
Software Safety (draft)

Istvan Majzik

DISCOM TEMPUS - September 1999

1 Terminology
² accident: undesired and unplanned event that results in a speci…ed

level of loss
(unplanned - not as sabotage)

² incident: event that involves no loss, but with the potential of loss in
other circumstances

² hazard: state of a set of conditions of the system that together with
conditions of the environment will lead inevitably to an accident

– de…ned in respect of the environment (hazard in computer sys-
tems: react to environment)

– depends on system boundaries (‡ammable vapor can not be sep-
arated from ignition)

– characteristics:

¤ endogenous: inherent in the system
¤ exogenous: external phenomena (e.g. lightning)

– hazard level:

¤ severity (damage)
¤ likelihood

² risk: hazard level combined with

1



– the likelihood of leading to an accident and hazard duration (the
longer->higher risk)
(relationship between hazard and accident)

– Risk analysis: involves analysis of environmental conditions and
hazard duration

² safety: freedom from accidents

– (a relative de…nition: enabling ”acceptable” loss - by whom it is
judged?)

– it can only be approached asymptotically

2 Basic concepts
General issues

² safety = building in safety, not adding it to a complete system
(part of the initial phases - minimal negative impact)

² safety deals with systems as a whole
(safety is not a component property)
(interfaces, e¤ects on another component are important)

² larger view of hazards than failures
(failure <-x-> hazard)
(hazard <- also in the case of functioning components)

² analysis rather than past experience and standards
(pace of change not allows to accumulate)
(prevent before they occur!)

² qualitative rather than quantitative approach
(early stages: no quantitative information)
(accuracy of quantitative models is questionable; e.g. accidents are
caused by failures, testing is perfect, failures are random and indepen-
dent, good engineering)

² safety recognizes the importance of tradeo¤s and con‡icts in design
(safety is a constraint)

2



² safety is more than system engineering½U
(also political, social, management, cognitive psychological issues)

2.1 Design for safety

² hazard elimination

² hazard reduction: minmize the occurrence (locks)

² hazard control: mitigate the e¤ects if the hazard has occurred
e.g. passive control (do not require a positive action to prevent hazard
if the control breaks, the default action is to prevent gravity switches
(railway semaphore)

² damage reduction (isolation, emergency actions)

2.2 Software safety

Software safety: sw will execute without contributing to hazards

² exhibiting behavior (output, timing)

² failing to recognize and handle hazards

Safety-critical software: contribute to the occurrence of hazardous system
state

Safety-critical functions: correct/incorrect/lack of operation may con-
tribuet in hazard

Software errors: deal with them by

² correct requirements (safe, all behaviors)

² correct coding (theoretically possible)

² software fault tolerance (not enough)

² apply system safety techniques (analysis, elimination, reduction, ...)

3



2.3 Accident models

Energy model: uncontrolled and undesired release of energy (chemical,
thermal, electrical etc.)

² to reduce: barriers, ‡ow control

² accidents:

– energy transformation accident: energy is transformed to an other
object

– energy de…ciency action: energy is not available

² consequence: sw can not cause an accident (but together with hw)

² limited scope:

– - limited to energy processes

– - loss of mission is not treated

Domino model: emphasizing unsafe acts over unsafe conditions remov-
ing a domino will prevent the accident

1. ancestry or social environment

2. fault of a person

3. unsafe act or condition

4. accident

More general model:

1. management structure (organization, objectives, operations)

2. operational errors (supervisor behavior)

3. tactical error (employee behavor, work conditions)

4. accident

Chain-of-events model

4



² multiple factors (actions, conditions) are treated

² if the chain can be broken, the accident will not happen

² AND, OR relationships between actions -> logic tree

² actors can be involved: parallel horizontal event tracks by the actors

² external in‡uences: perturbations; actors have to adapt; unable to
adapt->accident

² correction of the path can prevent accident

² role of change is important (nonroutine operation: TMI, Chernobyl)

System theory models: what went wrong within the system to allow
accident

² accident: interaction which violates constraints
lack of constraints

– boundary areas (interfaces)

– overlap zones (in‡uence on the same object)

– asynchronous evolution of subsystems

² dynamic equilibrium: feedback loops and control

accident: disturbations are not handled correctly
Human task and error models

3 Design process
Managing safety: POLC: plan, organize, lead, control

² responsibility

² authority (right to command)

² accounting (measurement of results)

5



3.1 The system and software safety process

Integrating function: safety considerations are involved early

3.1.1 Conceptual development task: essential groundwork

² develop system safety program plan

– identifying software-related hazards: turn to requirements

– consistentcy of safety constraints with requirements

– identify safety-critical parts

– trace safety requirements, develop a tracking system

– develop test plans

– assembly safety-related information into documentation

² establish information and documentation …les

² establish hazard auditing and log …le (tracking system)

² review applicable documents (similar systems)

² establish certi…cation and training

² participate (safety engineer) in system concept formation

² de…ne the scope of analyses: objective, basis, hazard types, required
standards

² identify hazards and safety requirements

² identify design, analysis and veri…cation requirements

² establish organizational structure (working groups etc.)

