
Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

 N
am

in
g

in
 D

is
tr

ib
u

te
d

 S
ys

te
m

s

F
eh

ér
 G

yu
la

19
99

T
E

M
P

U
S

 S
 J

E
P

-1
24

95
-9

7

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

NAMING
 IN

DISTRIBUTED SYSTEMS

• • Introduction

• • Desirable features of a good naming
system

• • Fundamental terminologies and

 concepts

• • System-oriented names

• • Object locating mechanisms

• • Human-oriented names

• • Name caches

• Summary

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

INTRODUCTION

• The naming faciliy of a distributed operating system
enables users and programs to assign character-string
names to objects and subsequently use these names
to refer to those objects.

• The locating faciliy, which is an integral part of the
naming facility, maps an object's name to the object's
location in a distributed system.

• The naming and locating facilities jointly form a
naming system that provides the users with an
abstraction of an object that hides the details of how
and where an object is actually located in the
network.

• It provides a further level of abstraction when
dealing with object replicas. Given an object name, it
returns a set of the locations of the object's replicas.

• The naming system plays a very important role in
achieving the goal of

v location transparency,

v facilitating transparent migration and replication
of objects,

v object sharing.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

DESIRABLE FEATURES
OF A GOOD NAMING SYSTEM

1. Location transparency. Location transparency means
that the name of an object should not reveal any hint as
to the physical location of the object. That is, an
object's name should be independent of the physical
connectivity or topology of the system, or the current
location of the object.

2. Location independency. For performance, reliability,
availability, and security reasons, distributed systems
provide the facility of object migration that allows the
movement and relocation of objects dynamically
among the various nodes of a system. Location
independency means that the name of an object need
not be changed when the object's location changes.

 Furthermore, a user should be able to access an object
by its same name irrespective of the node from where
he or she accesses it (user migration).

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Therefore, the requirement of location independency
calls for a global naming facility with the following two
features:

v An object at any node can be accessed without the
knowledge of its physical location (location
independency of request-receiving objects).

v An object at any node can issue an access request
without the knowledge of its own physical location
(location independency of request-issuing objects).
This property is also known as user mobility.

3. Scalability. Distributed systems vary in size ranging
from one with a few nodes to one with many nodes.
Moreover, distributed systems are normally open
systems, and their size changes dynamically.

Therefore, it is impossible to have an a priori idea about
how large the set of names to be dealt with is liable to
get. Hence a naming system must be capable of
adapting to the dynamically changing scale of a
distributed system that normally leads to a change in
the size of the name space. That is, a change in the
system scale should not require any change in the
naming or locating mechanisms.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

4. Uniform naming convention. In many existing
systems, different ways of naming objects, called
naming conventions, are used for naming different
types of objects. For example, file names typically
differ from user names and process names. Instead of
using such nonuniform naming conventions, a good
naming system should use the same naming convention
for all types of objets in the system.

5. Multiple user-defined names for the same object. For
a shared object, it is desirable that different users of the
object can use their own convenient names for
accessing it. Therefore, a naming system must provide
the flexibility to assign multiple user-defined names to
the same object. In this case, it should be possible for a
user to change or delete his or her name for the object
without affecting those of other users.

6. Group naming. A naming system should allow many
different objects to be identified by the same name.
Such a facility is useful to support broadcast facility or
to group objects for conferencing or other applications.

7. Meaningful names. A name can be simply any
character string identifying some object. However, for
users, meaningful names are preferred to lower level
identifiers such as memory pointers, disk block
numbers, or network addresses.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

This is because meaningful names typically indicate
something about the contents or function of their
referents, are easily transmitted between users, and are
easy to remember and use. Therefore, a good naming
system should support at least two level of object
identifiers, one convenient for human users and one
convenient for machines.

8. Performance. The most important performance
measurement of a naming system is the amount of time
needed to map an object's name to its attributes, such
as its location. In a distributed environment, this
performance is dominated by the number of messages
exchanged during the name-mapping operation.
Therefore, a naming system should be efficient in the
sense that the number of messages exchanged in a
name-mapping operation should be as small as possible.

9. Fault tolerance. A naming system should be capable
of tolerating, to some extent, faults that occur due to
the failure of a node or a communication link in a
distributed svstem network. That is, the naming system
should continue functioning, perhaps in a degraded
form, in the event of these failures. The degradation
can be in performance. functionality, or both but should
be proportional, in some sense, to the failures causing
it.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

10. Replication transparency. In a distributed system,
replicas of an object are generally created to improve
performance and reliability. A naming system should
support the use of multiple copies of the same object in
a user-transparent manner. That is, if not necessary, a
user should not be aware that multiple copies of an
object are in use.

Object
location

Client
node

N1 N2 N3

The cost is high if the object locating mechanism
maps to node N3 instead of node N1.

