
Fault Tolerant Real-Time
Distributed Systems

István Majzik

Technical University of Budapest
Department of Measurement and Information Systems

September 14, 2000



Overview

Overview

� Basic definitions

� General structure
– Why using distributed RT systems
– Structural elements
– Software requirements

� Fault tolerant real-time systems
– Structural elements
– System design

� Communication
– Error detection
– Implicit flow control
– Explicit flow control

� Case study: The MARS system
– TTP/C protocol layers
– TTP/A protocol

1



Overview

Basic definitions

Real-time (RT) computer system: Correctness of the system depends not only on the
logical (functional) results, but also on the timeliness, i.e. the physical time at which
the results are presented.
RT system: changes its state as a function of physical time

General structure:
operator$ RT computer system$ controlled RT object
man-machine and instrumentation interface

General task: react to stimuli from the controlled object/operator request

Deadline: At which the results must be produced

� soft: result has utility after the deadline

� firm: no utility after the deadline

� hard: catastrophic consequences if the deadline is missed

2



Overview

Basic definitions (continued)

Hard RT system: at least one hard deadline exists

� required: GUARANTEED temporal behavior under all specified LOAD and FAULT
conditions

Comparison of hard and soft RT systems:

Hard RT Soft RT

hard deadline soft deadline
predictable performance degraded performance in peak load
synchronous with env. computer control
often safety-critical usually non-critical
active redundancy checkpoint-recovery
short-term data integrity long-term data integrity
autonomous error detection user-assisted error detection

3



Overview

Basic definitions (continued)

Fail-safe vs. fail-operational systems:

� fail-safe: the controlled object has a safe state

– (e.g. all traffic lights are red)
– error! transition to safe state
– computer systems: high error detection coverage required

� fail-operational: no safe state in the object

– (e.g. airplane)
– computer systems: minimal level; of service required to avoid catastrophe

Guaranteed response vs. best effort approach:

� guaranteed response: peek load and fault scenario – to be specified! (rigorous)

� best effort: hard to predict rare event scenarios (+ the design is often resource-
inadequate)

4



Overview

Basic definitions (continued)

Event-triggered vs. time-triggered systems:

� event: any occurrence that happens in time

– state change in the object/controller

� trigger: event that causes the start of an action

� event-triggered (ET) system:

– all activities are initiated by events
– interrupt-like mechanism
– dynamic scheduling of activities (tasks)

� time-triggered (TT) systems:

– activities are initiated by the progress of time
– interrupt: clock only
– (synchronized distributed clock)

5



Overview

System architecture

Nodes: functional+temporal properties

� mapping between nodes and functions

� node error! it is clear, which function is affected

Communication network:

� interface of nodes (CNI)

� event queue: often FIFO

� state information: overwriting old values

6



Overview

Composability

System properties follow from subsystem properties

� all subsystem combinations work properly

ET systems: not composable

� message overload to receivers, conflicts

TT systems: composable

� temporal control resides in the communication subsystem

� message scheduling tables are used

� transfer happens at predefined time points

� computer and communication subsystem’s properties are isolated

7



Overview

Scalability

No limits on the extensibility of the system

� nodes can be added (up to communication capacity)

� clusters, gateways can be established

Controlling complexity:

� partitioning into subsystems

� preservation of abstractions (hierarchy) in the case of faults

� strict control over interactions (interfaces)

8



Overview

Dependability

Responsive systems:

� RT performance + fault tolerance + distribution of functions

In distributed system:

� error containment (EC) regions:
– fault detected + corrected/masked before corrupting the rest of the system
– error is detected at the service interface
– nodes: often EC regions

� node failure modes:
– fail-stop
– fail-silent
– crash

� active replication: deterministic behavior (replica determinism)

� subsystems of different criticality (critical and non-critical parts) in different EC
regions

9



Overview

Modeling RT systems

Assumptions used:

� load hypothesis

� fault hypothesis

Timing properties:

� actual, minimal duration of actions

� worst-case execution time (WCET)

� jitter

10



Overview

Structural elements

� task: sequential program execution

– simple: no synchronization
– complex: synchronization (blocking may occur)

� node: self-contained unit with well-defined function

– abstraction: hardware+software into a single unit
– SRU: smallest replaceable unit

� FTU: fault tolerant unit

– set of replicated nodes + adjudicator

� computational cluster:

– set of FTU-s (+ gateways)

� interfaces:

– control+data+temporal properties
– functional intent

11



Overview

RT software

ET systems: interrupts

� as CPU interrupt frequency increases, also the time

� with housekeeping (wasted, overhead) increases

TT systems:

� ”sampling” the input

� predictable overhead

12



Overview

Analysis of the system behavior

� Worst-case execution time (WCET should) be known a priori

– simple task:

� source code analysis! critical path – dynamic code? (recursion, loops,...)