6



3.1.2 System design task: design phase

² update analyses (update previous analysis in new design phase)

² participate in system tradeo¤ studies (design decisions)

² ensure incorporation of safety requirements

² ensure identi…ed hazards being eliminated

² identify safety critical components

² trace system hazards into components/subsystems -> software

² review test and evaluation procedures, training

² evaluate design changes

² document safety information

3.1.3 System production and deployment tasks

² update hazard analyses

² perform system level safety evaluation

² perform safety inspections

² incorporate safety related info in documentation

² review change proposals

² perform a …nal evaluation

3.1.4 System operation tasks

² update procedures (new hazard modes)

² maintain information feedback system (logs, reports)

² conduct safety audits (periodically + triggered by needs)

² review changes and maintenance

7



3.2 Example of a system safety project: Zurich under-
ground rail station

Environment: electric rail system: platform+tracks, ramp, tunnel, shopping
mall, stairs, escalators, elevators, o¢ce building

Process:

² safety personnel + involving external experts (also an insurance com-
pany)

² more information in design space -> more detailed analysis

² complex analysis (maximum depth) at de…ned stages

1. De…nition of scope: safety personnel

² project documentation -> information to be used

2. Hazard identi…cation: system engineers

² project documentation -> HAZARD CATALOG

hazard cause level e¤ect category
... ... ... ... ...

3. Evaluate hazard levels: system engineers

² hazard catalog -> RISK MATRIX

² 6 levels: probability of occurrence: frequent, moderate, occasional, re-
mote, unlikely, impossible

² 4 e¤ects: catastrophic, critical, marginal, negligible

² risk matrix:

hazard levels hazard e¤ects
catastrophic critical ...

frequent
moderate
...

8



4. Review hazard levels: interdisciplinary group

² risk matrix -> revised risk matrix

² interdisciplinary knowledge is involved (transport, psychology)

5. Determine protection level: management

² revised risk matrix -> protection level

² protection level: line in risk matrix (priorities, cost limitations)
risk reduction: above the line

² types of risk reduction:

– (re)design required
– hazard must be controlled
– hazard control desirable if cost e¤ective

6. Revise hazards and risk matrix: experts (specialists)

² hazards in protection level -> corrected hazard catalog and risk
matrix

7. Recommend risk reduction measures: experts (specialists)

² expert knowledge -> catalog of corrective actions (RISK REDUC-
TION CATALOG)

risk pro…le hazard corrective action by/date
... ... ... ...

– corrective actions above department authority:

¤ sent to upper management level with cause, efect, action, cost
¤ decision -> sent back to involved departments
¤ action taken -> crossed o¤ in the list; open items are visible

8. Quality assurance check of risk reduction measures: responsible experts

² catalog of corrective actions -> veri…ed catalog

9



9. Review of progress: management + safety personnel

² veri…ed catalog -> fact sheet

– fact sheet for non-experts to document progress
– remaining unreduced risk: further, deeper analysis

4 Hazard analysis

4.1 Basics

Central role, continuous e¤ort
Phases of design:

² in development: identify potential hazards

² in operation: improve safety

² in licensing: demonstrate safety
evaluate the e¤ects of hazards that cannot be avoided

Types:

² Preliminary hazard analysis: early phase

– identify critical system functions

² System hazard analysis: mature design

² Subsystem hazard analysis: subsystem design phase

– studies of possible hazards

– identifying hazards

– determine causes, e¤ects

– …nd ways how to avoid/eliminate/control

– planned modi…cations

² Operating and support hazard analysis: system use and maintenance

10



– human-machine interfaces

Qualitative analyses (quantitative: e¤ect of incorrect measures)

² General features:

– continual and iterative

² Steps:

– de…nition of objectives, scope, system, boundaries

– identi…cation of hazards: magnitude, risk

– collection of data (historical record, standards)

– ranking of hazards

– identi…cation of causal factors

– identi…cation of preventive measures: design criteria

– veri…cation of implementation

– quanti…cation of unresolved hazards and risks

– feedback and operational experience

Hazard level:
MIL-STD-822b

² I: catastrophic (death, system loss)

² II: critical (injury, major system damage)

² III: marginal (minor injury)

² IV: negligible

NASA:

² 1: loss of life or vehicle

² 2: loss of mission

² 3: all others

11



Design criteria (used to derive requirements)

² train starts with open door: must not be capable of start with open
doors

² door opens while train moves: doors must remain closed

² ...

