Fault Tolerant Distributed Real-Time
Systems (draft)

Istvan Majzik

DISCOM TEMPUS - September 1999

1 Basic de..nitions

Real-time (RT) computer system: Correctness of the system depends not
only on the logical (functional) results, but also on the timeliness, i.e. the
physical time at which the results are presented.

RT system: changes its state as a function of physical time

2 General structure:

operator <-> RT computer system <-> controlled RT object
man-machine instrumentation
interface interface

2 General task:
— react to stimuli from the controlled object/operator request
2 Deadline: At which the results must be produced

— soft: result has utility after the deadline
— ..rm: no utility after the deadline
— hard: catastrophic consequences if the deadline is missed

2 Hard RT system: at least one hard deadline exists

— required: GUARANTEED temporal behavior under all speci..ed
LOAD and FAULT conditions

2 Comparison of hard and soft RT systems:

| Hard RT | Soft RT |
hard deadline soft deadline
predictable performance degraded performance in peak load
synchronous with env. computer control
often safety-critical usually non-critical
active redundancy checkpoint-recovery
short-term data integrity long-term data integrity
autonomous error detection | user-assisted error detection

2 Fail-safe vs. fail-operational:

— fail-safe: the controlled object has a safe state

o (e.g. all tracc lights are red)
g error -> transition to safe state
a computer systems: high error detection coverage required

— fail-operational: no safe state in the object

a (e.g. airplane)
a computer systems: minimal level; of service required to avoid
catastrophe

2 Guaranteed response vs. best ecort:

— guaranteed response: peek load and fault scenario — to be speci-
..ed! (rigorous)

— best ewort: hard to predict rare event scenarios (+ the design is
often resource-inadequate)

2 Event-triggered vs. time-triggered systems:

2 event: any occurrence that happens in time

— (state change in the object/computer)

2 trigger: event that causes the start of an action
2 event-triggered (ET):
— all activities are initiated by events

— interrupt-like mechanism
— dynamic scheduling of activities (tasks)

2 time-triggered (TT):

— activities are initiated by the progress of time
— interrupt: clock only
— (synchronized distributed clock)

2 General structure

2.1 Why using often distributed systems for RT pur-
poses?

2.1.1 System architecture
2 nodes: functional+temporal properties

— mapping between nodes and functions
— node error -> it is clear, which function is acected

2 communication network:

— interface of nodes (CNI)
— event queue: often FIFO
— state information: overwriting old values

2.1.2 Composability

2 system properties follow from subsystem properties
— (all subsystem combinations work properly)

2 ET systems: not composable
— (message overload to receivers, conticts)

2 TT systems: composable

— temporal control resides in the comm. subsystem
— message scheduling tables are used

transfer happens at prede..ned time points
— computer and communication subsystem’s properties are isolated

2.1.3 Scalability

2 no limits on the extensibility of the system

— nodes can be added (up to communication capacity)
— clusters, gateways can be established

2 controlling complexity:

— partitioning into subsystems
— preservation of abstractions (hierarchy) in the case of faults
— strict control over interactions (interfaces)

2.1.4 Dependability

2 responsive systems:
— RT performance + fault tolerance + distribution of functions

2 distributed system:

— error containment regions:

— fault detected + corrected/masked before corrupting the mrest of
the system

— error is detected at the service interface
— nodes: often EC regions

2 node failure modes:

— fail-stop
— fail-silent
— crash

2 replication: actively;
— deterministic behavior (replica determinism, also in time)
2 subsystems of dicerent criticality:

— critical subsystem and
— non-critical subsystem in dicerent EC regions

2.2 Modeling RT systems

2 assumptions used:

— load hypothesis
— fault hypothesis

2 time properties:

— actual, minimal duration (of actions)
— worst-case execution time (WCET)
— jitter

2.2.1 Structural elements

2 task: sequential program execution

— simple: no synchronisation
— complex: synchronisation (blocking may occur)

N

node: self-contained unit with well-de..ned function

— abstraction: hw+sw into a single unit
— SRU: smallest replaceable unit

N

FTU: fault tolerant unit

— set of replicated nodes + adjudicator

N

computational cluster:

— set of FTU-s (+ gateways)

N

interfaces:

— control+data+temporal properties
— functional intent

2.2.2 RT software
2 ET systems: interrupts

— as CPU interrupt frequency increases, also the time
— with housekeeping (wasted, overhead) increases