11. Locating the nearest replica. When a naming
system supports the use of multiple copies of the same
object, it is important that the object-locating
mechanism of the naming system should always supply
the location of the nearest replica of the desired object.
This is because the efficiency of the object accessing
operation will be affected if the object-locating
mechanism does not take this point into consideration.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

This is illustrated by the example given below, where
the desired object is replicated at nodes N1, N2, and N3

and the object-locating mechanism is such that it maps
to the replica at node N3 instead of the nearest replica
at node N1. Obviously this is undesirable.

N1 N2 N3

N4

The importance of locating all the replicas.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

FUNDAMENTAL TERMINOLOGIES
AND CONCEPTS

• • Name

• • Human-Oriented and

 System-Oriented Names

• • Name space

• • Flat Name Space

• • Partitioned Name Space

• • Name Server

• • Name Agent

• • Context

• • Name Resolution

• • Abbreviation/Alias

• • Absolute and Relative Names

• • Generic and Multicast Names

• • Descriptive/Attribute-Based Name

• • Source-Routing Name

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

The naming system is one of the most important
components of a distributed operating system because it
enables other sewices and objects to be identified and
accessed in a uniform manner. In spite of the imponance
of names, no general unified treatment of them exists in
the literature. This section defines and explains the
fundamental terminologies and concepts associated with
object naming in distributed systems.

Name

A name is a string composed of a set of symbols chosen
from a finite alphabet. For example, TEMPUS,
#173#4879#5965, node-1!node-2!node-3!sinha, /a/b/c,
25A2368DM197, etc. are all valid names composed of
symbols from the ASCII character set. A name is also
called an identifier because it is used to denote or identify
an object.

A name may also be thought of as a logical object that
identifies a physical object to which it is bound from
among a collection of physical objects. Therefore, the
correspondence between names and objects is the
relation of binding logical and physical objects for the
purpose of object identification.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

linguistic construct

universe of discourse

corresponds

rose

What is in a name?

"What is in a name? That which we call a rose
 By any other name would smell as sweet."

William |Shakespeare, Romeo and Juliet, II.ii.43.

"a linguistic construct which corresponds to
 an object in some universe of discourse."

The OSI reference model defines a name as:

The OSI definition of a name is a very general one. It covers:

♣ Data items which identify objects by their location. Such
 names are called addresses.
♣ It also covers names which are assigned to objects. Such
 names are called titles.

In the context of the name service, names allow users and the
name service to communicate about objects.

Definitions

Purpose

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Expectations

In the early days of naming standardisation, it was expected
that the naming system would support "user-friendly naming"
(IFIP WG 6.5).

By user-friendly naming we mean that it is easy for a user
(specifically, a human user) to remember, guess or recognise
a name for an object of interest.

The first IFIP document proposed a scheme wherein a name
would be virtually any unordered collection of attribute (type,
value) pairs which, following performance of a "name
resolution algorithm" over the "global naming graph", turned
out to describe one and only one object.

Problems of realisation.

Unfortunatelly, the naming scheme, based on unordered attribute
(type, value) pairs, proved not to be efficiently implementable.

The fact that the components of names were unordered meant
that, in the worst case, every naming system would have to be
involved in performing the name resolution algorithm.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Solutions

It seems that there is trade-off between the user-friendliness of
a naming scheme and the efficiency of its implementation. The
naming system development has settled on a middle ground:

♣ Names can be formed from information about an object which
 a person would regard as a memorable and recognisable.

♣ On the other hand, once assigned, a name must be presented
 exactly by a would-be accessor. The various components of a
 name must appear in order. (This makes possible an efficient
 algorithm for determining whether a purpored nemeis actually
 a name or not.)

Name forms

Two forms of name are supported by the naming service:

♣ Distinguished names,
♣ Alias names (normally abbreviated to aliases.

(In principle other forms could be added in the future. However,
there have been no significant extensions in this area during the
last years.)

Names of both forms are constructed from attributes of relevant
name system (directory) entries. More specifically, each such
name is an ordered list of realtive distinguished names (RDNs).
Every entry has exactly one RDN, a set of attribute (type, value)
pairs from the entry chosen.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Human-Oriented and System-Oriented
Names

Names are used to designate or refer to objects at all
levels of system architecture. They have various
purposes, forms, and properties depending on the levels
at which they are defined. However, an informal
distinction can be made between two basic classes of
names widely used in operating systems human-
oriented names and system-oriented names.

A human-oriented name is generally a character-string
that is meaningful to its users. For example,
/user/sinha/project-file-1 is a human-oriented name.
Human-oriented names are defined by their users. For a
shared object, different users of the object must have
the flexibility to define their own hunan-oriented names
for the object for accessing it. Flexibility must also be
provided so that a user can change or delete his or her
own name for the object without affecting those of
other users. For transparency, human-oriented names
should be independent of the physical location or the
structure of objects they designate. Human-oriented
names are also known as high-level names because
they can be easily remembered by their users.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Human-oriented names are not unique for an object
and are normally variable in length not only for
different objects but also for different names for the
same object. Hence, they cannot be easily manipulated,
stored, and used by the machines for identification
purpose. Moreover, it must be possible at some level to
uniquely identify every object in the entire system.

