeClient.java

Exercise 2 Torpedo game

Write a client-server Torpedo game which provides Torpedo game for two player against each
other over TCP/IP network connection. The program has two main part, the server and the
client. The server handles the game. It controls moves and events and checks moves and result.
The server is available trough a specified TCP port on specified machine by Torpedo client.
The server communicates the clients through socket connection and prints information such as
player connected, player move and so on, to standard output. Only two player can connect to
server at same time and they can play with each other. If any additional player try to connect to
server, he will be refused. After the game each player going to be disconnected and they have
to connect again to play another game.

The game starts when both player ready for game, therefore both is connected and both put
down al of their own ship. The game goes on two 10x10 grid board. One is the first player’s

10

TEMPUS S_JEP-12495-97 Network Computing

board, another is the second player’s board. Each player put down ships to own board. The
players have the following ships:

amount of ship size of ship*
1 5
2 4
3 3
3 2
2 1

* the unit of size is one square.

Players use the Torpedo Client to play game. It has a Graphical User Interface to handle user
interactions. The user interface is a smple window and the window has four part. First one is
the connect field, where the user can give the machine name and TCP port number to access
Torpedo server. Second one is the player’s own board to show current score and the shots of
another player. Third one is the another player’s board to show current score and it handles
user’s moves which are given by mouse. Fourth one is the information panel to show events
and related information.

Exercise 3 Snail game

Write a client-server Snail game which provides Snail game for two player against each other
over TCP/IP network connection. The program has two main part, the server and the client.
The server handles the game. It controls moves and events and checks moves and result.

The server is available trough a specified TCP port on specified machine by Snail client. The
server communicates the clients through socket connection and prints information such as
player connected, player move and so on, to standard output. Only two player can connect to
server at the same time and they can play with each other. If any additiona player try to
connect to server, he will be refused. After the game each player going to be disconnected and
they have to connect again to play another game.

The game starts when both player ready for game, therefore both is connected. The game is
very simple. Each player has a snail which is aways in move. The snails are in same pitch and
they can move only in four direction: left, right, up, down. The players have to control their
own snail and avoid collision with each other and the edge of the pitch. In addition, the snails
are increase their speed and their length in stated intervals. The winner is who doesn’t collide.
Players use the Snail Client to play game. It has a Graphical User Interface to handle user
interactions. The user interface is a smple window and the window has three part. First one
the connect field, where the user can give the machine name and TCP port number to access
Snail server. Second one is the pitch to show snails and it handles user’s controls which are
given by keyboard. Fourth one is the information panel to show events and related information.

10

TEMPUS S_JEP-12495-97 Network Computing

Lab 5: Connectionless communication in Java

In this lab you will write connectionless networking application and using a low-level network
programming interface for communicating with UDP/IP over the network..
Estimated time to complete this lab: 60 minutes.

Objectives

After completing this lab, you will be able to:
make UDP network connection.
send and receive data over the UDP connection.

Prerequisites

Before working this lab,
you should be familiar with 1P addressing protocol (hostname, |P address, communication
port, socket).
you should be familiar with UDP operational mechanism

Tools in Java for connectionless communication

Connectionless communication is supported by DatagramSocket and DatagramPacket classes
in java.net package. DatagramSocket class provides communication with connectionless socket
and DatagramPacket provides datapacket abstraction. These classes use the Unreliable
Datagram Protocol (UDP) that makes no guarantees about delivery of packets or the order of
delivered packets. The sender transmits UDP packets either and either it makes to receiver or
it doesn't. UDP sockets are typically used in bandwidth-limited applications, where the
overhead associated with resending packetsis not tolerable.

Java’s java.net.DatagramSocket class

Public class DatagramSocket extends Object {
public DatagramSocket() throws SocketException;
public DatagramSocket(int port) throws SocketException;
public DatagramSocket(int port, InetAddress laddr) throws SocketException;
public void send(DatagramPacket p) throws | OException;
public synchronized void receive(DatagramPacket p) throws | OException;
public InetAddress getLocalAddress();
public int getL ocalPort();
public synchronized void setSoTimeout(int timeout) throws SocketException;
public synchronized int getSoTimeout() throws SocketException;
public void clos();

N

TEMPUS S_JEP-12495-97 Network Computing

Common programming errors

Any method in Java throws exception if an error occurs. Let us see the general exceptions
what may are thrown when we try to create a datagram socket connection:
javallang.SecurityException: the program don’t have a permission to create communication
point.
javalang.lllegalArgumentException: the specified port must be between 0 and 65535
inclusive.
java.net.SocketException: if the socket could not be opened, or the socket could not bind to
the specified local port.
On created socket you can send and receive data with send() and receive() methods. These
methods transmit a datagrampackets between communicating agents. If the received message
islonger than the buffer length, the message is truncated.
Let us see the typical exceptions during communication:
javallang.SecurityException: the program don’'t have a permission to communicate.
javallang.| OException: any other error occurred during data transmission.
javalang.InterruptedException: the timeout of receiving expired. The value of timeout can
be set by setSoTimeout() method.
Java s java.net.DatagramPacket class
public final class DatagramPacket extends Object {
public DatagramPacket(byte ibuf[], int ilength);
public DatagramPacket(byte ibuf[], int ilength, InetAddress iaddr, int iport);
public synchronized InetAddress getAddress();
public synchronized int getPort();
public synchronized byte[] getData();
public synchronized int getLength();
public synchronized void setAddress(InetAddress iaddr);
public synchronized void setPort(int iport);
public synchronized void setData(byte ibuf[]);
public synchronized void setLength(int ilength);

Exercises

Exercise 1 HeartBeat program

Write a simple client-server program which demonstrate the usage of datagram sockets. The
client application sends message in datagram packet to the server when it starts and stops. The
server application listens on UDP port 5000. If the server receives a datagram packet, it prints
the message in the datagram packet to display. The programs don't have arguments.