General types of analysis:

² forward (inductive) search

– initiating event is traced forward in time/causality

– look at the e¤ects

– problem: state space

² backward (deductive) searches

– …nal event is traced back

– accident investigations

² bottom-up search: subsystems are put together

– problem: combinations of subsystems

² top-down search: higher level abstractions are re…ned (subsystems,
components)

Problems: unrealistic assumptions

² (good engineering, testing, etc.)

² (discreapancy between documentation and system)

² (changing conditions)

12



4.2 Models and techniques

4.2.1 Checklist

² to check earlier experiences: they guide thinking

² dynamial update is needed

² phases:

– hazard analysis: not to overlook known hazards

– design: conformance to existing codes, standards

– operational: periodic audits

² problem: grows large and di¢cult to use

– false con…dence about safety (incomplete checlist)

4.2.2 Hazard indices

² measure …re, explosion, chemical hazards (in processes)

² Dow Index: 1964

² plant = units, measured on the basis of tables/equiations (…reable ma-
terial etc.)

² problem: mainly for process industry, or in early stages (minimum
data)

² only hazard level, no causes/elimination/reduction

4.2.3 Fault tree analysis

² aerospace, avionics, electronics industry

² analyzing causes of hazards (not to identify them)

² Booelan logic methods are used

² top-down method:

13



– top level: foreseen, identi…ed hazard

– intermediate level: events necessary and su¢cient to cause event
shown at the upper level

– pseudoevents: combination of the sets of primary events

– primary events: no further development is possible (resolution
limit)

² analysis:

– reducing pseudoevents

– simplifying Boolean expressions

– show combinations su¢cient to hazard

– frequency (prob.) of the hazard based on probabilities of primary
events

² basic steps:

1. system de…nition

2. fault tree construction

3. qualitative analysis

4. quantitattive analysis

1. System de…nition

² determining top event (hazard) -> for all signi…cant top events

initial conditions

existing events, impermissible events

² using: functional / ‡ow diagrams, design representation

14



2. Fault tree construction

² elements: top event + causal events + logical relations

² graphical representation: symbol set, readability (underlying: Boolean
algebra, truth table)

– AND gate: causes of the event above

– OR gate: re-expressions of the event above

– NOT (inhibit) gate: used to express ”both” property

² automatic techniques: mainly for hardware (DF-like)

3. Qualitative analysis

² reduce the tree to an equivalent form

² cut sets: relationships primary and top events

² minimal cut set: cannot be reduced further

² tree: OR gate + minimal cut sets (including the same event is possible)

² identify weakness: by ranking of primary events (importance: struc-
ture, occurrences in tree)

4. Quantitative analysis

² tree: sum of the probabilities of (disjunct) minimal cut sets

² cut set: product of prob. of primary events

² problem: events in multiple cut sets

² prob. density functions -> Monte-Carlo simulation

Properties

² fault tree for software:

– after the implementation, with manual assistance

15



– only qualitative analysis

² phase in life cycle:

– after implementation, proving safeness

– early phases: problem of incomplete speci…cation

² advantages:

– helps the understanding of the system

– identifying scenarios leading to hazards

– minimal cut trees: potential weak points

¤ small number of events, single-point failures
¤ components in multiple cut sets: important e¤ects
¤ independence of events: common cause failures

common in‡uencing factors, to be reduced
fault propagation (domino)

² limitations of qualitative analysis:

– constructed after the implementation (detailed design)

– cause and e¤ect relationship and little more

– simpli…ed model, without

¤ time- and rate-dependent events
¤ partial failure
¤ dynamic behavior

– ordering and delay is not covered (fault tree is a snapshot)
-> DELAY node is required -> loss of simplicity

– sequence of events is not handled

– multiple phases of system operation requires separate trees

² limitations of quantitative analysis:

– common-mode failures

– input data is unavailable, unrealistic

16



4.2.4 Event tree analysis: decision tree formalism

(fault tree proved to be hopelessly complicated, nuclear station 1970)