Therefore, in addition to human-oriented names, which
are useful for users, system-oriented names are needed
to be used efiiciently by the system. These names
generally are bit patterns of fixed size that can be easily
manipulated and stored by machines. They are
automatically generated by the system. They should be
generated in a distributed manner to avoid the problems
of efficiency and reliability of a centralized unique
identifier generator. They are basically meant for use
by the system but may also be used by the users. They
are also known as unigue identifiers and low-level
names.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Physical addresses
of the named object

A simple naming model based on the use of human-oriented and
system-oriented names in a distributed system.

Human-oriented
name

System-oriented
name

FIRST-LEVEL
MAPPING

SECOND-LEVEL
MAPPING

Figure above shows a simple naming model based on
these two types of names. In this naming model, a
human-oriented name is first mapped (translated) to a
system-oriented name that is then rnapped to the
physical locations of the corresponding object's
replicas.

Name space

A naming system employs one or more naming
conventions for name assignment to objects.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

For example, a naming system may use one naming
convention for assigning human-oriented names to
objects and another naming convention for assigning
system-oriented names to objects. The syntactic
representation of a name as well as its semantic
interpretation depends on the naming convention used
for that name. The set of names complying with a given
naming convention is said to form a name space

Flat Name Space

The simplest name space is a flat name space where
names are character strings exhibiting no structure.
Names defined in a flat name space are called primitive
or flat names. Since flat names do not have any
structure, it is difficult to assign unambiguous
meaningful names to a large set of objects. Therefore,
flat names are suitable for use either for small name
spaces having names for only a few objects or for
system-oriented names that need not be meaningful to
the users.

Partitioned Name Space

When there is a need to assign unambiguous
meaningful names to a large set of objects, a naming
convention that partitions the name space into disjoint
classes is normally used.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

When partitioning is done syntactically, which is
generally the case, the name structure reflects physical
or organizational associations. Each partition of a
partitioned name space is called a domain of the name
space.

Each domain of a partitioned name space may be
viewed as a flat name space by itself, and the names
defined in a domain must be unique within that domain.
However, two different domains may have a common
name defined within them.

A name defined in a domain is called a simple name. In
a partitioned name space, all objects cannot be
uniquely identified by simple names, and hence
compound names are used for the purpose of unique
identification.

A compound name is composed of one or more simple
names that are separated by a special delimiter
character such as /, $, @, 9~, and so on (following the
UNIX file system convention, the delimiter character /
will be used for the examples and discussion presented
here). For example, /a/b/c is a compound name
consisting of three simple names a, b, and c.

A commonly used type of partitioned name space is the
hierarchical name space, in which the name space is
partitioned into multiple levels and is structured as an
inverted tree.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Each node of the name space tree corresponds to a
domain of the name space. In this type of name space,
the number of levels may be either fixed or arbitrary.

For instance, the Grapevine system manages a name
space tree having two levels, while in the Xerox
Clearinghouse, a name space tree has three levels.

On the other hand, the DARPA Internet Domain
Naming System and the Universal Directory Service
allow a name space tree to have arbitrarily many levels.
Names defined in a hierarchical name space are called
hierarchical names.

Hierarchical names have been used in file systems for
many years and have recently been adopted for naming
other objects as well in distributed systems. Several
examples of hierarchical name spaces are also found in
our day-to-day life.

For instance, telephone numbers fully expanded to
include country and area codes form a four-level
hierarchical name space and network addresses in
computer networks form a three-level hierarchical
name spaee where the three levels are for network
number, node number, and socket number.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Distinguished names

While every name is unambiguous, distinguished names (DNs)
are also unique, each object having precisely one.

The distinguished name of an object, is a sequence of RDNs of
the object's entry and all of its superiors, starting from the root.

Because the naming data base is arranged as a tree, there is a
unique path from the root to the object's entry (which does not
involve alias entries.)

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Distinguished name as an IT path.

��

��

��

��

root

a

b

d

c

= IT entry

While every name is unambiguous, distinguished names (DNs)
are also unique. (There is a unique path from the root to the
object's entry.)

If, in the figure, the RDNs of entries �,�,� and � are
represented by a,b,c and d respectivelly, then, for example,
the distinguished name of entry � would be the sequence:
[a,b,c].

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Like a distinguished name (DN), alias is a path through the IT
from the root to the object's entry. However, unlike the DN, an
alias name involves one or more alias entries:

In the figure, two alias entries are depicted,� and �. As a result,
there are alternative paths to several of the entries, including one
to entry � which involves both alias entries. This path is shown by
the red line. The alias corresponding to this path consists of the
list of the RDNs encountered along it, excluding those of the entries
pointed directly by the alias entries. This name for � is [x,y,z,d,f].

Alias name as an IT path.

a

c��

��

��

��
e��

x

= alias entry

f

z

root

d

y b

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Names, routes and routing.