2 TT systems:

— “sampling” the input
— predictable overhead

2 determining worst-case execution time: WCET should be known a pri-
ori

— simple task:

a source code analysis -> critical path — dynamic code? (recur-
sion, loops,...)

a compiler analysis (timing tree: execution time of high-level
constructs)

a microarchitecture: pipeline, cache?
— complex task:

a global problems in the system
a preemption+blocking -> full system model is required
o solution: annotated source code + instrumentation

2 h-state (history state) analysis:

— data that undergoes changes as computation progresses
— fault -> error (changes in state)

— ideal: stateless system (easy to recover)

— cyclic computation: no state transition among cycles

3 Fault tolerant RT systems

3.1 Special properties

2 permanence:

— a message is permanent if there are no predecessors which may
arive

2 idempotency:

— exect of receiving more copies (of the same message) is the same
as receiving a single copy

— replica management is easier

2 replica determinism:

— all members have the same visible h-state in time points that are
at most an interval of d units apart (d unit: replace a missing
message Or erroneous message)

— needed to:

a FT by replication
example:
nodel: commit go n__ no replica determinism
node2: abort stop /
node3: abort go <- erroneous
decision: abort go <- inconsistent

o system test
— causes of replica nondeterminism:

a dicerent inputs (digitalization, sensor characteristics)

a diaerent computational progress relative to physical time (CPU
clock drift, FT instruction retry mechanism)

o preemptive scheduling
o race conditions

— solutions:

a sparse time base (no local clock, event is assiged to the same
clock tick)

g agreement on inputs
a static control structure (no non-deterministic language)
a deterministic algorithms (no preemption, deterministic race)

3.2 Architectural elements
3.2.1 Node

It should display simple failure modes

3.2.2 FT unit

2 fail-silent nodes: duplication

2 value errors: replication (TMR)

2 Byzantine failures: 4 nodes required for a FT unit

2 Service required: membership (with short latency)

— ET systems: silence of a node: failure or there is no event?
heartbeat protocol is needed

— TT systems: periodic message sending de..ned as membership
points
3.2.3 Reintegration of a node
2 minimal h-state is required to speed up reintegration
— backward recovery: checkpoint may be invalid due to elapsed time
(e.g. sensor data age invalidation)
— checkpointing mechanism is not enough

2 ideal reintegration points:

— after the completion of component cycle
— after the commit of atomic operations

2 h-state restoration:

— retrieve input data from environment (sensors, semaphores etc.)

— restart vector: control output of the node to synchronize the en-
vironment (e.g. yellow tracc lights)
restart vector is de..ned at development time

— request data from operator or neighbours

3.2.4 Software issues
2 What to do to increase dependability:
— clean structure: simple paradigm (structured programming)

— formal methods: speci..cation and veri..cation
— FT schemes: diverse versions of software

2 Approaches:

— independent monitoring (case study 1)
— minimal safe service (case study 2)

2 Case study 1: VOTRICS tram signaling system

— subsysteml.:

a collecting track data + operator data
a calculating switch (actuator) positions
g TMR architecture

— subsystem?2: safety bag

a monitors the safe state of the system

o evaluates safety predicates (rule book is given)
a -> blocking output of unsafe signals

g TMR architecture

— Advantages:

a independent speci...cations

a independent implementations (standard program + expert
system)

2 Case study 2: Airbus ty by wire
— higher level subsystem: full functionality + error detection

— lower level subsystem: reduced but safe functionality

3.3 Real-time operating systems

To do: task management + scheduling + communication + time management
Error detection:

2 monitoring task execution times
— does ot end in WCET -> error

2 monitoring interrupts:

10

— minimal inter-arrival time must be enforced
2 replica management:

— double execution of tasks <- speci..ed in design time
2 watchdog functions:

— heartbeat of the node (in the case of fail-silent nodes)
2 challenge-response protocol

— calculation of response patterns

3.4 Problems

2 texibility <-> error detection

— error detection requires a priori knowledge of the error-free behav-
ior

— ”partial” restriction is needed: e.g. heartbeat
— or replication (deterministic!)

2 sporadic data <-> periodic data

— sporadic: dynamic schedule ..ts to it
— periodic: confict-free (static) schedule

2 single locus of control <-> fault tolerance, robustness

— single locus: e.g. token in a token ring
— FT: additional mechanism is required (e.g. token recovery)

2 probabilistic access <-> replica determinism

— probabilistic: e.g. Ethernet collision resolution
— replica: identical behavior is required

11

3.5 System design
3.5.1 Requirement analysis:
Acceptance test to each requirement
2 performance, deadlines
2 dependability

2 cost

3.5.2 Decomposition (architecture)

2 horizontal structuring: layering (centralized systems)

— stepwise abstraction
— -> faults: exception handling

2 vertical structuring: partitioning (distributed systems)

— nearly independent subsystems
— interfaces among the components (low external connectivity)
— -> faults: error-containment regions

(partitioning to be kept even in the case of faults!)