Solution
HearBeat.java - the client applet
Pulse.java - the server application

Exercise 2 Echoing program

Write a client-server program which does the following. The program uses datagrams to send
packets of information between a client application and server application. On the client

21

TEMPUS S_JEP-12495-97 Network Computing

application, the user types a message into a textfield and press Enter. The message sent to the
server in datagram packet. The server receives the packet and displays the information in the
packet, then echoes the packet back to the client. When the client receives the packet, the
client displays the information in the packet.

Exercise 3 Reliable communicator

Write Java class which provide areliable, one-way communication over UDP. Therefore, it has
amethod for sending datagram packet which can realise that the packet is lost and it sends lost
packet again. Otherwise it sends packets in order. It has a method for receiving datagram
packet in order which sends acknowledgement to the sender and filtering the wrongly resent
packets.

29

TEMPUS S_JEP-12495-97 Network Computing

Lab 6: Using Java Remote Method Invocation

In this lab you will use Java RMI package for handling distributed objects. You will write
distributed Java-to-Java applications, in which the methods of remote Java objects can be
invoked from other Java virtual machines, possibly on different hosts.

Estimated time to complete this lab: 60 minutes.

Objectives

After completing this lab, you will be able to:
write interface for remote objects
implement server application
registering and using remote object
develop Java-to-Java distributed applications

Prerequisites

Before working this lab,
you should be familiar with RMI operational mechanism.
you should be familiar with collaborative systems

Tools for Java RMI

The Remote Method Invocation is provided by javarmi package, which includes three major
sub-packages: java.rmi.dgc, java.rmi.registry, and java.rmi.server.

The javarmi package contains the Remote interface as well as the Naming class and the
RMI SecurityManager class and number of basic RMI exception. These interfaces are used by
both RMI clients and servers to define remote interfaces.

The java.rmi.registry package contains classes that provide an interface and implementation for
the various elements of the RMI object registry.

The javarmi.server package contains the classes used in server implementations of remote
objects. The RemoteServer class acts as the base class for al RMI server objects.
UnicastRemoteObject, the single subclass of RemoteServer, implements a non-persistent,
point-to-point object communication scheme. In addition, the java.rmi.server package contains
severa Exception relevant to the server implementation of remote object.

Make an RMI application step by step

1. Define interface of remote object. The interface has to be written as extending of the
javarmi.Remote interface and al methods in the interface must be declared as throwing the
javarrmi.RemoteException. In addition, the interface must be public. A remote object
passed as an argument or return value (either directly or embedded within a local object)
must be declared as the remote interface, not the implementation class.

2. Write the server implementation of the interface. The implementation object of interface
extends the java.rmi.server.UnicastRemoteODbject class.

22

TEMPUS S_JEP-12495-97 Network Computing

3. Start RMI registry. The registry serves the role of the Object Manager and Naming service
for distributed object system. You can start an RMI registry on a host by running the
rmiregistry command. By default, the registry listens to port 1099 on the loca host for
connections, but you can specify any port for the registry.

4. Create client sub and server skeleton for object. First the interface and the server
implementation are compiled into bytecodes using the javac compiler, like normal classes.
Next, we have to generate the linkage from the client to the object implementation through
the RMI registry. Thisis done using RMI stub compiler, rmic.

5. Finaly, register an instance of our implementation on a remote server, and then look up the
object on aclient.

Exercises

Exercise 1 Distributed Hello World program

Write a distributed Hello World program which has two part, a RMI server application and a
client applet. The applet make a remote method cal to the server from which it was
downloaded to retrieve the message "Hello World!". When the applet runs and the server is
accessible, the message is displayed on the client.

Step by step solution:
1. Define a Remote Interface:

public interface Hello extends java.rmi.Remote {
String sayHello() throws java.rmi.RemoteException,;

}

2. Write a Server Implementation Class

To write a remote object, you write a class that implements one or more remote interfaces.
The implementation class needs to:
- Specify the remote interface(s) being implemented.
Define the constructor for the remote object.
Provide implementations for the methods that can be invoked remotely.
Create and install a security manager.
Create one or more instances of a remote object.
Register at least one of the remote objects with the RMI remote object registry, for
bootstrapping purposes.

Source:
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class Hellolmpl extends UnicastRemoteObject implements Hello
{

private String name;

oY/

TEMPUS S_JEP-12495-97 Network Computing

public Hellolmpl(String s) throws RemoteException {

}

super();
name=s,

public String sayHello() throws RemoteException {

}

return "Hello World!";

public static void main(String argg[])

{

}

/I Create and install a security manager
System.setSecurityM anager(new RMISecurityManager());
try {
Hellolmpl obj = new Hellolmpl("HelloServer™);
/I Register object as HelloServer
Naming.rebind("HelloServer", oby);
System.out.printIn("HelloServer bound in registry");
} catch (Exception) {
System.out.printin("Hellolmpl err: " + e.getMessage());
e.printStackTrace();

3. Write a Client Applet that Uses the Remote Service

The applet part of the distributed Hello World example remotely invokes the HelloServer's
sayHello method in order to get the string "Hello World!", which is displayed.