Structure Time Number

Primitive
Partitioned
Descriptive

Static
Dynamic

Individual
Group

Scheme Function Time

Source
Hop-by-hop
Broadcast

Centralized
Distributed

Static
Dynamic

Attribute

Name

Route

M
ap

pi
ng

(R
ou

ti
ng

)

List of names

S
in

gl
e

st
ep

 m
ap

pi
ng

(R
ou

ti
ng

 b
y

na
m

e)

Name

Route

Mapping

Mapping

(naming function)

(routing)

A name, an address and a route.

Address

Statically
bound to object

List of namesChanging

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Distribution of the naming information .

Conceptually, the naming/directory abstract service is provided by
the directory as a whole. In reality, the directory is a collection of
individual computer systems, directory system agents (DSAs), which
cooperate to provide the service.

The services has been designed so that its users don't need to know
how the directory is disributed in order to use it.

There are various ways that the directory could be distributed to meet
this requirement.

Two extreme possibilities, neither of which is remotely feasible for
the global solution, although practical in a single domain, are total
centralisation (having a single DSA hold all of the information the
DIB) and total replication (having it replicated on every DSA).

Any practical solution for the global naming system will require
each DSA to hold only some of the DIB and to route requests which
involve other information to the DSAs which hold it.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Naming contexts.

Naming contexts are the primary units of naming information
distribution. Each DSA holding one or more of them.

A naming context is a set of entries constituting a subtree of the
DIT. It includes at least one entry, the root of the subtree.

A naming context is partially described by the distinguished name
of its root entry. This name is called the context prefix because it
is a prefix to the distinguished names of each entry in the naming
context.

Every entry is in one, and only one, naming contexts, so that the
naming contexts partition the DIT. Such partition is depicted:

root

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Service

The naming solution, introduced earlier, shows one object, the
naming system itself, providing service to other objects, the
users, via directory user agents (DUAs). This service is called
the naming abstract service.

The abstract service is so called because it is capable of being
realised in many ways. The realisation which the directory standard
supports directly is the directory access protocol (DAP), an appli-
cation protocol which allows the DUA and the naming/directory
service to be in different computer systems.

The abstract service is quite simple one, intended to provide the
building blocks which designers of particular applications and
DUA software cab use to build the higher level services which
their customers need. The service is defined in terms of a number
of operations which the naming/directory can perform at the
DUA request.

Client Agent
User Naming

service

(DUA)

System
Agent

(DSA)

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Abstract service

The abstract service is so called because it is capable of being
realised in many ways. The realisation which the directory standard
supports directly is the directory access protocol (DAP), an appli-
cation protocol which allows the DUA and the naming/directory
service to be in different computer systems.

The abstract service isquite simple one, intended to provide the
building blocks which designers of particular applications and
DUA software cab use to build the higher level services which
their customers need. The service is defined in terms of a number
of operations which the naming/directory can perform at the
DUA request.

Functional model of the distributed naming system

The naming information-base is distributed throughout the word-
wide collection of directory system agents that form the whole
directory.

Client

(DUA)

(DSA)

System
Agent

System
Agent

System
Agent

Access
Directory

Protocol
(DAP)

Directory System Protocol
(DSP)

User
Agent

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Name Server

Name spaces are managed by name servers. A name
server is a process that maintains information about
named objects and provides facilities that enable users
to access that information. It acts to bind an object's
name to some of its properties, including the object's
location.

In practice, several name servers are normally used for
managing the name space of object names in a
distributed system.

Each name server normally has information about only
a small subset af the set of objects in the distributed
system. The name servers that store the informatlon
about an object are called the authoritative name
servers of that object.

To determine the authoritative name servers for every
named object, the name service maintains authority
attributes that contain a list of the authoritative name
servers for each object.

Partitioned name spaces are easier to manage
efficiently as compared to flat name spaces because
they enable the amount of configuration data required
in each name server to be reduced since it need only be
maintained for each domain and not for each individual
object.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

For example, in a hierarchical name space, it is
sufficient that each name server store only enough
information to locate the authoritative narne servers for
the root domain of the name tree.

The authoritative name servers of the root domain, in
turn, should know the locations of the authoritative
name servers of the domains that branch out from the
root domain. In general, the authoritative name servers
of a domain should know the locations of the
authoritative name servers of only those domains that
branch out from that domain.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Domains of a hierarchical name space

Domain
D1

Domain
D2

Domain
D3

Domain
D4

Domain
D5

Domain
D6

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

For example, in the name space tree of Figure above all
name servers must know the locations of the
authoritative name servers of domain D1; the
authorative name servers of domain D1 need only know
the locations of the authoritative name servers of
domains D2, D3, and D4; and the authoritative name
servers of domain D2 need only know the locations of
the authoritative name servers of domains D5 and D6.

The amount of configuration data that must be
maintained by name servers at the various levels of the
hierarchy is proportional to the degree of branching of
the name space tree. For this reason, hierarehical
naming conventions with several levels are often better
suited for naming large number of objects.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Context

Names are always associated with some context. A
context can be thought of as the environment in which
a name is valid.

Because all names are interpreted relative to some
context, a context/name pair is said to form a gualified
name that can be used for uniquely identifying an
object.

The notion of context has proved to be very useful for
partitianing a name space into smaller components.
Often, contexts represent a division of the name space
along natural geographical, organizational, or
functional boundaries.