� compiler analysis (timing tree: execution time of high-level constructs)

� microarchitecture: pipeline, cache?
– complex task:

� global problems in the system

� preemption+blocking! full system model is required

� solution: annotated source code + instrumentation

� H-state (history state) analysis:

– data that undergoes changes as computation progresses
– fault! error (changes in state)
– ideal: stateless system (easy to recover)
– cyclic computation: no state transition among cycles

13



Overview

Special properties of fault-tolerant RT systems

� permanence:

– a message is permanent if there are no predecessors which may arrive

� idempotency:

– effect of receiving more copies (of the same message) is the same as receiving
a single copy

– replica management is easier

� replica determinism:

– all members have the same visible h-state in time points that are at most
an interval of d units apart (d unit: replace a missing message or erroneous
message)

– required to:

� system test

� FT by replication. E.g. no replica determinism:
node1: commit, go; node2: abort, stop; node3: abort, go (erroneous)
decision: abort, go (inconsistent)

14



Overview

Special properties of fault-tolerant RT systems (continued)

� causes of replica nondeterminism:

– different inputs (digitalization, sensor characteristics)
– different computational progress relative to physical time (CPU clock drift, FT

instruction retry mechanism)
– preemptive scheduling
– race conditions

� solutions:

– sparse time base (no local clock, event is assigned to the same clock tick)
– agreement on inputs
– static control structure (no non-deterministic language)
– deterministic algorithms (no preemption, deterministic race)

15



Overview

Architectural elements: Node

A node should display simple failure modes (fail-silent, fail-stop)
Re-integration of a node:

� minimal h-state is required to speed up re-integration

– backward recovery: checkpoint may be invalid due to elapsed time (e.g. sensor
data age invalidation)

– checkpointing mechanism is not enough

� ideal re-integration points:

– after the completion of component cycle
– after the commit of atomic operations

� h-state restoration:

– retrieve input data from environment (sensors, semaphores etc.)
– restart vector: control output of the node to synchronize the environment (e.g.

yellow traffic lights)
restart vector is defined at development time

– request data from operator or neighbors

16



Overview

Architectural elements: FT unit

� fail-silent nodes: duplication

� value errors: replication (TMR)

� Byzantine failures: 4 nodes required for a FT unit

� Service required: membership (with short latency)

– ET systems: silence of a node: failure or there is no event?
heartbeat protocol is needed

– TT systems: periodic message sending defined as membership points

17



Overview

Software issues

What to do to increase dependability:

� clean structure: simple paradigm (structured programming)

� formal methods: specification and verification

� FT schemes: diverse versions of software

Approaches:

� independent monitoring
Case study 1: VOTRICS tram signaling system

� minimal safe service
Case study 2: Airbus fly by wire

18



Overview

Case studies

� Case study 1: VOTRICS tram signaling system
– subsystem1:

� collecting track data + operator data

� calculating switch (actuator) positions

� TMR architecture
– subsystem2: safety bag

� monitors the safe state of the system

� evaluates safety predicates (rule book is given)

� ! blocking output of unsafe signals

� TMR architecture
– Advantages:

� independent specifications

� independent implementations (standard program + expert system)

� Case study 2: Airbus fly by wire
– higher level subsystem: full functionality + error detection
– lower level subsystem: reduced but safe functionality

19



Overview

Real-time operating systems

To do: task management + scheduling + communication + time management

Error detection:

� monitoring task execution times

– does not end in WCET! error

� monitoring interrupts:

– minimal inter-arrival time must be enforced

� replica management:

– double execution of tasks specified in design time

� watchdog functions:

– heartbeat of the node (in the case of fail-silent nodes)

� challenge-response protocol

– calculation of response patterns

20



Overview

Common problems

� flexibility$ error detection

– error detection requires a priori knowledge of the error-free behavior
– ”partial” restriction is needed: e.g. heartbeat
– or replication (deterministic!)