Source:

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet. Applet {

String message="";
public void init() {

try {
Hello obj = (Hello)Naming.lookup("//" +getCodeBase().getHost() +
"/HelloServer");
message = obj.sayHello();
} catch (Exception) {
System.out.printin("HelloApplet exception: " + e.getMessage());
e.printStackTrace();

}

=

TEMPUS S_JEP-12495-97 Network Computing

public void paint(Graphics g) {
g.drawString(message, 25, 50);
}

1.The applet first gets a reference to the "HelloServer" from the server's registry, constructing
the URL by using the getCodeBase method in conjunction with the getHost method.

2.The applet remotely invokes the sayHello method of the HelloServer remote object and
stores the return value from the call (the string "Hello World!") in a variable named message.
3.The applet invokes the paint method to draw the applet on the display, causing the string
"Hello World!" to be displayed.

Exercise 2 Distributed event logger

Write a distributed Event Logger program which has two part, a RMI server application and a
client applet. The applet make a remote method call to the server to note an event. The
method has one String type argument which is the description of event. Otherwise, the client
can make a remote method call to the server to messages on list of the server. The applet has
two part. First oneis used for making logs and second one for getting list from.

Step by step solution:
1. Define a Remote Interface:

public interface eEventLogger extends java.rmi.Remote {
void makeNote(String note) throws java.rmi.RemoteException;
String getList() throws java.rmi.RemoteException;

}

2. Write a Server Implementation Class

To write aremote object, you write a class that implements one or more remote interfaces.

Source:
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class EventL oggerlmpl extends UnicastRemoteObject implements EventL ogger
{

private String name;

public Hellolmpl(String s) throws RemoteException {

super();
name =,

public void makeNote(String note) throws RemoteException {

o

TEMPUS S_JEP-12495-97 Network Computing

}
public String getList() throws RemoteException {
}
public static void main(String argy])
{
/I Create and install a security manager
System.setSecurityM anager(new RM I SecurityManager());
try {
EventLoggerlmpl obj = new EventLoggerl mpl("EventLoggerServer");
Il Register object as EventLoggerServer
Naming.rebind(" EventLoggerServer", obj);
System.out.printin("EventLogger Server bound in registry™);
} catch (Exception) {
System.out.printin("EventLoggerlmpl err: " + e.getMessage());
e.printStackTrace();
}
}

}

3. Write a Client Applet that Uses the Remote Service

The applet remotely invokes the EventL oggerServer's getList() and makeNote() methods.
Source:

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet. Applet {
String message = "";
public void init() {
try {
Hello obj = (Hello)Naming.lookup("//" +getCodeBase().getHost() +
"IHelloServer");
message = obj.sayHello();
} catch (Exception) {
System.out.printin("HelloApplet exception: " + e.getMessage());
e.printStackTrace();
}
}

public void paint(Graphics g) {
g.drawString(message, 25, 50);
}

27

TEMPUS S_JEP-12495-97 Network Computing

Exercise 3 Chat system

Write a Java RMI based chat system. The users chatting with their chat client, which is
receiving messages from remote chat clients and displaying them in a text window next to their
name.

Exercise 4 Distributed white board

Write a Java RMI based distributed white board where users can draw in same board in the
same time over network connection.

20

TEMPUS S_JEP-12495-97 Network Computing

Appendixes

Find IP address and hostname of the local machine

myaddress.java
import java.net.*;
class myAddress {

public static void main (String args[]) {

try {
InetAddress address = InetAddress.getLocalHost();

System.out.printin("Hello. My name is " + address.getHostName() +
"and my IP adress is " + address.getHostAddress());

}

catch (UnknownHostException e) {
System.out.printin("I'm sorry. | don't know my own name and address.");

}

Find IP address or hostname like nslookup

nsookup.java

import java.net.*;
import java.io.*;

public class nslookup {

public static void main (String args[]) {

BufferedReader mylnputStream =
new BufferedReader(new InputStreamReader(System.in));
System.out.printin("Name Service lookup utility\r\n"+
"Enter names or IP addresses. Enter \"exit\" to quit.");

while (true) {
String inputString;
try {
System.out.print(">");

20

TEMPUS S_JEP-12495-97 Network Computing

inputString = mylnputStream.readLine();
}
catch (IOException e) {
break;
}
if (inputString.equals("exit")) break;
lookup(inputString);
}

} /* end main */

private static void lookup(String s) {
InetAddress address;

/I get the bytes of the IP address

try {
address = InetAddress.getByName(s);

}

catch (UnknownHostException ue) {
System.out.printin("** Can't find host " + s);
return;

}

if (isHostname(s)) {

System.out.printin(" Address: "+address.getHostAddress());
}
else { // thisis an IP address

System.out.printIn(" Name: "+address.getHostName());

}
} // end lookup

private static boolean isHostname(String s) {

char[] ca = s.toCharArray();
/l'if we see a character that is neither a digit nor a period
/l then s is probably a hostname
for (inti=0; i< ca.length; i++) {
if (!Character.isDigit(ca[i]) &&
ca[i] '=".") return true;

}

/I Everything was either a digit or a period
/I so s looks like an IP address in dotted quad format
return false;

} // end isHostName

2N

TEMPUS S_JEP-12495-97 Network Computing

} /I end nslookup

Command line Daytime client

daytimeClient.java

/I java daytimeClient [hostname] [TCPport]
import java.net.*;
import java.io.*;

public class daytimeClient {
static final int defaultPort = 13;

public static void main(String[] args) {
int portNumber;