² forward analysis to …nd e¤ects of an event, determine all sequences

– initial state: failure of a component

– next states: other system components

– ordering: chronological, from left to right

– decision: success/failure of other components

– path probability: product of event/state probabilities

² reduction: eliminate illogical/meaningless events

² timing issues: phased-mission analysis

² example: failure + protection system components in nuclear station

² phase in life cycle: after the design is completed

² advantages:

– fault tree: snapshop of the system state; event scenarios
combinations of component failures leading to hazard

– event tree: sequences of events; notion of continuity, ordering

– useful:

¤ - analysing protection systems
¤ - identifying top events (for FTA)
¤ - displaying accident scenarios

² limitations:

– complexity

– separate tree for each initiating event

– multiple events - a problem

– ordering of events is critical

17



4.2.5 Cause - consequence analysis: both time dependency and
causal relationship

² procedure:

1. selection of a critical event

2. backward search for factors that cause

3. propagation of e¤ects of the critical event

² attached to a consequence chart

– cause charts: alternative prior event sequences and conditions

– fault trees: for events and conditions

² table of symbols:

– events and conditions

– gates between events, vertices between conditions

– decision boxes

² automatic construction is possible

² advantages:

– shows sequence of events (sequential control)

– combinations of events (additional event trees)

² disadvantages:

– separate diagrams for each critical event

18



4.2.6 Hazards and operability analysis: for chemical industry

² accidents are caused by deviations from the design / operating cond.

² procedure:

– identify all possible deviations

– identify hazards associated with the deviations (consequences)

– identify causes of deviations

– systematic search: de…ned by a ‡owchart

² guidewords: applied to any variables of interest (‡ow, temperature,
time)

– NO, NONE: result is not achieved (e.g. no ‡ow)

– MORE: more result than should be (e.g. more ‡ow)

– LESS: less result than should be (e.g. less ‡ow)

– AS WELL AS: additional activity, more components

– PART OF: only some of the design intentions are achieved (e.g.
mix)

– REVERSE: OPPOSITE OF WHAT WAS INTENDED

– OTHER THAN: something di¤erent happens

² phase in life cycle: after the design documentation is available

– hazards are controlled by additional devices (detector, emergency
valve etc.)

² advantages:

– simplicity, easy to use

² disadvantages:

– labour intensive, experts of the process are needed

19



4.2.7 Interface analyses

² structured walkthrough, to examine the propagation of faults

² types:

– no/degraded/erratic/excessive/unprogrammed output

– undesired side e¤ects

4.2.8 Failure modes and e¤ects analysis: developed for reliability
analysis

² procedure:

– list all components with failure modes and probabilities

– identify the e¤ects on other components/system

– forward search

– system failure modes are calculated with probability

² input: failure probabilities (based on statistical data)

² output: tabular form

component failure mode failure prob. % failures e¤ects prob
... ... ... ... ...

² phase in life cycle: hardware items are identi…ed

² advantages:

– identi…es redundancy, fail-safe design, single point of failure

– spare part requirements

² disadvantages:

– all failure modes have to be known

– e¤ects of multiple failures?

20



4.2.9 Failure modes, e¤ects and criticality analysis

² FMEA extended with failure criticality data (rankings 1..10 etc.)

² description and preventive/corrective actions are also described

4.2.10 State machine hazard analysis

² state machine: states + transitions + conditions + actions

² safety analysis: determine if the model contains hazardous states

– theoretical: initial state -> forward to states (computation tree)

– practical: search backward to determine how to avoid hazardous
state

² for hw and also for sw;

² safety and fault-tolerance analysis

² phase in life cycle: at any stage where a state-machine model is available

² advantages:

– automated analysis

– close to the view of engineers

² disadvantages:

– logic and algebraic models and languages:

¤ hard to understand and use
¤ (external experts can not be involved)
¤ mathematical proofs are not understood by reviewers

– state space explosion in real systems
hierarchical view is required (statechart)

21



4.2.11 Human error analysis

² Task = series of actions

² Qualitative techniques: examine for each action:

– criticality

– mental and physical demands

– possible failures (forget, wrong ordering)

– performance deviations (too slow, too fast)

– equipment availability

Task Danger E¤ects Causes Avoidance
... ... ... ... ...