� sporadic data$ periodic data

– sporadic: dynamic schedule fits to it
– periodic: conflict-free (static) schedule

� single locus of control$ fault tolerance, robustness

– single locus: e.g. token in a token ring
– FT: additional mechanism is required (e.g. token recovery)

� probabilistic access$ replica determinism

– probabilistic: e.g. Ethernet collision resolution
– replica: identical behavior is required

21



Overview

System design: Requirement analysis

Acceptance test to each requirement:

� performance, deadlines

� dependability

� cost

22



Overview

System design: Decomposition

Horizontal structuring: layering (centralized systems)

� stepwise abstraction

! faults: exception handling

Vertical structuring: partitioning (distributed systems)

� nearly independent subsystems

� interfaces among the components (low external connectivity)

! faults: error-containment regions

� (partitioning to be kept even in the case of faults!)

Detailed design and implementation:

� scheduling,

� determining I/O tasks etc.

23



Overview

System design: Test of the design

� functional coherence:

– node = self-contained function
– minimum h-state
– error recovery of nodes
– data sharing interfaces (no control signals)
– timing

� testability

– message interface: all properties should be defined (worst-case scenario)
– h-state observation: modification possibility
– replica determinism (input!output determinism)
– how to test FT properties?
– built-in self-test

24



Overview

Test of the design (continued)

� dependability
– node failure! cluster computation effects (performance + timeliness)
– maintaining a safe state in the node
– if the communication subsystem fails
– detection of a node failure externally?
– internal node error detection! fail-silence?
– node recovery: time; single failure only
– safety critical functions: in different ECR (err. containment. region)

� physical characteristics
– mechanical interfaces = SRU boundaries = diagnostic boundaries
– SRUs of a FTU are mounted at different locations, avoiding common mode

external failures (e.g. mechanical damage)
– SRUs of an FTU should have different power sources, grounding (common

mode failures)
– EMI effects via the cabling
– environmental conditions (temperature, shock)

25



Overview

Communication: Requirements

� low protocol latency (standard: multicast network)

� minimal jitter (e.g. time redundancy)

� composability (independent evaluation)

� fast error detection
– blackout: correlated mutilation of all messages (e.g. lightning)
– babbling idiot: sending messages at wrong moments (TT systems: message

exchange at predefined points)
– lost channel: safe state of a node required
– node error: membership service required (e.g. heartbeat)
– trashing: too much messages causing breakdown (if the number of messages

increases then the throughput will drastically decrease after a given point)
– end-to-end acknowledgements

� e.g. message from node A to an actuator, acknowledge from a sensor to
node B, acknowledge from node B to node A

� e.g. Three Mile Island nuclear reactor: valve was not closed, but the
monitoring light was green, ”never trust an actuator”

26



Overview

Communication: Requirements (continued)

� Physical structure: multicast is required; bus vs. ring

– bus: simultaneous arrival of messages
resilience to fail-silent node failures

– ring: optical fibers

Flow control:
Controlling the speed of information exchange (receiver can keep up with the sender)

� Explicit flow control

� Implicit flow control

27



Overview

Communication: Explicit flow control

� Receiver sends acknowledgements: previous message arrived, ready to get the
new one

� Receiver decides the rate of transmission

� Example: PAR (Positive Ack or Retransmission) protocol

� Properties:

– timeout! delay may be long!
– error detection by sender

28



Overview

Explicit flow control: The PAR protocol

1. sender (is asked) to send a message
retry count=0
timeout reset
sending the message

2. receiver gets a message:
was it already sent?
not! send ack to sender
yes! send ack + skip message

3. sender receives ack! terminates
no ack in timeout period: check retry count
exceeded! abort
not exceeded! increment retry count
reset timeout
re-send message

29



Overview

Communication: Implicit flow control

� sender and receiver agree a priori on the message send times

� global time base is required

� sender sends at the predefined point

� receiver accepts all messages

– no acknowledgements
– missing messages are detected by the receiver

� FT: active redundancy (multiple messages, multicast)

� no trashing (no dynamic scheduling, re-send)

30



Overview

Comparison of explicit and implicit flow control

Property Explicit Implicit Hard RT
flow flow requirement
control control

control receiver controls time controls receiver may not control
error detection at the send at the receiver at the receiver
trashing yes no to avoid
multicast difficult yes required

Hard RT: Implicit flow control improves predictability

Problem in explicit flow control:
event shower! overload! catastrophic

31



Overview

Communication architecture

� backbone network connecting nodes to non-critical clients (reports etc.)