Socket clientSocket;
BufferedReader timeStream;
String hostName;

switch(args.length) {
case 1: hostName = args[0];
portNumber = defaultPort;//daytimePort;
break;
case 2: hostName = args[0];
portNumber = new Integer(args[1]).intValue();
break;
default:
hostName = "localhost";
portNumber = defaultPort;//daytimePort;

try {
/I make a connection with the server

clientSocket = new Socket(hostName,portNumber);

/l make a datastream from the connection

timeStream = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

/I get data from the server

String timeString = timeStream.readLine();
System.out.printin("lt is " + timeString + " at " + hostName);
/I close datastream and network connection
timeStream.close();

clientSocket.close();

21

TEMPUS S_JEP-12495-97 Network Computing

of host

catch (UnknownHostException e) {
/' unknown host error message
System.err.printin(" Unknown host error");
}
catch (ConnectException e) {
System.out.printin(" Service unavailable on port "+portNumber+"

"+hostName);
}
catch (IOException e) {
/I'10 error message
System.err.printin(" Communication error occured\r\n "+e);

}

Command line DateAthost client

dayAtHostClient.java

/l java dateAtHostClient [hostname] [TCPport]
import java.net.*;

import java.io.*;

import java.util.*;

public class dateAtHostClient {
static final int defaultPort = 37,
static final long offset = 2208988800L;
/l number of seconds since 1st January, 1970
public static void main(String[] args) {

int portNumber;

Socket clientSocket;
DatalnputStream timeStream;
String hostName;

switch(args.length) {

case 1: hostName = args[0];

portNumber = defaultPort;//dateAtHost Port;
break;
case 2: hostName = args[0];

portNumber = new Integer(args[1]).intValue();
break;
default:

hostName = "localhost";

29

TEMPUS S_JEP-12495-97 Network Computing

portNumber = defaultPort;//dateAtHost Port;

try {
/I make a connection with the server

clientSocket = new Socket(hostName,portNumber);
/I make a datastream from the connection
timeStream = new
DatalnputStream(clientSocket.getinputStream());
/I get data from the server
int dateAtHost = timeStream.readInt() + (int)(1L<<32);
/I readInt() reads unsigned int, that's why we have to add sign to
the value
new Date().setTime((dateAtHost-offset)*1000);
System.out.printin("lt is " + new Date().toString() + " at " +
hostName);
/I close datastream and network connection
timeStream.close();
clientSocket.close();
}
catch (UnknownHostException e) {
/' unknown host error message
System.err.printin(" Unknown host error");
}
catch (ConnectException e) {
System.out.printin(" Service unavailable on port "+portNumber+"
of host "+hostName);
}
catch (IOException e) {
/I'10 error message
System.err.printin(" Communication error occured\r\n "+e);

}

Command line echo client

echoClient.java

import java.net.*;
import java.io.*;

public class echoClient {
final static int defaultPort=7;

public static void main(String[] args) {

22

TEMPUS S_JEP-12495-97 Network Computing

Socket clientSocket;
String hostName;

int portNumber;
BufferedReader thelnput;
PrintWriter theOutput;
BufferedReader userinput;
String inputString;

switch(args.length) {

case 1: hostName = args[0];
portNumber = defaultPort;//echo Port;
break;
case 2: hostName = args[0];
portNumber = new Integer(args[1]).intValue();
break;
default:

hostName = "localhost";
portNumber = defaultPort;//echo Port;

try {
System.out.printin("Client side Echo utility");

clientSocket = new Socket(hostName,portNumber);
thelnput = new BufferedReader(new
InputStreamReader(clientSocket.getinputStream()));
theOutput = new PrintWriter(clientSocket.getOutputStream());
userlnput = new BufferedReader(new
InputStreamReader(System.in));
System.out.printin("Enter your text or put only \'.\' to quit.");
while (true) {
inputString = userinput.readLine();
if (inputString.equals(".")) break;
theOutput.printin(inputString);
System.out.printin(thelnput.readLine());
}
} /l end try
catch (UnknownHostException e) {
/I unknown host error message
System.err.printin(" Unknown host error");
}
catch (ConnectException e) {
System.out.printin(" Service unavailable on port "+portNumber+"
of host "+hostName);
}
catch (IOException e) {
/['10 error message
System.err.printin(" Communication error occured\r\n "+e);

}

21

TEMPUS S_JEP-12495-97 Network Computing

Command line finger client

fingerClient.java

import java.net.*;
import java.io.*;
import java.util.*;

public class fingerClient {
static final int defaultPort = 79;
public static void main(String[] args) {

String hostName = "localhost";
String userName = null;
int portNumber = defaultPort;
Socket clientSocket;
BufferedReader fingerinput;
PrintWriter fingerOutput;

switch(args.length) {
case 2:
portNumber = new Integer(args[1]).intValue();
case 1:
StringTokenizer theQuery = new
StringTokenizer(args[0],"@",true);
String token;
switch(theQuery.countTokens()) {
case 1:
token = theQuery.nextToken();
if(token.equals("@"))
userName =" ",
else
userName = token;
hostName = "localhost";
break;
case 2:
token = theQuery.nextToken();
if(token.equals("@")) {
userName =" ",
hostName = theQuery.nextToken();

28

TEMPUS S_JEP-12495-97 Network Computing

else {
userName = token;
hostName = "localhost";
}
break;
case 3:
token = theQuery.nextToken();
if(token.equals("@")) {
System.out.printin(" Sorry, | don't
understand your query.\r\n Please use \'user@hostname\' format.");
System.exit(0);

}
else {
userName = token;
theQuery.nextToken();
hostName = theQuery.nextToken();
}
break;
default:

System.out.printin(" Sorry, | don't understand
your query.\r\n Please use \'user@hostname\' format.");
System.exit(0);