3.5.3 Detailed design and implementation

2 scheduling, 1/0 tasks etc.

3.5.4 Test of the design

2 functional coherence:

— node = self-contained function
— minimum h-state

error recovery of nodes
data sharing interfaces (no control signals)

12

— timing
2 testability

— message interface: all properties should be de..ned (worst-case
scenario)

— h-state observation: modi..cation possibility

— replica determinism (input->output determinism)
— how to test FT properties?

built-in self-test

2 dependability

— node failure -> cluster computation exects (performance + time-
liness)

— maintaining a safe state in the node

— if the communication subsystem fails

— detection of a node failure externally?

— internal node error detection -> fail-silency?

— node recovery: time; single failure only

— safety critical functions: in dicerent ECR (err. cont. region)

2 physical characteristics

— mechanical interfaces = SRU boundaries = diagnostic boundaries

— SRUs of a FTU are mounted at dicerent locations, avoiding com-
mon mode external failures (e.g. mechanical damage)

— SRUs of an FTU should have dicerent power sources, grounding
(common mode failures)

— EMI ewects via the cabling
— environmental conditions (temperature, shock)

13

4 Communication

4.1 Requierements

2 low protocol latency (standard: multicast network)
2 minimal jitter (e.g. time redundancy)
2 composability (independent evaluation)

2 fast error detection

— blackout: correlated mutilation of all messages (e.g. lightning)

— babbling idiot: sending messages at wrong moments (T T systems:
message exchange at prede..ned points)

— lost channel: safe state of a node required
— node error: membership service required (e.g. heartbeat)

— trashing: too much messages causing breakdown (if the number of
messages increases then the throughput will drastically decrease
after a given point)

— end-to-end acknowledgements

o e.g. message from node A to an actuator, acknowledge from
a sensor to node B, acknowledge from node B to node A

a e.g. Three Mile Island nuclear reactor: valve was not closed,
but the monitoring light was green, ’never trust an actuator”

2 Physical structure: multicast is required; bus vs. ring

— bus: simultaneous arrival of messages
resilience to fail-silent node failures

— ring: optical ..bers

4.2 Flow control

Controlling the speed of information exchange (receiver can keep up with the
sender)

14

4.2.1 Explicit Fow control

2 Receiver sends acknowledgements: previous message arrived, ready to
get the new one

2 receiver decides the rate of transmission

2 e.g. PAR (Positive Ack or Retransmission) protocol

1. 1. sender (is asked) to send a message
retry count=0
timeout reset
sending the message

2. 2. receiver gets a message:
was it already sent?
not -> send ack to sender
yes -> send ack + skip message

3. 3. sender receives ack -> terminates
no ack in timeout period: check retry count
exceeded -> abort
not exceeded -> increment retry count
reset timeout
re-send message

2 Properties:

— timeout -> delay may be long!
— error detection by sender

4.2.2 Implicit fow control:

2 sender and receiver agree a priori on the message send times
2 global time base is required
2 sender sends at the prede..ned point

2 receiver accepts all messages

15

— no acknowledgements
— missing messages are detected by the receiver

2 FT: active redundancy (multiple messages, multicast)

2 no trashing (no dynamic scheduling, re-send)

4.2.3 Comparison of explicit and implicit fow control:

| Property | Explicit | Implicit | Hard RT req. |
control receiver controls | time controls | receiver may not control
error detection | at the send at the receiver | at the receiver
trashing yes no to avoid
multicast dic¢cult yes required

Hard RT: the computer system can not control the interface between the

controlled object and itself
event shower -> overload -> catastrophic

4.3 Communication architecture

2 backbone network connecting nodes to non-critical clients (reports etc.)
2 RT network: connecting the nodes

— predictable message transmission required

— support for FT: replicated nodes and channels

— membership service
a -> duplicated channels without SPOF (single point of failure)
a -> pabbling detection

2 _.eld bus: connecting individual nodes to their sensors/actuators

— periodic transfer
— strict RT
— FT is not included in the bus

o (dependability bottleneck is the sensor/actuator;
g it is duplicated, connected to dicerent nodes)