� RT network: connecting the nodes

– predictable message transmission required
– support for FT: replicated nodes and channels
– membership service

! duplicated channels without SPOF (single point of failure)

! babbling detection

� field bus: connecting individual nodes to their sensors/actuators

– periodic transfer
– strict RT
– FT is not included in the bus

� (dependability bottleneck is the sensor/actuator;

� it is duplicated, connected to different nodes)

32



Overview

Case study: The MARS system

Maintainable Real-Time System (MARS, TU Wien, 1979-)

Project goals:

� distributed FT architecture

� hard RT

� nodes: single-chip communication interface, fail silence

� FT properties: replication (FTU)

� TT (time-triggered) architecture

� Global time base: FT, distributed clock synchronization (VLSI chip)

33



Overview

MARS: Distributed RT system

� Cluster - FTU - node - task

� Communication:

– field bus: TTP/A protocol
– RT bus: TTP/C protocol: membership, redundancy management
– backbone: TCP/IP

� Node: host computer + communication controller

– active: produces images, has bus slot, membership
– passive: reads only, no bus slot, no membership

� Fail silence of nodes:

– HEDC (High Error Detection Coverage) mode, transparent in OS
– duplicate execution of application tasks
– end-to-end CRC of messages
– end-to-end CRC of task execution (similar to WP)
– difference: messages are not sent; replicated node is switched

34



Overview

Hardware building blocks: The TTP controller

� components: dual-port RAM + controllers + EPROM (MEDL)

� connected to replicated buses

� commercial elements are used (COTS)

� TTP/A: four buses

� each node: two communication controllers

– TTP/A + TTP/C
– TTP/C + TTP/C
– TTP/C + TCP/IP

35



Overview

Software support: Distributed and local services

� distributed services:
– clock synchronization
– membership
– redundancy management

� local services:
– static schedule (WCET, WCAO [administration overhead])
– information transfer: communication controllers$ tasks
– High Error Detection Coverage (HEDC) mode

� cluster compiler:
– static, deterministic schedule
– generating message schedule (MEDL: message descriptor list)
– inputs:

data elements (length)
update period + temporal accuracy
sender and receiver ID
redundancy strategy (replication: 2,3,...)

36



Overview

Fault tolerance

� fail-silent nodes

� FTU by replication

– deterministic message transfer
– deterministic node operation: static schedule

� redundant sensors: master-checker configuration

– node1: master of field bus1, listen to field bus2
– node2: master of field bus2, listen to field bus1
– agreement is required

37



Overview

TTP/C Protocol layers

� data link/physical:

– bit encoding
– bit synchronization
– media access

� SRU layer:

– implicit acknowledgement
– clock synchronization
– SRU membership

� RM (redundancy management) layer

– redundancy management
– start-up

38



Overview

TTP/C Protocol layers (continued)

Layers above the Basic Communication Interface:

� FTU layer:

– permanence of messages
– FTU membership

� Host layer:

– application membership
– application software

39



Overview

TTP/C Data link layer

� media access: TDMA (time division multiple access)

� controlled by: MEDL (message descriptor list)

– what point in time send a message
– what point in time receive a message
– contains:

SRU slot (time), address, direction (I/O),
length of message, type of message, parameters

� cluster cycle:

– given number of slots
– every node is assigned a slot
– no data! empty slot
– cluster cycle = sequence of all TDMA rounds
– TDMA round: k nodes using k frames

40



Overview

TTP/C SRU layer

� Data frames to communication interface RAM

� membership:

– every slot is a membership point
– ”I am alive” without additional overhead
– delay: 1 TDMA round
– membership info: bit vector

� clock synchronization:

– based on a priori known arrival times of messages
– deviation between expected and real times: clock to be synchronized
– no overhead of checking synchronization

� acknowledgement:

– implicit flow control (based on membership)

41



Overview

TTP/C RM layer

Redundancy management and mode changes:

� shadow node! active node
if the current active node fails

� active node! shadow node
if the active node fails! fail silence!

� ”repaired node”! shadow node

42



Overview

TTP/C FTU layer

Permanence of messages

FTU membership: configurations

� replicated fail-silent nodes

� TMR

43



Overview

TTP/A protocol

Properties:

� standard serial communication (UART)

� master: node connected to the field bus

� slaves: sensors/actuators

Rounds:

� firework message from the master: one-byte synchronization event + round type
determinator

� (synchronization) gap

� message bytes: determined by MEDL

44



Overview

TTP/A Error detection

� time-out for firework message:
backup (shadow) node takes the role of the master (active)

� time-out of a data byte: local time-out
error is reported to the host

� data byte outside the specified time window:

– termination of the round
– waiting for a new firework message
– no firework! backup node will be active

� parity checks (UART)

45