}
break;
default:

hostName = "localhost";

userName = null;

portNumber = defaultPort; //fingerPort;
}

try {
clientSocket = new Socket(hostName, portNumber);

fingerOutput = new PrintWriter(clientSocket.getOutputStream(),true);
fingerOutput.printin(userName);
fingerinput = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));
String s;
while ((s = fingerinput.readLine()) '= null) {
System.out.printIn(s);

}
}

catch (UnknownHostException e) {
/' unknown host error message
System.err.printin(" Unknown host error");
}
catch (ConnectException e) {
System.out.printin(" Service unavailable on port "+portNumber+" of
host "+hostName);

2R

TEMPUS S_JEP-12495-97 Network Computing

}
catch (IOException e) {

/I'10 error message
System.err.printin(" Communication error occured\r\n "+e);

}

DayTime server

daytimeServer.java

import java.net.*;
import java.io.*;
import java.util.Date;

public class daytimeServer {
public final static int daytimePort = 13;
public static void main(String[] args) {

ServerSocket theServerSocket;
Socket theConnectionSocket;
PrintWriter out;

try {
theServerSocket = new ServerSocket(daytimePort);

System.out.printin("Timeserver ready at port "+daytimePort);
try {
while (true) {
theConnectionSocket = theServerSocket.accept();
System.out.printin("Request arrived!");
out = new PrintWriter(theConnectionSocket.getOutputStream(),true);
out.printin(new Date());
theConnectionSocket.close();

}

}
catch (IOException e) {

theServerSocket.close();
System.err.printin(e);

}

}
catch (IOException e) {

System.err.printin(e);

27

TEMPUS S_JEP-12495-97 Network Computing
}

}

DateAtHost server

dateAtHost.java

import java.net.*;
import java.io.*;
import java.util.Date;

public class dateAtHostServer {

public final static int defaultPort = 37;
static final long offset = 2208988800L;
/l number of seconds since 1st January, 1970

public static void main(String[] args) {

ServerSocket theServerSocket;
Socket theConnectionSocket;
DataOutputStream out;

int datelnt;

try {
theServerSocket = new ServerSocket(defaultPort);

System.out.printin("dateAtHost server ready at port "+defaultPort);
try {
while (true) {
theConnectionSocket = theServerSocket.accept();
System.out.printin("Request arrived!");
out = new DataOutputStream(theConnectionSocket.getOutputStream());
datelnt = (int)new Date().getTime() + (int)offset + (int)(1L<<32);
out.write(datelnt);
/I theConnectionSocket.close();

}

}
catch (IOException e) {

theServerSocket.close();
System.err.printin(e);

}

}
catch (IOException e) {

20

TEMPUS S_JEP-12495-97 Network Computing

System.err.printin(e);

}
}

Echo server

echoServer.java

import java.net.*;
import java.io.*;

public class echoServer {
public final static int echoPort = 7;
public static void main(String[] args) {

ServerSocket theServerSocket;
Socket theConnectionSocket;
BufferedReader in;

PrintWriter out;

try {
theServerSocket = new ServerSocket(echoPort);

System.out.printin("EchoServer ready at port "+ echoPort);

while (true) {

theConnectionSocket = theServerSocket.accept();
try {
System.out.printin("Request arrived!");
in = new BufferedReader(new
InputStreamReader(theConnectionSocket.getinputStream()));
out = new
PrintWriter(theConnectionSocket.getOutputStream(),true);
while(true) {
String readText = in.readLine();
out.printin(readText);
}
}
catch (IOException e) {
theConnectionSocket.close();
}

20

TEMPUS S_JEP-12495-97 Network Computing

}

}
catch (IOException e) {

System.err.printin(e);

}
}

NetToe game

NetToeServer.java

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

import java.util.*;

public class NetToeClient extends Frame implements
MouseListener,WindowListener, ActionListener {

private final int boardSize = 10;

private Square board[][];

private Panel boardPanel,mainPanel;

private TextArea display;

private TextField id;

private Socket clientsock;

private BufferedReader input;

private PrintWriter output;

char myMark;

private Square currentSquare;

boolean isMyMoveNext=false;

Panel enterPanel,

Panel headPanel;

Label enterLabel;

TextField enter;

private String hostName;

private final int portNumber=5000;

private boolean hostlsknown;

public NetToeClient () {
super("Net-Toe client");
headPanel = new Panel();
headPanel.setLayout(new BorderLayout());

AN

TEMPUS S_JEP-12495-97 Network Computing

id = new TextField();
id.setEditable(false);
headPanel.add("North",id);

enterPanel = new Panel();

enterLabel = new Label("Enter server:");
enter = new TextField(20);
enterPanel.add(enterLabel);
enterPanel.add(enter);
headPanel.add("South",enterPanel);
add("North",headPanel);

display = new TextArea(4,30);
display.setEditable(false);
add("South",display);

boardPanel = new Panel();

boardPanel.setLayout(new GridLayout(boardSize,boardSize,0,0));

board = new Square[boardSize][boardSize];

for(int row=0;row<board.length;row++)

for(int col=0;col<board.length;col++) {

board[row][col]=new Square();
board[row][col].addMouseListener(this);
boardPanel.add(board[row][col]);

mainPanel = new Panel();
mainPanel.add(boardPanel);
add("Center",mainPanel);
setSize((boardSize+2)*30,(boardSize+2)*30+140);
setResizable(false);

addWindowListener(this);

setVisible(true);

enter.addActionListener(this);