In a partitioned name space, each domain corresponds
to a context of the name space. Names in a context
can be generated independently of what names exist in
any other context.

Therefore, a name may occur in more than one
context. Contexts rnay also be nested, as in the case of
hierarchical name spaces. For example. in the name
space tree of figure below,

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Nested context

Context
C1

Context
C1

Context
C1

�� �� �� ��

�� �� �� ��

�� �� �� ��

context C3 is nested within context C2, which in turn is
nested within context C1. In nested contexts, a
qualified name consists of a series of names
identifying, respectively, a context, a subcontext, a
sub-subcontext followed by a name inside the last sub-
sub- . . . context.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

For the purpose of name management, contexts
provide a means of partitioning the naming
information database so that it may be distributed
among multiple name servers.

Contexts represent indivisible units for storage and
replication of information regarding named objects.

Name Resolution

Name resolution is the process of mapping an object's
name to the object's properties ,such as its location.

Since an object's properties are stored and maintained
by the authoritative name servers of that object, name
resolution is basically the process of mapping an
object's name to the authoritative name servers of that
object.

Once an authoritative name server of the object has
been located, operations can be invoked to read or
update the object's properties.

Each name agent in a distributed system knows about
at least one name server apriori.

To get a name resolved, a client first contacts its name
agent, which in turn contacts a known name server,
which may in turn contact other name servers.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Absolute and Relative Names

Another method to avoid the necessity to specify the
full qualified name of an object in tree-structured name
spaces is the use of the concept of current working
context.

A current working context is also known by the shorter
names current context or working context. According
to this concept, a user is always associated with a
context that is his or her current context. A user can
change his or her current context whenever he or
shedesires.

An absolute name begins at the root context of the
name space tree and follows a path down to the
specified object, giving the context names on the path.

On the other hand, a relative name defines a path from
the current context to the specified object. It is called a
relative name because it is "relative to” (start from) the
user's current context.

For example, in the tree-structured name space of
figure below,

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

A tree-structured name space
to illustrate absolute and relative names.

context-1

Root-

�� �� ��

�� �� ��

�� �� ��

context

context-3

context-5

�� �� ��object-1 object-n

context-1

context-2

�� �� ��

�� �� ��object-1 object-m

User's current
context

 if the user's current eontext is

root-context/context-l/context-3,

the relative name
context-5/object-1

refers to the same object as does the absolute name

root-context/context-1/context-3/context-/object-1.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Means are also provided in this method to refer to the
parent context of a context. For example, in the UNIX
file-naming convention.

 In this method, a user may specify an object in any of
the following ways:

1. Using the full (absolute) name
2. Using a relative name '
3. Changing the current context first and then

using a relative name

Generic and Multicast Names

The use of generic and multicast names requires the
naming system'to support one-to-many bindings. That
is, the naming system must allow a simple name to be
bound to a set of qualified names.

In a generic naming facility, a name is mapped to any
one of the set of objects to which it is bound. This type
of facility is useful in situations such as when a user
wants a request to be serviced by any of the servers
capable of servicing that request and the user is not
concerned with which server services his or her
request.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

SYSTEM-ORIENTED NAMES

• • Centralized Approach for Generating

• • System-Oriented Names

• • Distributad Approach for Generating

• • System-Oriented Names

• Generating Unique Identifiers in the

 Event of Crashes

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

OBJECT LOCATING MECHANISMS

• • Broadcasting

• • Expanding Ring Broodcast

• • Encoding location of Object within

 Its UID

• • Searching Creator Node First and

 Than Broadcasting

• • Using Forward Location Pointers

• Using Hint Cache and Broadcasting

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Object locating is the process of mapping an object's
system-oriented unique identifier (UID for short) to the
replica locations of the object.

In a distributed system, object locating is only the
process of knowing the object's location, that is, the
node on which it is located.

On the other hand, object accessing involves the
process of carrying out the desired operation (e.g., read,
write) on the object. Therefore, the object-accessing
operation starts only after the object-locating operation
has been carried out successfully.

Several object-locating mechanisms have been
proposed and are being used by various distributed
operating systems.

Broadcasting

In this method, an object is located by broadcasting a
request for the object from a client node. The request is
processed by all nodes and then the nodes currently
having the object reply back to the client node.
Amoeba uses this method for locating a remote port.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Broadcasting object-locating mechanism

�� Broadcast request message.
�� Reply from the node on
 which the object is located.

Object
location

Client
node

��

��

��

��

The method is simple and enjoys a high degree of
reliability because it supplies all replica locations of the
target object.

However, it suffers from the drawbacks of poor
efficiency and scalability because the amount of
network traffic generated for each request is directly
proportional to the number of nodes in the system and
is prohibitive for large networks.

Therefore, this method is suitable only when the
number of nodes is small, communication speed is high,
and object-locating requests are not so frequent.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Expanding Ring Broodcast

Pure broadcasting is expensive for large networks.
Moreover, direct broadcasting to all nodes may not be
supported by wide-area networks. Therefore, a
modified form of broadcasting, called expanding ring
broadcast is normally employed in an internetwork that
consists of local area networks (LANs) connected by
gateways.