² Quantitative techniques:

– assign probability ot human errors

– factors that are e¤ective:

¤ psychological stress
¤ quality of controls and displays (human enginnering)
¤ quality of training
¤ quality of (written) instructions
¤ coupling of human actions (dependencies)
¤ personnel redundancy (inspectors)

– probability by data collection in documented environments

– safety analysis by event tree (path probabilities)

– emergency: greater probabilities!

¤ (best: repetitive actions, long response time)
¤ (worst: emergency, short time, complex tasks)

22



5 Risk reduction techniques

5.1 Basics

Safety analysis data have to be used in the design process
In early phases of development

² to be e¢cient

² poorly designed additional modules may increase risk

² additional e¤orts like operators may fail or will be tricky

5.1.1 Software special:

² new hazards

– safety dependent on sw errors

– sw errors are di¢cult to tolerate, they are unpredictable

– hw is much more simple: it may fail into a well-known state
(short/open)

² new possibilities to be more powerful

– e.g. analyzing trends

5.1.2 Design process: 2 basic approaches

² standards and experiences

– for hw it is well-de…ned: how to use a valve, electrical standards
etc.

– no standard for software
reliability, maintainability standards may even increase risk
no generic software hazards

² guided by hazard analysis

– identify sw-related safety requirements and constraints

23



– identify parts of sw which controls safety-critical operations

– elaborate behavior in erroneous states

– formal technique: data-‡ow based analysis

¤ -> identi…cation of critical nodes
¤ -> formal safety constraints
¤ -> design to be certi…able + veri…able

– documentation: record of safety-related decisions + assumptions
-> to be taken into account in sw update

5.1.3 Risk reduction procedures: In precedence:

1. 1. Hazard elimination: Eliminating the hazardous state or the negative
consequences

² substitution

² simpli…cation

² decoupling

² elimination of speci…c human errors

² elimination of hazardous materials or conditions

2. 2. Hazard reduction

² design for controlability

² barriers: lockout, lockin, interlock

² failure minimization: safety factors and margins, redundancy

3. 3. Hazard control: If a hazard occurs, reducing the likelihood leading
to an accident

² reducing exposure

² isolation and containment

² protection systems and failt-safe design

4. 4. Damage reduction

² Accidents: often outside the system boundary

² warnings, emergency actions

24



5.2 Hazard elimination

5.2.1 Substitution: materials, equipments

new risks may arise, but they should be minimal

² chemical processes: ‡ammable heat transfer to water
hydraulic instead of pneumatic (avoid rupture and shock wave)

² missile propulsion: hybrid systems instead of gas

² gas cooled reactors (cooled also by convection if the cooling fails)

² simple mechanical locks instead of computer systems
(e.g. automatically open the circuit if the door is open)

5.2.2 Simpli…cation

² minimizing the number of parts, modes, interfaces

– -> fewer opportunities to fail

– e.g. chemical industry: fewer leakage points

– accidents <- tight coupling, interactive complexity

– simple interfaces -> testability

² sw: easy to use complex interfaces and systems

– -> special care has to be taken

– simple control structures needed
(Honeywell autopilot: no interupts, procedures and back branches;
one loop which is executed at …xed rate factors to be determined
at design time

– avoiding nondeterminism is crucial

¤ time perodicity in RT systems
¤ predict algorithm behavior
¤ test software (avoid ”transient” faults)
¤ operator: rely on consistency
¤ -> static scheduling (polling)

25



¤ -> exclusive modes
¤ -> state transition depends only on the current state

– requirements:

¤ testability (deterministic, no interrupts, single tasking)
¤ readability (sequence of events processed)
¤ interactions limited
¤ worts-case timing done by code analysis
¤ minimum features

– avoiding the e¤ect of hw failures

¤ state encoding: redundant
¤ message encoding: only the necessary functions (”0 missiles”

=/= ”I am alive”)

² reducing the unknown events caused by unproven technology:

– space: ”‡ight-proven” hw

– new design only if requirements are not met by old ones

² problems:

– adding hazard control <-> system simplicity

– ‡exibility <-> leakage points

– reliability (redundancy) <-> complexity increase

5.2.3 Decoupling: e¢cient but often not safe

² failure modes:

– tightly coupled system: interdependent

– failure -> rapidly a¤ect others

– hard to isolate erroneous parts

² hazards: unplanned interactions -> domino e¤ect

² examples of decoupling:

26



– - …rebreaks

– - over/underpasses

² computers: increase coupling

– control multiple systems (coupling agent)

² software:

– modularization: crucial how to split up
safety critical functions into a module

– information hiding:
non-critical system does not a¤ect critical one

– safety kernel: enough to ensure safety
on a …rewall: (virtual) computer for safety-related functions

5.2.4 Elimination of speci…c human errors

² reduce the opportunities for errors

– incorrect assembly is impossible (interfaces, connectors)

– color coding

² clear status indications -> next chapter

² software: the question of programming language

– - pointers,

– - complex control structures,

– - implicit/default actions

– - overloading

27



5.2.5 Reduction of hazardous material or conditions

² reduction:

– in chemical industry:

– software: no unused code <-> COTS

² change conditions:

– lower temperature, pressure etc.