}

public void execute() {
/[create connection
if(hostName == null)
display.append("Please enter server's host...\n");
while(hostName == null);
display.append("Connect to server in progress...\n");
while(clientsock == null) {
try {
clientsock = new Socket(hostName,portNumber);
input = new BufferedReader(new
InputStreamReader(clientsock.getinputStream()));

A1

TEMPUS S_JEP-12495-97 Network Computing

output = new
PrintWriter(clientsock.getOutputStream(),true);
}catch(ConnectException e) {
display.append("Server unavailable.\n");

try {

}

catch (InterruptedException ie) { };
display.append("Trying to connect again.\n");

Thread.sleep(3000);

}
catch(IOException e) {

System.out.printin(e);

}
}
[[first get myMark
try {

myMark = input.readLine().charAt(0);

id.setText("You are player \""+myMark+"\"");
}catch(IOException e) {

System.out.printin(e);

}
while(true) {
try {
String s = input.readLine();
processMessage(s);
} catch(IOException e) {}
}

public void processMessage(String s) {
if(s.equals("Valid move.")) {
display.append("Valid move, please wait.\n");
currentSquare.setMark(myMark);
currentSquare.repaint();
isMyMoveNext=false;
} else if(s.equals("Invalid move, try again.")) {
display.append(s+"\n");
} else if(s.equals("Oponent moved.")) {
try {
StringTokenizer move = new
StringTokenizer(input.readLine());
int row = Integer.parselnt(move.nextToken());
int col = Integer.parselnt(move.nextToken());
board[row][col].setMark((myMark=="X"' ? 'O":'X"));
board[row][col].repaint();
display.append("Opponent moved. Your turn.");
isMyMoveNext = true;

A0

TEMPUS S_JEP-12495-97 Network Computing

} catch(IOException €) { }

} else if(s.equals("Other player connected. Your move.")) {
isMyMoveNext = true;
display.append(s+"\n");

}else if(s.equals("Other player win.")) {

display.append(s+"\n");
isMyMoveNext=false;

} else if(s.equals("You win. Congratulations.")) {

display.append(s+"\n");
isMyMoveNext=false;

}

public static void main(String args[]) {
NetToeClient game = new NetToeClient();
game.execute();

public void mouseClicked(MouseEvent e) {
if(isMyMoveNext) {
for(int row=0;row<board.length;row++)
for(int col=0;col<board.length;col++) {
if(e.getSource()==board[row][col]) {
currentSquare = board[row][col];
output.printin(String.valueOf(row)+"
"+String.valueOf(col));

}

} else
display.append("Please wait with your move.\n");

}

public void mousePressed(MouseEvent e) {

}

public void mouseReleased(MouseEvent e) {

}

public void mouseEntered(MouseEvent e) {

}

public void mouseExited(MouseEvent e) {

public void windowOpened(WindowEvent e) {

}

A2

TEMPUS S_JEP-12495-97 Network Computing

public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();
System.exit(0);

}

public void windowClosed(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {

}

public void windowlconified(WindowEvent e) {

}

public void windowActivated(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}

public void actionPerformed(ActionEvent e) {
hostName = enter.getText();

}

//****************************

class Square extends Canvas {
char mark="";
public Square() {
setSize(30,30);

}

public void setMark(char c) {
mark = c;

}

public void paint(Graphics g) {
g.drawRect(0,0,29,29);
g.drawString(String.valueOf(mark),11,20);

}

NetToeClient.java

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

import java.util.*;

public class NetToeServer extends Frame implements WindowListener {

AN

TEMPUS S_JEP-12495-97 Network Computing

private final int boardSize = 10;
private final int maxPlayers = 2;
private char board[][];

private Player players[];

private int numberOfPlayers;
private int currentPlayer;

private ServerSocket serversock;
private TextArea output;

final int portNumber=5000;

public NetToeServer () {
super(" Net-Toe Server");
board = new char[boardSize][boardSize];
players = new Player[maxPlayers];
numberOfPlayers = 0;
currentPlayer = 0;

/lcreate a server socket
try {

}

catch(SocketException se) {
System.out.printin(se);
System.exit(1);

serversock = new ServerSocket(portNumber,maxPlayers);

}
catch(IOException ie) {

System.out.printin(ie);
System.exit(1);
}

Il create GUI

output = new TextArea();
add("Center",output);
setSize(300,300);
addWindowListener(this);
setVisible(true);

public void execute() {
for(int i = O;i<maxPlayers;i++) {
try {
Socket myClient = serversock.accept();
players[numberOfPlayers]= new Player(myClient,this,i);
players[numberOfPlayers].start();
numberOfPlayers++;

AR

TEMPUS S_JEP-12495-97 Network Computing

}

catch(IOException ie)

{
System.out.printin(ie);
System.exit(1);

}

public void display(String s) {
output.append(s+"\n");
}

public synchronized boolean validMove(int row, int col, int player) {

while (player != currentPlayer) {

try {
wait();
}
catch(InterruptedException e) {
}

}

if(! isOccupied(row,col)) {
board[row][col]=(currentPlayer==0 ? 'X" : 'O");
currentPlayer = ++currentPlayer % maxPlayers;
players[currentPlayer].otherPlayerMoved(row,col);

notify();

return true;

return false;

public int getNumberOfPlayers() {
return numberOfPlayers;

public boolean isOccupied(int row,int col) {
if(board[row][col]=="X" || board[row][col]=="0")
return true;
else
return false;

