

Web servers

Transparencies

	

	dr. Broczkó Péter

	Kandó Polytechnic

London

1999

Web servers

Infrastucture of Web servers

1. Introduction

2. The parts of the Web servers

3 The Web server software

4. Formulating of the request

Improving of Web transfer

5. Architecture, improving the performance

6. Organisation of the document tree

7. Caching Web information

1. Introduction

People use World Wide Web through browser software on their local computer, the client system.

The client computer software retrieves information (documents, images, etc) from other computers, which are called

Web servers.

The Web client and the Web server communicate by exchanging messages.

�

2. The parts of the Web servers

A Web server can be described by the next formula:

Web server = platform, connected to Internet + software + information

The platform is the computer hardware, its operating system and the network software.

The next part of the Web server is the software itself.

The information is the reason for the existing of the Web server.

In this material we concentrate to the second part of the Web server: on the software.

�

3. The Web server software

1. The job of the Web server

2. The HTTP protocol

3. The connection

	The request

	The response

�

3. The Web server software

1. The job of the Web server

The job of the Web server software is very simple:

receives requests from browsers for information (represented in different formats of files) over the network;

determines from requests which file is needed;

finds that file if it is available;

sends the requested file back to the Web browser over the network connection.

�

3. The Web server software

2. The HTTP protocol

The Web browser and the Web server communicate with each other using the HyperText Transfer Protocol (HTTP), which defines a simple request - response conversation.

The requesting program (the client) establishes a connection with a receiving program (the server). The client sends a request to the server. The HTTP rules define, how to correctly form the request.

The server replies the request with a response, which, it is hoped, includes information desired by the client.

The rules the HTTP also define, how to correctly form the response.

�

3. The Web server software

3. The connection

	The request

An HTTP request consist of the following pieces:

The method, which must be one of a set of legal actions;

The Universal Resource Identificator (URL), which is the name of information requested;

The protocol version;

Optionally other information to modify or supplement the request.

	The response

An HTTP response consist of the following pieces:

a status line;

a description of the information in the response. This is information about information, called metainformation;

the actual information requested.

�

4. Formulating of the request

1. The different between Web script and gateway

2. The Web script

3. The executable Web script

4. Running of the script

5. The script’s view from two side

6. The cost of using scripts

7. Occurring a problem

�

4. Formulating of the request

1. The different between Web script and gateway

The scripts

scripts are used to access information from non-Web sources, such as databases;

scripts allow interaction between the user and server. This allows the user to search databases, make purchases, and many other possibilities;

scripts can construct custom documents dynamically at the time they are requested. Scripts create intelligent documents that reflects the user circumstances.

Scripts collect information from the user through a special type of HTML document that is a fill in form:

the form document is sent to the client;

the browser displays the form to the user and collects input from the user.;

the filled-in form returned to the server;

the server send back the customised answer to the user browser.

Gateway

The Web script that provides access to an on-line service, such as an existing database, is commonly called as gateway because it acts as a door between the Web and another on-line service. A Web gateway script talks to a database service by translating from the Web language, to the language which is spoken by the database service.

�

4. Formulating of the request

2. The Web script

A Web script is a program that can be executed by the Web server in response to Web request. Despite the name, practically any program can be a Web script; it does not matter what language it is written in. Programs compiled in C or BASIC work as well as Perl. The basic goal is for the browser program and the script program to communicate with each other. From the point of view of the Web script, the input comes from the client and the output goes back to the client.

From the point of view of the Web server, all scripts work the same way. The httpd program starts the script and passes the data from the browser to the script and vice versa. The httpd daemon must do the same basic things:

the daemon must determine that the request is really supposed to be a program rather than a document;

the daemon must locate the program and determine if it is permissible to execute it;

the daemon must start the script program and ensure that the input from the client will be passed to the script;

the daemon must read the output from the script and pass it back to the client;

the daemon must send and error message back to the client if something goes wrong with the script program. The daemon must also close the network connection properly when the script completes.

�

4. Formulating of the request

3. The executable Web script

How does the Web server know which „documents” are programs to execute and which documents are information to be delivered? The execution of scripts is always controlled by the Web server and not the browser. The server software will execute scripts only according to specific rules, as configured by the system administrator.

The NCSA httpd for UNIX system requires scripts

to be located in a particular directory or directories and to have UNIX execute permission or

have a particular name, such us files ending in .cgi.

The CERN httpd server, also for UNIX systems, uses rules in its configuration file to determinate which specific URLs are allowed to be executed.

�

4. Formulating of the request

4. Running of the script

The Web server software has a simple role: it starts the script program and passes along data. Making sure that the server program and the script will work correctly together can be a problem, though, since they are usually written by completely different programmers.