5.3 Hazard reduction: safeguards

² passive:

– maintain safety by their presence (shields, barriers)

– fail into safe states (e.g. weight-operated sensors, relays which are
open)

² active: require some actions to provide protection (control systems)

– monitoring (detecting a condition)

– measuring state variables

– diagnosis

5.3.1 Design for controllability: make the system easier to control

² incremental control: critical actions not in a single step

– feedback from the plant

– corrective actions

² intermediate states: not only run/shutdown

– multiple levels of functionality

– ”emergency mode”: only critical functions

² decision aids: assist in controlling the plant

28



– alarm analysis: e.g. in nuclear plant

– disturbance measures: measured data -> cause-consequence analy-
sis -> correction

– action sequencing: e.g. valve sequences

² monitoring: detecting a problem

– checking conditions of potential problem

– validating assumptions used during the design

– Detecting:

¤ condition exists
¤ device is ready/busy
¤ input/output is satisfactory
¤ limits are exceeded

– Ideal monitors:

¤ detect problem fast, at low level (-> time for correction)
¤ independent (limited: info + system assumptions)
¤ as litte complexity as possible
¤ easy to maintain, check, calibrate
¤ self-checking

² monitoring computer systems:

– Levels of checking:

¤ hardware level checks: memory access, control ‡ow, signals,
checksums, coding

¤ code level: assertions
¤ audit level: data consistency, independent monitoring
¤ system level: supervisory checks

– Checks are better at lower levels:

¤ less delay -> no erroneous side-e¤ects
¤ ability to isolate/diagnose
¤ ability to …x (rather than backward recovery)

– Structure: without additional risk

¤ safety kernel

29



5.3.2 Barriers

² Types:

– lockout: make access to a dangerous process/state dsi¢cult

– lockin: make di¢cult to leave a safe state

– interlock: enforce a sequence of events/actions

² Lockout: prevents a dangerous event / entering dangerous state

– physical barriers:

¤ avoid elecromagnetic interference
¤ (aircraft radio system, electromagnetic particles)

– authority limiting

¤ prevent dangerous actions (e.g. correcting user inputs in au-
topilots)

¤ -> do not prohibit necessary actions!

– sw: access to safety-critical code/variables

¤ security techniques
access rights (for users)
access control list (for resources)
capabilities (ticket to enter)

¤ reference monitor: controlling all access
¤ multiple con…rmations
¤ restricted communication
¤ security kernel (low-level)

² Lockin: maintain a condition

– keep humans in an enclosure (seat belts, doors)

– contain harmful/potentially harmful products

– maintain controlled environment (space suits)

– constrain a particular event (safety valves)

– SW: tolerate erroneous inputs

30



² Interlock: enforcing correct sequence of events

– inhibit: event does not occur inadvertently (sequence check)

– inhibit: event does not occur if condition C (deadman switch)

– sequencer: event A occur before event B (tra¢c signals)

– interlock fails -> function should safely stop

– danger: maintenance removal of interlocks

– SW: often the hw interlocks have to be kept;

¤ sw only monitors interlocks;
¤ keeps safe sequences

– SW mechanisms:

¤ prg. language synchronization features: error prone (hw, sw)
¤ baton: passed to a function; checked before execution: pre-

requisite tasks have to modify it
¤ come-from check: process receives data from valid source

² Example: Nuclear detonation system

– isolation: separating critical elements

– incompatibility: unique signals

¤ signal pattern to start
¤ di¤erent channels (energy, information)

– inoperability: keeping in inoperable state (without ignition)

5.3.3 Failure minimization:

² reducing failure rate -> reducing risk

– safety margins

– redundancy

– error recovery

² Safety margins:

31



– in a design many uncertainties: failure rates, conditions

– safety factors: designing a component to withstand higher stress
nominal (expected) strength / nominal stress > 1

– problem: probability density functions (may overlap)
probability(stress) functions
-> safety margin has to be de…ned

² Redundancy:

– many forms: replica, design diversity

– often con‡ict between safety and reliability

¤ e.g. redundancy: more power consumption
¤ increased complexity -> new faults (redundancy management)
¤ e¤ective againts random failures

– well-designed redundancy is required

¤ no common mode failures
¤ reduced dependencies (also during test and maintenance)
¤ speci…cation has to be elaborated more precisely

– reasonableness checks: di¢cult to write

² Recovery:

– forward and backward recovery have to be used together (time +
environment state)

– avoiding domino e¤ect: complex algorithms which are error prone

– forward recovery is proposed, if the error can be identi…ed and
…xed

5.4 Hazard control

² Limiting exposure

– normal (default) state is safe

32



– starting in a safe state

– error -> automatical shutdown to safe state

– trigger is required to go to unsafe state

² Isolation:

– barriers and shields

– plants located in isolated area (no population)

– transport of dangerous material

² Protection systems:

– detectors (gas, …re, water etc.) -> moving to safe state

– panic button (training is required)

– watchdog timers: separate power etc.

– passive devices are safer

– protection system: should signal that it works
it can also cause damage (emergency destruct)

– fallback states:

¤ partial shutdown
¤ hold (no new function, maintain safe state)
¤ emergency shutdown

normal: cut power form all circuits
production: after the current task is completed
protection: keep only necessary functions

¤ restart

– subsystems:

¤ sensor to detect hazardous condition
¤ challenge subsystem to test the sensor
¤ monitor to watch the interruption of the challange-response

sequence

33



5.5 Damage reduction:

² emergency procedures: prepared, trained, practiced

² point of no return: turn to emergency actions instead of continue to
save the system

² warning: too frequent -> insensitive people

² techniques: escape route + limiting damage

6 Software safety analysis

6.1 Basics

² - accidents in which sw involved: due to requirement ‡aws

– incompleteness

– wrong assumptions

– unhandled conditions

– (coding errors a¤ect reliability, not safety; + unintended func-
tions)

² -> general criteria required: checklist for requirement completeness and
safety

– top-down analysis is possible

– bottom-up analysis is not practical (too much states)

² components in requirements:

– 1. Basic function or objective, safety criteria included

– 2. Constraints on operating conditions
limit the set of possible designs
e.g. physical constraints, performance, process characteristics

– 3. Prioritized quality goals (to help design decisions)

² completeness: the most important property of speci…cations

34



– distinguish from any undesired behavior

– ”lack of ambiguity”

– ambiguous: subject to more than one implementation

² software model:

– controller + sensors + actuators + plant

– state machine model (describing behavior, black box)

– model of the plant inthe sw:

¤ must be synchron wih real plant
¤ must completely describe the real plant
¤ complete trigger speci…cation is required

6.2 Human-computer interface criteria

² alert queue:

– events, ordering (time or priority), noti…cation mechanism,

– review and disposal, deletion

² transactions: multiple events/actions in one

² displaying data:

– cause events identi…ed

– refreshing: time, new events, operator required

– disappearing

6.3 State completeness

² the system and sw must start in a safe state

– interlocks initialized

² internal model of the plant must be updated after startup

35



– (plant changes when the sw not running)

– (manual actions have to be taken into account)

² system and local variables (incl. clocks) must be initialized upon
startup

– (complete startup or after o¤-line phase)

– (detecting loss of information: message numbers, timestamps)

² to be speci…ed: handling inputs before startup / after shutdown

– (some hw can retain inputs)

² the maximum time the computer waits for the …rst input is speci…ed

– no input -> alarm for operator;

– the internal model of the planrt cannot be synchronized

² paths from fail-safe states must be speci…ed, the time

– spent in reduced-function state must be minimized

– (non-normal processing modes are limited)

² there must be a response for inputs in any state including

– indeterminate states

– (also for ”unexpected” inputs)

– (e.g. aborting twice, opening sth twice etc.)

– (unexpected input indicates a malfunction)

6.4 Input or output variable completeness

² (regarding sensors and actuators)

² all information from the sensors must be used in the speci…cation

– unused input -> omission in speci…cation; what to do with it?