In this method, increasingly distant LANs are
systematically searched until the object is found or until
every LAN has been searched unsuccessfully.

The distance metric used is a hop. A hop corresponds
to a gateway between processors.

For example, if a message from processor A to
processor B must pass through at least two gateways, A
and B are two hops distant. Processors on the same
LAN are zero hop distant. A ring is the set of LANs a
certain distance away from a processor. Thus, Ring0[A]
is A's local network, Ring1[A] is the set of LANs one
hop away, and so on.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Broadcasting object-locating mechanism

NAME SERVICE

Object
location

Client
node

1

1

1

1

2

2

2

2
3

3

3

3

�� Searching nodes at 0
 hope distance.
�� Searching nodes at 1
 hope distance if the
 search of 0 hop fails.
�� Searching nodes at i
 hope distance if the
 searches up to i -1
 hopes fail.

An ERB search works as follows. Suppose that
processor A needs to locate object X. Beginning with i
= 0, a request message is broadcast to all LANs in
Ring0[A]. If a response is received, the search ends
successfully. Otherwise, after a timeout period has
elapsed, i is incremented by 1 and the request
broadcast is repeated. The ring size i is bounded from
above by the diameter of the internetwork.

This method does not necessarily supply all the replica
locations of an object simultaneously, although it does
supply the nearest replica location.

The efficiency of an object-loeating operation is
directly proportional to the distance of the object from
the client node at the time of locating it.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Encoding location of Object within Its UID

��

�� Extracting object's location from
 its UID. No message exchange
 with any other node is required
 for locating the object.

Object-locating mechanism encods the location of an object within its UID.

This scheme uses structured object identifiers. One
field of the structured UID is the location of the object.
Given a UID, the system simply extracts the
corresponding object's location from its UID by
examining the appropriate field of the structured UID.
The extracted location is the node on which the object
resides.

This is a straightforward and efficient scheme. One
restriction of the scheme.however, is that an object is
not permitted to move once it is assigned to a node,
since this would require its identifier to change.
Consequently, an object is fixed to one node
throughout iks lifetime.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Another limitation of the scheme is that it is not clear
how to support multiple replicas of an object.
Therefore, the use of this object-locating scheme is
limited to those distributed systems that do not support
object anigration and object replication. ,

Searching Creator Node First and Than
Broadcasting

This scheme is a simple extension of the previous
scheme. The included extension is basically meant for
supporting object migration facility. The method is
based on the assumption that it is very likely for an
object to remain at the node where it was created
(although it may not be always true). This is because
object migration is an expensive operation and objects
do not migrate frequently.

In this scheme. the location field of the structured UID
contains the identifier of the node on which the object
was created. Given a UID, the creator node information
is extracted from the UID and a request is sent to that
node. If the object no longer resides on its creator node,
a failure reply is returned back to the client node. In
case of failure, the object is located by broadcasting the
request from the client node. This method of object
locating is used in.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

�� Searching the
 creator node.
�� Negativ reply.
�� Broadcast request message.
�� Reply from the node on
 which the object is located.

Creator node

��
��

��

��

Creator node

ques t

��
��

��

��
��

��

��

��

��

��

�� , �� , �� Path of message
 forwarding.
�� Reply from the node on

 which the object is located.

�� Searching of local cache.
�� Broadcast request message.
�� Reply from the node on
 which the object is located.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

As compared to the broadcasting scheme, this method
helps in reducing the network traffic to a great extent.

The scheme is more flexible than the method of
encoding the location of an object within its UID
because it allows the system to support object
migration. However, the use of broadcast protocol to
locate those objects that are not found on their creator
nodes limits the scalability of this mechanism.

Using Forward Location Pointers

This scheme is an extension of the previous scheme.
The goal of this extension is to avoid the use of
broadcast protocol. A forward location pointer is a
reference used at a node to indicate the new location of
an object.

Whenever an object is migrated from one node to
another, a forward location pointer is left at its previous
node. Therefore, to locate an object, the system first
contacts the creator node of the object and then simply
follows the forward pointer or chain of pointers to the
node on which the object currently resides.

The method has the advantages of totally avoiding the
use of broadcast protocol and allowing the support of
object migration facility.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

However, the method practically has the following
major drawbacks:

1. The object-locating cost is directly proportional
to the length of the chain of pointers to be
traversed and grows considerably as the chain
becomes longer.

2. It is difficult, or even impossible, to locate an
object if an intermediate pointer has been lost or
is unavailable due to node failures. Therefore,
the reliability of the mechanism is poor.

3. The method introduces additional system
overhead for upkeep.

Using Hint Cache and Broadcasting

Another commonly used approach is the cache-
broadcast scheme. In this method, a cache is
maintained on each node that contains the (UID, last
known location) pairs of a number of recently
referenced remote objects.