This problem is solved by standards, from which we talk about some types.

The Common Gateway Interface: CGI

Common Gateway Interface: CGI. This is a standard for how scripts are to be called and how data is passed between the httpd server and the script. The CGI performs the same role for the server and the script as HTTP does for the server and the client: as long as both the httpd program and the script program follow the CGI rules, everything will work.

A script that works well on one type of Web server system may not work at all on another type of server system. The details of the CGI-rules depend on the type of operating system the server runs on:

for UNIX systems the script executes as a process, with the data from the browser arriving through standard input as UNIX environment variables, and the results passed back through standard output;

for Macintosh systems the Web script program runs as a Macintosh script and the data is passed through Apple Events;

for Windows NT servers the script is launched as an application process and data are passed through temporaly files.

The CGI standard is actually a suite of standards, one for each operating system.

Netscape Server Application Program Interface: NSAPI

Netscape servers also use NSAPI, which serves the same purpose as the CGI.

Windows possibilities

Web servers on Microsoft Windows platforms can use the standard DLL interface or OLE.

�

4. Formulating of the request

5. The script’s view from two side

The user’s view

If the user want to run a UNIX program from the client computer, than the script does two things:

it prints information describing the information to come (the metainformation);

it prints the result of running the asked UNIX-program.

In this case three programs run on the server:

httpd

script

UNIX-program.

The server’s view

The httpd daemon begins by listening to the network until a request arrives from somewhere. A user requests a script the same way as he requests a document: usually by clicking on an anchor. The user may have no idea that he has clicked to a script. So the server tasks are follows:

listening to the network;

arrives a request from somewhere;

the httpd program decodes the request and discovers that the requested „document” is really a program to execute;

the httpd software sets up an appropriate context;

must lunch the script program;

pass data from the script to the client

wait for the script to finish.

The details of these steps depend on the operating system and the CGI standard. In general, the httpd program does whatever is necessary to start up the script program, then waits to pass along whatever results occur.

4. Formulating of the request

6. The cost of using scripts

Scripts require the Web server to do a lot more work than just retrieve a document. Running the script means that at least twice as many programs must run on the server, and if the script does any significant computation, executes other programs, or communicates with other servers, this can add up to very large burden on the server. If the server processes more than one request at the same time, it might run many scripts at the same time, magnifying the problems.

If the source language of the script is Perl or Shell, these programming languages are interpreted. Interpreter are generally slower and less efficient than the compiled programs. Web scripts that are really compiled programs generally run faster and take up less memory than scripts executed by shells. For heavily used script program on a busy Web server, using Shell or Perl scripts may merit a second look.

�

4. Formulating of the request

7. Occurring a problem

Unless Web scripts are carefully written, they may not work correctly. At best, the user will get an error message. At worst, the whole Web server system could hang or crash. If the script program encounters an error or has problem and does not return appropriate data, the httpd server may or may not be able to figure out what to send to the client. The httpd server will generally return anything it gets from the script to the browser, but if turns out to be meaningless garbage, the browser may not know what to do. Unusual error messages and any information that is not correctly formatted as an HTML document may baffle both the browser program and the user. For these reasons, Web scripts must be robust and should reliably return information that will make sense to httpd and the browser.

It is important to note that if the script fails to terminate, the httpd server will wait indefinitely for the script to reply. For this reason, Web scripts should never stop and wait for anything. Remember that the client is waiting for the response and will only continue to wait for a reasonable time. A script that takes too long to finish will find that the client has given up and gone away. Also, if scripts hang around a long time, they will fill up the server system and eventually cause it to be completely unusable.

If the script crashes, the connection will terminate and the client will probably get an error message of some kind, but the user will almost certainly have no way to tell what went wrong. Web scripts should be as „bullet-proof” as possible, so that mistakes by a user are diagnosed and useful feedback is returned. If an error by a user is are diagnosed and useful feedback is returned. If an error by the user causes a script to crash and the user does not know it is an error, he my make the same mistake over and over again. This is frustrating to him and running the same script the same wrong way over and over again is a waste of resources of the server.

�

5. Architecture, improving the performance

1. The Web server

2. The network

3. The browser and the client system

�

5. Architecture, improving the performance

1. The Web server I.

The Web server architecture

The tasks of Web servers

	A simple cycle

	Execution of CGI scripts and other programs

	Data compression and encryption

	Accessing documents

�

5. Architecture, improving the performance

1. The Web server II.

Different server configurations

	One process per request

�

Step 1.: Listening...

�

Step 2.: A new connection...

�

�

	Step 3.: Listening again...	...with the new connection

�

	Listening...	Request 1	Request 2	Request n

		in progress...	in progress...	in progress...