Ac

TEMPUS S_JEP-12495-97 Network Computing

public boolean gameOver(int row, int col,char mark) {
int firstrow, firstcol,lastrow,lastcol;
int hornum = 0O;
int vernum = 0;
int dianuml = 0;
int dianum2 = 0;
firstrow = row<5 ? 0 : row-5;
firstcol = col<5 ? 0 : col-5;
lastrow = boardSize>row+5 ? row+5 : boardSize-1;
lastcol = boardSize>col+5 ? col+5 : boardSize-1;
for(int i=firstrow;i<lastrow;i++) {
if(board[i][col]==mark) vernum++;
else if(vernum<5) vernum=0;

}

for(int i=firstcol;i<lastcol;i++) {
if(board[row][i]==mark) hornum++;
else if(hornum<5) hornum=0;

}

for(int i=firstcol,j=firstrow;i<lastcol && j<lastrow;i++,j++) {
if(board[j][i][==mark) dianuml++;
else if(dianum1<5) dianum1=0;
}
for(int i=lastcol,j=lastrow;i<firstcol && j<firstrow;i--,j--) {
if(board[j][i][==mark) dianum2++;
else if(dianum2<5)dianum2=0;
}
if(hornum>=5 || vernum>=5 || dianum1>=5 || dianum2>=5) {
players[currentPlayer].otherPlayerWin();
return true;
}
else
return false;

public static void main(String args[]) {

NetToeServer game = new NetToeServer();
game.execute();

public void windowOpened(WindowEvent e) {

}

public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();

A7

TEMPUS S_JEP-12495-97 Network Computing
System.exit(0);

}

public void windowClosed(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {
}

public void windowlconified(WindowEvent e) {

}

public void windowActivated(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}
}

//***

class Player extends Thread {
final int maxPlayers = 2;
Socket clientsock;
BufferedReader input;
PrintWriter output;
NetToeServer server;
char mark;
int number;

public Player(Socket s, NetToeServer n, int num) {
mark = (num==0 ? 'X' : 'O");
clientsock = s;
server = n;
number = num;
try {
input = new BufferedReader(new
InputStreamReader(clientsock.getinputStream()));
output = new PrintWriter(clientsock.getOutputStream(),true);
}
catch (UnknownHostException e) {
System.err.printin(e);

}
catch(IOException e)
{
System.out.printin(e);
}
}
Jf-mmmm e

public void otherPlayerMoved(int row, int col) {
output.printin("Oponent moved.");
output.printin(String.valueOf(row)+" "+String.valueOf(col));

A0

TEMPUS S_JEP-12495-97 Network Computing
}

public void otherPlayerwin() {
output.printin("Other player win.");
}

public void run() {
boolean gameEnded = false;

server.display("Player "+mark+" connected.");

output.printin(String.valueOf(mark));

output.printin("Player "+(number == 0 ? "X connected":"O
connected, please wait"));

if(server.getNumberOfPlayers()<maxPlayers) {
output.printin("Waiting for another player");
while(server.getNumberOfPlayers()<maxPlayers);
output.printin("Other player connected. Your move.");

}

I/l play game
while ('gameEnded){
try {
StringTokenizer move = new
StringTokenizer(input.readLine());
int row = Integer.parselnt(move.nextToken());
int col = Integer.parselnt(move.nextToken());
if(server.validMove(row,col,number)) {
server.display(mark+" move: "+row+","+col);
output.printin("Valid move.");
if(server.gameOver(row,col,mark)) {
gameEnded=true;
server.display(mark+" player win");
output.printin("You win. Congratulations.");

} else
output.printin("Invalid move, try again.");
} catch(IOException e) {
I/Iserver.display("What's up!");
}

}

try {
clientsock.close();

} catch(IOException e) {}

AQ

TEMPUS S_JEP-12495-97 Network Computing

HeartBeat program

HeartBeat.java

import java.net.*;
import java.io.*;
public class HeartBeat extends java.applet.Applet {
String myHost;
public void init() {
myHost = getCodeBase().getHost();
}

public void sendMessage(String message) {
try {
byte[] data = new byte[message.length() |;
message.getBytes(0, data.length, data, 0);
InetAddress addr = InetAddress.getByName(myHost);
DatagramPacket pack = new DatagramPacket(data, data.length, addr,

1234);

DatagramSocket ds = new DatagramSocket();
ds.send(pack);
ds.close();

}

catch (IOException e) {

System.out.printin(e);
}
}

public void start() {
sendMessage("l have been started!");
}

public void stop() {
sendMessage("l have been stopped!");
}

}

Pulsejava

EN

TEMPUS S_JEP-12495-97 Network Computing

import java.net.*;
import java.io.*;
public class Pulse {

public static void main(String argv[]) throws IOException {
DatagramSocket s = new DatagramSocket(1234);
System.out.printIn(" Waiting for heartbeats..");
while (true) {
DatagramPacket packet = new DatagramPacket(new
byte[1024], 1024);
s.receive(packet);
String message = new String(packet.getData(), 0, O,
packet.getLength());
System.out.printin("Message from "+
packet.getAddress().getHostName()+" - "+message);

Echoing program

UDPClient.java

import java.io.*;

import java.net.*;
import java.awt.*;
import java.awt.event.*;

public class UDPClient extends Frame implements WindowListener, ActionListener {
TextField enter;
TextArea display;
Panel enterPanel,
Label enterLabel;

DatagramPacket sendPacket, receivePacket;
DatagramSocket sendSocket, receiveSocket;

public UDPClient() {
super("UDPClient");
enterPanel = new Panel();
enterLabel = new Label("Enter message:");
enter = new TextField(20);
enterPanel.add(enterLabel);
enterPanel.add(enter);
add("North",enterPanel);
display = new TextArea(20,10);
add("Center",display);