16

5 Case study: The MARS system

Maintainable Real-Time System, TU Wien, 1979-

5.1 Project goals
2 distributed FT architecture

2 hard RT

N

nodes: single-chip communication interface, fail silency

N

FT properties: replication (FTU)

N

TT (time-triggered) architecture

N

Global time base: FT, distributed clock synchronization (VLSI chip)

5.2 Architecture
5.2.1 Distributed RT system
2 Cluster - FTU - node - task

2 Communication:

— ..eld bus: TTP/A protocol
— RT bus: TTP/C protocol: membership, redundancy management
— backbone: TCP/IP

2 Node: host computer + communication controller

— active: produces images, has bus slot, membership
— passive: reads only, no bus slot, no membership

2 Fail silency of nodes:

— HEDC (High Error Detection Coverage) mode, transparent in OS
— duplicate execution of application tasks

17

— end-to-end CRC of messages
— end-to-end CRC of task execution (similar to WP)
— dizerence: messages are not sent; replicated node is switched

5.2.2 Hardware building blocks
2 TTP controller:

— components: dual-port RAM + controllers + EPROM (MEDL)
— connected to replicated buses

— commercial elements are used (COTS)

— TTP/A: four buses

— each node: two comm. controllers

a TTP/A+ TTP/C
a TTP/C + TTP/C
a TTP/C + TCP/IP

5.2.3 Software support

2 (OS: distributed services + local services

— distributed services:

a clock synchronization
g membership
a redundancy management

— local services:

a static schedule (WCET, WCAO [administration overhead])
a information transfer: comm. controlers <-> tasks
a HEDC mode

— cluster compiler:

o static, deterministic schedule
a generating message schedule (MEDL: message descriptor list)

18

g inputs:
data elements (length)
update period + temporal accuracy
sender and receiver ID
redundancy strategy (replication: 2,3,...)
5.2.4 Fault tolerance

2 fail-silent nodes
2 FTU by replication

— deterministic message transfer
— deterministic node operation: static schedule

2 redundant sensors: master-checker con..guration

— nodel: master of ..eld_busl, listen to ..eld_bus2
— node2: master of ..eld_bus2, listen to ..eld busl

— agreement is required

5.3 Time-triggered protocols: TTP/C
5.3.1 Protocol layers
2 data link/physical:

— bit encoding
— bit synchronization
— media access

2 SRU layer:

— implicit acknowledgement
— clock synchronization
— SRU membership

2 RM (redundancy management) layer

19

— redundancy management
— start-up

2 1l Basic Communication Interface !!

2 FTU layer:

— permanence of messages
— FTU membership

2 Host layer:

— application membership
— application software

5.3.2 Data link layer

2 media access: TDMA (time division multiple access)
2 controlled by: MEDL (message descriptor list)
— what point in time send a message

— what point in time receive a message

— contains: SRU slot (time), address, direction (1/0), length of mes-
sage, type of message, parameters

2 cluster cycle:

given number of slots

— every node is assigned a slot

— no data -> empty slot

— cluster cycle = sequence of all TDMA rounds
— TDMA round: k nodes using k frames

20

5.3.3 SRU layer

2 Data frames to comm. interface RAM

2 membership:

— every slot is a membership point

— 71 am alive” without additional overhead
— delay: 1 TDMA round

— membership info: bit vector

2 clock synchronization:

— based on a priori known arrival times of messages

— deviation between expected and real times: clock to be synchro-
nized

— no overhead of checking synchronization
2 acknowledgement:

— implicit fow control (based on membership)

5.3.4 RM layer: redundancy management = mode change

2 shadow node -> active node
if the current active node fails

2 active node -> shadow node
if the active node fails -> fail silency!

2 repaired node” -> shadow node

5.3.5 FTU layer
2 permanence of messages

2 FTU membership: con..gurations

— replicated fail-silent nodes
- TMR

21

5.4 Time-triggered protocols: TTP/A
5.4.1 Properties

2 standard serial communication (UART)
2 master: node connected to the ..eld bus

2 slaves: sensors/actuators

5.4.2 Rounds

2 _.rework message from the master: one-byte synchronization event +
round type determinator

2 (synchronization) gap

2 message bytes: determined by MEDL

5.4.3 Error detection

2 time-out for ..rework message:
backup (shadow) node takes the role of the master (active)

2 time-out of a data byte: local time-out
error is reported to the host

2 data byte outside the speci..ed time window:

— termination of the round
— waiting for a new ..rework message
— no ..rework -> backup node will be active

2 parity checks (UART)

22