�

5. Architecture, improving the performance

1. The Web server III.

Different server configurations

	A multithreaded server

�

One server program processing five request at once

�

5. Architecture, improving the performance

1. The Web server IV.

Different server configurations

	Helper processes

�

	Listening	Requ est 1 in progress...	Requ est 2 in progress...

	Request 3 is waiting for Helper

A dispatcher and two helpers, with two requests in progress and one for waiting

�

5. Architecture, improving the performance

1. The Web server V.

The performance of the Web server

	Connections per second

	Bytes per second

	Round-trip time

	Monitoring the system

�

5. Architecture, improving the performance

2. The network I.

Latency or delay

Capacity (bandwidth)

Congestion

Protocols used

�

5. Architecture, improving the performance

2. The network II.

Latency or delay

	Delay of distance

	Delay of relay points

�5. Architecture, improving the performance

2. The network III.

Capacity (bandwidth)

Technology�Theoretical bandwidth�General use��Modem�28.800 bps�personal computer or LAN or server to ISP��Phone�56 Kbps�LAN or server to ISP��Phone�64 Kbps�LAN or server to ISP��Phone (ISDN)�128 Kbps�personal computer��Phone (ISDN)�1,5 Mbps�WAN, LAN to ISP��Ethernet�10 Mbps�LAN��Trunk�45 Mbps�WAN��FDDI�100 Mbps�LAN��ATM (OC-3)�155 Mbps�WAN��ATM (OC-12)�622 Mbps�WAN��

The speed of computer network

�Network speed & Time to transfer��Document�Size�14.400 bps�56 Kbps�100 Mbps��ASCII text�10 KB�6 sec�1,4 sec�0.0008 sec��Image�1 MB�9,25 min�2,5 min�0.08 min��Movie (5 minutes playing time)�50 MB�7,7 hrs�2 hrs�4 sec��

Transfer times for Web documents over different networks

(theoretical maximum network speeds)

�

The client connects to the server through different links with different speeds. The slowest determines the fastest speed that data can reach the client

5. Architecture, improving the performance

2. The network IV.

Congestion

	On local networks with large numbers of clients

�

The user’s (browser’s) view of the Web (it hides the real network)

�

The real network architecture from clients view

(the link from the local network to the Internet may be a bottleneck)

5. Architecture, improving the performance

2. The network V.

Congestion

	On the local network of the Web server

�

The server’s view of the Web (it hides the real network)

�

The real network architecture from server’s view

(the between the server’s local network and the Internet may be a bottleneck)

�

5. Architecture, improving the performance

2. The network VI.

Protocols used

The Web uses own protocol, HTTP, and also relies on Internet protocols such TCP/IP.

	Domain Name Service (DNS)

One problem with the Web services is the translation of network addresses. The URL contains an Internet host address. This host name must be converted into network address and then to route through network to the computer. The translations usually done by a network name service, such as the Domain Name Service (DNS). The DNS system keep lists of host addresses it knows and will automatically contact other servers (using the Internet) to find addresses it does not already know.

	TCP/IP and HTTP

The HTTP protocol was designed to efficiently transfer files in a single request-response transaction, using separate TCP/IP connection for each transaction. This design causes two sort of problem:

series of requests and responses;

slow start-mechanism.

�

5. Architecture, improving the performance

3. The browser and the client system

If the client system does not perform well, the Web service will appear to be slow or broken. From users’s perspective, it will take a long time for the document to be displayed, and it might not arrived at all - regardless the speed and capacity of the network or Web servers. The typical problems:

some browsers simply cannot display anything other than ASCII text;

other browsers that are capable of displaying multimedia documents may not be able to display all types of information;

even when the browser can display multimedia documents in principle, this may be impractical on a given system because the images may take too long to transmit or require too much memory to display.

�

6. Organisation of the document tree

1. Connections between logical and physical views

2. Spreading the documents across several servers

3. Location-independent names

�

6. Organisation of the document tree

The World Wide Web gives users access to information in millions of documents on thousand of computers. All this information is available through a single interface, a Web browser, which gives the user a single, consistent view of the information. But there are two different views:

the view that the user sees is actually a convenient fiction, which we could call: logical view of the organisation of the information of WWW;

the real, physical organisation of the information is much different from the logical organisation.