E1

TEMPUS S_JEP-12495-97 Network Computing

setSize(400,300);
setVisible(true);

try {
sendSocket = new DatagramSocket();

receiveSocket = new DatagramSocket(5001);
}
catch(SocketException se) {

se.printStackTrace();

System.exit(1);
}

addWindowListener(this);
enter.addActionListener(this);

}

public void waitForPackets() {

while(true) {
try {
//set up packet with maximum possible size
byte array[] = new byte[100];
receivePacket = new DatagramPacket(array,array.length);

/[wait for packet
receiveSocket.receive(receivePacket);

/Iprocess packet

display.append("\nPacket received:"+
"\nFrom host: "+receivePacket.getAddress() +
"\nHost port: "+receivePacket.getPort() +
"\nLength: "+receivePacket.getLength()+
"“\nContaining: ");

byte data[] = receivePacket.getData();
String received = new String(data);
display.append(" \n "+received);

}
catch (IOException ex) {

display.append("\n" + ex.toString()+"\n");
ex.printStackTrace();

}

public void windowOpened(WindowEvent e) {

=59}

TEMPUS S_JEP-12495-97 Network Computing

}

public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();
System.exit(0);

}

public void windowClosed(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {

}

public void windowlconified(WindowEvent e) {

}

public void windowActivated(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}

public void actionPerformed(ActionEvent e) {
try {
display.append("\n\nSending packet containing:\n"+
enter.getText()+"\r\n");

String s = enter.getText();
byte data[] = new byte[100];
s.getBytes(0,s.length(),data,0);
sendPacket = new

DatagramPacket(data,s.length(),InetAddress.getLocalHost(),5000);

}

sendSocket.send(sendPacket);
display.append("\nPacket sent");

}

catch(IOException ex) {
display.append(ex.toString()+"\n");
ex.printStackTrace();

}

public static void main(String Args[]){
UDPClient ¢ = new UDPClient();
c.waitForPackets();

UDPServer.java

B2

TEMPUS S_JEP-12495-97 Network Computing

import java.io.*;

import java.net.*;
import java.awt.*;
import java.awt.event.*;

public class UDPServer extends Frame implements WindowListener {

DatagramPacket sendPacket, receivePacket;
DatagramSocket sendSocket, receiveSocket;

TextArea display;

public UDPServer() {
super("UDPServer");
display = new TextArea(20,10);
add("Center",display);
setSize(400,300);
addWindowListener(this);
setVisible(true);

try {
sendSocket = new DatagramSocket();

receiveSocket = new DatagramSocket(5000);
}
catch(SocketException se) {
se.printStackTrace();
System.exit(1);
}
}

public void waitForPackets() {

while(true) {
try {
//set up packet with maximum possible size
byte array[] = new byte[100];
receivePacket = new DatagramPacket(array,array.length);

/[wait for packet
receiveSocket.receive(receivePacket);

/Iprocess packet

display.append("\nPacket received:"+
"\nFrom host: "+receivePacket.getAddress() +
"\nHost port: "+receivePacket.getPort() +
"\nLength: "+receivePacket.getLength()+
"“\nContaining: ");

byte data[] = receivePacket.getData();
String received = new String(data);

[~}

TEMPUS S_JEP-12495-97 Network Computing

display.append(" \n "+received);

/I echo information from packet back to client
display.append("\n\nEcho data to client... ");
sendPacket=new
DatagramPacket(data,data.length,receivePacket.getAddress(),5001);
sendSocket.send(sendPacket);
display.append("\nPacket sent");

}
catch (IOException ex) {

display.append(ex.toString()+"\n");
ex.printStackTrace();

}
}
}
S,
public void windowOpened(WindowEvent e) {
}

public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();
System.exit(0);

}

public void windowClosed(WindowEvent e) {

}

public void windowDeiconified(WindowEvent e) {

}

public void windowlconified(WindowEvent e) {

}

public void windowActivated(WindowEvent e) {

}

public void windowDeactivated(WindowEvent e) {

}

public static void main(String Args[]){
UDPServer s = new UDPServer();
s.waitForPackets();

Distributed Hello World program

Hello.java

[~~~

TEMPUS S_JEP-12495-97 Network Computing

package rmiexample;
public interface Hello extends java.rmi.Remote {
String sayHello() throws java.rmi.RemoteException;

}

HelloApplet.java

package rmiexample;
import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {
String message =",
public void init() {

try {
Hello obj = (Hello)

Naming.lookup("//" + getCodeBase().getHost() + "/HelloServer");
message = obj.sayHello();

} catch (Exception e) {
System.out.printin("HelloApplet: an exception occurred:");
e.printStackTrace();
}
}

public void paint(Graphics g) {
g.drawString(message, 25, 50);
}

}

Hellolmpl.java

package rmiexample;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class Hellolmpl
extends UnicastRemoteObject
implements Hello

{

private String name,;
public Hellolmpl(String s) throws java.rmi.RemoteException {

super();
name =Ss;

[=AY

TEMPUS S_JEP-12495-97 Network Computing

}

public String sayHello() throws RemoteException {
return "Hello World!";

}

public static void main(String args[])

{
/I Create and install the security manager
System.setSecurityManager(new RMISecurityManager());

try {
Hellolmpl obj = new Hellolmpl("HelloServer");

Naming.rebind("HelloServer", obj);
System.out.printin("Hellolmpl created and bound in the registry to the name
HelloServer");

} catch (Exception e) {
System.out.printin("Hellolmpl.main: an exception occurred:");
e.printStackTrace();

}

[~vd