Given a UID, the local cache is examined to determine
if it has an entry for the UID. If an entry is found, the
corresponding location information is extracted from
the cache. The object access request is then sent to the
node specified in the extracted location information.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

If the object no longer resides at that node, however,
the request is returned with a negative reply, indicating
that the location information extracted from the cache
was outdated.

If the specified UID is not found in the local cache or if
the localion information of the object in the local cache
is found to be outdated, a message is broadcast
throughout the network requesting the current location
of the object.

Each node that receives the broadcast request performs
an internal search for the specified object. A reply
message is returned to the client node from the node on
which the object is found. This location of the object is
then recorded in the client node's cache. Notice that a
cache entry only serves as a hint because it is not
always correct.

This scheme can be very efficient if a high degree of
locality is exhibited in locating objects from a node. It
is also flexible since it can support object migration
facility.

The method of on-use update of cached information
avoids the expense and delay of having to notify other
nodes when an object migrates.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

The broadcast requests will clutter up the network,
disturbing all the nodes even though only a single node
is directly involved with each object-locating operation.

This is the most eommonly used object-locating
mechanism in modern distributed operating systems. It
is used in .Amoeba, V System, DOMAIN, NEXUS,
Mach, and Chorus.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

HUMAN-ORIENTED NAMES

• • Human-Oriented Hierarchical Naming
Schemes

♦ Combining an Object's Local Name with

 Its Host Name

♦ Interlinking Isolated Name Spaces into a

 Single Name Space

♦ Sharing Remote Name Spaces on Explicit
Request

• • Context Binding

♦ Table-Based Strategy

♦ Procedure-Based Strategy

• • Distribution of Contexts and Name
Resolution Mechanisms

♦ Centralized Approach

♦ Fully Replicated Approach

♦ Distribution Based on Physical Structure

 of Name Space

♦ Structure-Free Distribution of Contexts

♦ Interacting with Name Servers During
 Name Resolution.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

System-oriented names such as 31A5 285F AD19
B1C8, though useful for machine handling, are not
suitable for use by users. Users will have a tough time if
they are required to remember these names or type
them in.

Furthermore, each object has only a single system-
oriented name, and therefore all the users sharing an
object must remember and use its only name.

To overcome these limitations, almost all naming
systems provide the facility to the users to define and
use their own suitable names for the various objects in
the system.

These user-defined object names, which form a name
space on top of the name space for system-oriented
names, are called human-oriented names.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Human-oriented names normally have the following
eharacteristics:

1. They are character strings that are meaningful
to their users.

2. They are defined and used by the users.
3. Different users can define and use their own

suitable names for a shared object. That is, the
facility of aliasing is provided to the users.

4. Human-oriented names are variable in length
not only in names for different objects but even
in different names for the same object.

5. Due to the facility of aliasing, the same name
may be used by two different users at the same
time to refer to two different objects.
Furthermore, a user may use the same name at
different instances of time to refer to different
objects. Therefore, human-oriented names are
not unique in either space or time.

Because of the advantages of easy and efficient
management of name space, hierarchically partitioned
name spaces are commonly used for human-oriented
object names.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

The names of a hierarchical narning system are of the
form cl/c2/. . . /cj, should i be constant or arbitrary?

The main advantage of the constant-level scheme is
that it is simpler and easier to implement as compared
to the arbitrary-level scheme. This is because all
software in the arbitrary-level scheme must be able to
handle an arbitrary number of levels, so software for
manipulating names tend to be more complicated than
those for constant-level scheme. The disadvantage of
the constant-level scheme is that it is diffcult to decide
the number of levels, and if new levels are to be added
later, considerably more work has to be done because
all the algorithms for name manipulation must be
properly changed to take care of the new levels.

On the other hand, arbitrary-level schemes have the
advantage of easy expansion by combining
independently existing name spaces into a single name
space. For example, as shown in figure below, two
independent name spaces may be combined into one
name space by adding a new root, making the existing
roots its children. The major advantage is that if a name
was unambiguous within its old name space, it is still
unambiguous within its new name space, even if the
name also appeared in some other name space that was
combined. There is no need to change any of the
algorithms for manipulating names.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Combining two name spaces
to form a single name space by adding a new root

root-1

user-1 user-2

project-1

file-1

root-1

user-1 user-2

project-1

file-1

new-root

Component
name space A

Component
name space B

The new name space

Arbitrary-level schemes, being more flexible than
constant-level schemes, are used by most recent
distributed systems. Hence, subsequent sections of this
chapter deal with arbitrary-level hierarchical name
spaces.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

The major issues associated with human-oriented
names are as follows:

1. Selecting a proper scheme for global object
naming

2. Selecting a proper scheme for partitioning a name
space into contexts

3. Selecting a proper scheme for implementing
context bindings

4. Selecting a proper scheme for name resolution
These isue are described in the next section.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Interacting with Name Servers
During Name Resolution.

Various contexts of a given pathname may be stored at
different name servers. Therefore, the resolution of a
pathname in such a situation will involve interacting
with all the name servers that store one or more
contexts of the pathname. During name resolution, a
name agent may interact with the name servers in one
of the following manners:

1. Recursive. In this method, the name agent forwards the
name resolution request to the name server that stores
the first context needed to start the resolution of the
given name.