1. Connections between logical and physical views

Mapping

Symbolic links

2. Spreading the documents across several servers

Dividing the documents across several servers (each document stored only once)

Replicating (mirroring) (each document has minimum one more copy)

Distributed file-systems

3. Location-independent names

�

6. Organisation of the document tree

1. Connections between logical and physical views

Mapping

The Web server software can translate from URL to the actual name of the file using rules in its configuration files:

MAP /siker/* /users/image/siker-projekt/web-docs/

which says when a user requests a URL to, say

siker/kep12.html

the server should return file

/users/image/siker-projekt/web-docs/kep12.html

Symbolic links

The server can also use the facilities of the operating system and the file system itself to make such mappings. For instance, on UNIX system, the translation above could have been done by creating symbolic link from

/siker/

to

/users/image/siker-projekt/web-docs/

insted of using configuration file.

�

6. Organisation of the document tree

2. Spreading the documents across several servers

Dividing the documents across several servers (each document stored only once)

The ways of redirections:

some Web servers allow a mapping to include a full URL;

another way to redirect an access is to use a simple CGI script that returns the new URL of the document in HTTP header information using the Location header. This header line tells the client the correct URL of the document, and the browser can automatically send the request to the new server without the user’s being aware of the redirection. In fact, this is what the server itself does when the MAP directive sends the request to a new server.

Replicating (mirroring) (each document has minimum one more copy)

Advantages

Problems

Distributed file-systems

There are many distributed file systems available:

Novell of Pcs;

Apleshare for Macintoshes;

AFS, DFS and NFS for UNIX.

�

6. Organisation of the document tree

3. Location-independent names

It would be very useful to separate

the name of the document

from it’s location,

to give documents location-independent name.

The Internet community has defined such names, called Universal Resource Names (URN).

�

7. Caching Web information

1. The work of Web caching

The Web browser itself can save documents it has fetched

The Web servers themselves may act as caches

Use an intermediate server that provides the caching

2. Tuning a caching server

Amount of the storage

What documents should be cached?

3. The effectiveness of caching

�

7. Caching Web information

1. The work of Web caching

The Web browser itself can save documents it has fetched

Caching by the browser is tightly limited:

by the memory and disk space available on the client computer;

the cached documents might not be saved after the browser is closed, so each session might have start over again;

since each copy of a browser is caching its own documents, each user may well have its own copy of the same popular documents as his neighbour. This is a waste and does little reduce the load on the Internet, since each user fetches the document at least once.

The Web servers themselves may act as caches

This is especially true for server that contains many pointers to the servers:

the Web server itself can fetch the document and modify the links to point to its local copy rather than the more distant original;

the replication or mirroring is also a form of caching, because the documents are copies to several servers to improve their availability and reduce the load on server. Caching and replication of documents by servers makes accessing some documents more convenient, but the clients must still connect to the Web server, which means that the load on the Internet is not reduced.

Use an intermediate server that provides the caching

The intermediate server acts as an agent representing the server to the client and the client to the server. Such a server is usually called a „proxy server” or just a „proxy”. In general, proxy servers forward Web requests from clients to other Web servers and return responses from servers to clients. The purpose is to filter or redirect the requests from some reason - usually to improve performance (or to enforce a security policy).

�

7. Caching Web information

2. Tuning a caching server

Amount of the storage

Amount of the storage available sets the limit on the cache. The more information that can be cached, the more likely that requests will be satisfied by a cache hit.

What documents should be cached?

The caching server also manages what documents are cached and how the cached copies are kept consistent with the originals:

the results of scripts should never be cached

nor should documents requiring authorisation or payment;

some documents have explicit expiration times, the proxy server should it consider;

similarly some documents can have a „don’t cache me” message provided by the originating server;

documents from local or nearby Web servers probably should not be cached, as they can be retrieves as easily from the Web server as from the caching server.

�

7. Caching Web information

3. The effectiveness of caching

The size and retention strategy of the cache should be adjusted to maximise the number of cache hits. The proxy server can log hits and misses; these logs could be analysed to evaluate the hit rate of cache. These logs tell which documents were served from the cache (hits), which were requested from other servers (misses), and when.

�OLDAL �

�OLDAL �36�

�OLDAL �

	

TEMPUS S_JEP-12495-97	Network Computing

httpd

httpd

httpd (parent)

httpd (child)

A new copy...

fork()

httpd

(Parent)

httpd

(Parent)

httpd

(Parent)

httpd

(Parent)

httpd

Request 1. Waiting...

Request 2. In progress...

Request 5. Waiting...

Request 4. Waiting...

Request 3. Waiting...

httpd

(Dispatcher)

httpd

(Helper 1)

httpd

(Helper 2)

Web server

Client

Modem

LAN

10 MBPS

LAN

100 MBPS

14 Kbps

Internet

56 Kbps

slowest link

Client (browser)

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

bottleneck

Client

LAN

Internet

Client

Client

Client

Client

Client

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

bottleneck

LAN

Internet

Web server

Client

Client

Client

Client

Client

Client

Client