² legal output values which are never produced should be checked

– (e.g. spec. only opens a valve, without closing it)

36



6.5 Trigger event completeness

² robust system: correct answer to unexpected inputs

² unexpected inputs/behavior checked by environment constraints

² logging unexpected inputs is important

² events that trigger state chenges must satisfy:

– every state has a transition for every possible input

– all conditions (input patterns) have to be taken into account

– every state has a de…ned time-out if no input occurs

² behavior of the state machine must be deterministic

– (one transition for each input pattern; disjoint conditions)

– (predictable behavior is required)

² all incoming values sholud be checked;

– response speci…ed for out-of-range values

– (indicator of malfunctions / out of synchrony)

² all inputs must be bounded in time;

– behavor speci…ed if the limits are violated / unexpected inputs
arrive

– (”exactly at” is not a good speci…cation style)

² a trigger involving the unexistence of an input must be bounded in time

– (given by clocks or using other events)

² minimum and maximum load assumptions must be speci…ed for inter-
rupts

– whose arrival rate is not limited

37



² minimum-arrival rate checks should be included

– (the sw must query the empty communication channels)

² response to overload conditions must be speci…ed

– alarm

– trying to reduce load (controlling the plant)

– lock out interrupts (masking)

– reduced accuracy output generation

– reduced functionality (process selected interrupts only)

² performance degradation sholuld be graceful, operators must be in-
formed

– (predictably and not abrupt degradation)

² if recon…guration is used, hysteresis delay must be included

– (to avoid ping-pong)

6.6 Output speci…cation completeness

Safety-critical outputs are checked for reasonableness.

6.6.1 Capacity:

² the absorption rate of the output environment must be higher than the
input/computing rate

– (to avoid output saturation)

² action should be speci…ed if the output rate is exceeded

² human operators should not be overloaded

– (actions and responses should not be mixed)

² automatic update and deletion of human interface must be speci…ed

38



– (events negated or updated by other events, becoming irrelevant)

² specify what to do when the event is displayed and when removed

– (e.g. removing events only after operator commit)

6.6.2 Data age:

² all inputs used by output events must be limited in the time they can
be used

– (data age; validity time of messages)

² incomplete transaction should be cancelled after a time-out

– (operator should be informed)

– (incomplete transaction: higher risk case)

² revocation (undo) of actions require:

– speci…cation of conditions and times when it could be done

– operator warnings

6.6.3 Latency:

² latency factor is speci…ed if the output is triggered by an interval of
time without a speci…ed input

² action to be speci…ed: what to do if an input arrives late, while the
”late output” is generated

² latency factor: data display for operator changes just prior to a new
command from the operator

– (ask the operator: the change was noted or not)

– (the operator has opportunity to observe the change)

² hysteresis must be speci…ed for human interface data,

– (to allow time for interpretation)

– speci…ed: what to do if data changes in hysteresis period

39



6.7 Output to trigger event relationships

² basic feedback loops has to be involved with checks on the inputs

– (to detect the e¤ect of any output of the sw)

– (not only limits, but also trends are important)

– (expected behavior of the plant is checked)

² for every output detected by an input there must be speci…cation

² for normal response

² for abnormal (missing, late, early etc.) response

² too early inputs must be detected and responded as abnormal

– (considering output latency)

² stability requirements must be speci…ed when the plant

– seems to be unstable

6.8 Speci…cation of transitions between states

² all speci…ed states must be reachable

– (otherwise no function or missing state transition)

² states should not inhibit the production of later required outputs

– (otherwise reachability problems may inhibit the output)

² output commands should be reversible

– (cancel or reverse some actuator commands)

² states reversing the commands should be reachable

– (reachability analysis)

40



² preemption requirements should be speci…ed

– normal processing in parallel

– refusing the new action

– preemption of the partially completed transaction

² soft and hard failure modes should be eliminated from all hazardous
outputs

– soft failure mode: an input is required to go from a

¤ given state with A to all others with B;
¤ missing of this input is a ~

– hard failure mode: an input is required to go from all

¤ states with A to all others with B;
¤ missing of this input is a ~

² multiple paths should be provided for state changes that maintain or
enhance safety

– (a single failure should not prevent taking actions)

² mutiple inputs should be required for paths from safe to

– hazardous state

6.9 Constraint analysis

² transitions must satisfy software safety requirements

– failing to perform a required function

– unintended function, wrong answer

– function at the wrong time, wrong order

– failing to recognize a hazardous condition (no correction)

– producing wrong response to hazardous condition

² reachable hazardous states should be eliminated,

41



– or at least reduced in time and frequency

² general safety policy:

– no paths to catastrophic states

– always path(s) from hazardous to safe state

– paths from hazardous state to minimum risk state

6.10 Checking the speci…cation:

² automated reachability analysis

² constrained speci…cation language

– (e.g. time bounds of inputs have to be speci…ed)

42