 After this, the name servers that store the contexts of

the given pathname are recursively activated one after
another until the authority attribute of the named object
is extracted from the context corresponding to the last
component name of the pathname.

 The last name server returns the authority attribute to

its previous name server, which then returns it to its
own previous name server, and so on.

 Finally, the fast name server that received the request

from the name agent returns the authority attribute to
the name agent.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2

3

Recursive resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 10

uu

uu = required data

NAME SERVICE

4

56

7

8

9

 As an example, if the name /a/b/c/d is to be resolved,
the name agent sends it to the name server (say SA) of
the root context (/) and waits for a reply.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

 Then SA searches for the component name a in the root
context, extracts the corresponding binding
information, sends the remaining pathname b/c/d to the
name server (say SB) of the next context (/a), and waits
for a reply. Then SB extracts from context /a the
binding information corresponding to the component
name b, sends the remaining pathname c to the name
server (say SC) of the next context (/a/b), and waits for
a reply. Then SC extracts from context /a/b the
authority attribute corresponding to the component
name c and returns it to SB,. which in turn returns it to
SA, and finally S, retums it to the name agent.

 The name agent has little work to do but the name
servers may be involved in processing several requests
at the same time. Therefore, the name servers may get
overloaded in situations where the number of name
agents is too large as compared to the number of name
servers.

 Hence, this mechanism is not suitable for use in those
systems in which the ratio of name agents to name
servers is very high. Furthermore, to allow a name
server to start another job when waiting for a response,
the name servers have to be multiprogrammed.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2. Iterative.

 In this method, name servers do not call each other

directly. Rather, the name agent retains control over
the resolution process and ane by one calls each of the
servers involved in the resolution process.

2

3

Sequential multicasting resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 10

uu

uu = required data

NAME SERVICE

5

7

8

6
4

9

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

 As in the recursive process, the name agent first sends

the name to be resolved to the name server that stores
the first contest needed to start the resolution of the
given name.

2

3c

Parallel iterative resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 4

uu

uu = required data

NAME SERVICE

3b

3a
222

3d

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2

7

Sequential iterative resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 10

uu

uu = required data

NAME SERVICE

5

3 8

6
4

9

 The server resolves as many components of the name

as possible. If the name is completely resolved, the
authority attribute of the named object is returned by
the server to the name agent.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

 Otherwise. the server returns to the name agent the

unresolved portion of the name along with the location
information of another name server that the name agent
should contact next.

 To continue the name resolution. The name agent sends

a name resolution request along with the unresolved
portion of the name to the next name server. The
process continues until the name agent receives the
authority attribute of the named object.

3. Transitive.

The name agent first sends the resolution request to the
name server that stores the first context needed to start
the resolution process.

The server resolves as many components of the name
as possible. It then passes on the unresolved portion of
the name to the name server that stores the next
context needed to proceed with the resolution process.

This name server resolves as many components of the
name as possible and then passes on the unresolved
portion of the name to the next name server. The
process continues and the name server that encounters
the authority attribute of the named object returns it
directly to the name agent.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2

3

Transitive resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 7

uu

uu = required data

NAME SERVICE

4

5

6

Notice that, as in the recursive method, in this method
also the name agent has little work to do.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Also notice from that the transitive approach requires
the fewest number of messages. However, a sender
does not receive any acknowledgment message once it
passes on the resolution operation to another server.

Therefore, this approach should be used in systems
with reliable communication. On the other hand,
recursivie and iterative approaches can be efficiently
supported by RPC-based communication systems
because they use a "call-response" model.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2 7

Agent based referral resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 8

uu

uu = required data

NAME SERVICE

5

3 6

4

Nothing
known

Referral
Server D

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

2

7

Server based referral resolution protocol

Server
D

Server
C

Server
B

Server
A

Client

agent
User

1 10

uu

uu = required data

NAME SERVICE

5

3 6
4 Referral

Server D
Nothing
known

89

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

NAME CACHES

• • Types of Name Caches

• • Approaches for Name Cache

 Implamentation

• • Multicache Consistency

• • Immediate Invalidate

• • On-Use Update

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Client based cache

Client ClientServer

Caching at the client is an effective way of pushing the proces-
sing workload from the server out to client devices,if a client
has the capacity.

Caching is an important technique for building responsive,
scalable distributed systems. A cache can be maintaned either
by the client or the server or by both.

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Server based cache

If results data likely to be reused by multiple clients or if the client
devices do not have the capacity then caching at the server is more
effective.

Client ClientServer

Multi-level caching

Caches can be miantaned at multiple levels. For example, caches
can be maintaned at all clients and all servers. Use of a cache at one
level reduces the number of requests handled at the levels below.

Client ClientServer

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

SUMMARY

Fehér Gyula feher@novserv.obuda.kando.hu

TEMPUS S_JEP-12495-97 Distributed Systems and
Distributed Operating Systems

