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�
ABSTRACT

Genetic programming (GP) is applied to the identification of non-linear polynomial models. The advantages of its hierarchical tree encoding scheme are compared with an earlier use of a subset representation approach which used string-encoded genetic algorithms.  This identification approach is formulated as a multibojective optimisation problem by introducing the concept of nondominated solutions. This approach then provides a trade-off between the complexity and the performance of the models. Two examples are presented to test this alternative method.
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1. INTRODUCTION

Conventional genetic programming (GP), and evolutionary algorithms (EA), in general, assign a single performance measure to each individual based on the evaluation of a scalar fitness function. However, these population-based  methods possess the characteristic of simultaneously searching for multiple solutions and, further, can evaluate several aspects of the problem simultaneously.

In the real world, most problems may be described as multiple objectives which must be satisfied. These multiobjective problems tend to be characterised by a set of alternatives that must be considered equivalent in the absence of information concerning the importance of each objective relative to the others. Thus,  multiobjective or multicriteria optimisation is the problem of finding the vector of decision variables, � EMBED Equation.2  ���, which optimises the n components vector function

� EMBED Equation.2  ���                                                     ...  � SEQ ..._ \* ARABIC �1��

The problem has a set of equally efficient alternative solutions that is known as the Pareto-Optimal set (Ben-Tal, 1980). This concept of Pareto-optimality or nondominance is explained thus: given two n components decision vectors, � EMBED Equation.2  ��� and  � EMBED Equation.2  ���, one can say that � EMBED Equation.2  ��� dominates � EMBED Equation.2  ��� (is Pareto-optimal)  if

(i ( {1, ..., n},  ui ( vi  ( (i ( {1, ..., n}, ui(vi.                                    ...  � SEQ ..._ \* ARABIC �2�

Then, the set of all Pareto-optimal decision vectors is called the Pareto-optimal or admissible set of the problem.

 A number of research works have used evolutionary algorithms with the aim of simultaneously optimising multiple functions. Goldberg (1989) pointed out that the first attempt of multicriteria optimisation using evolutionary algorithms was given by Rosenberg (1967). He suggested a multiple properties function for� the simulation of a population of single-celled organisms. However, he only considered a single property in his simulation, but it was the beginning of  further multicriteria evolutionary approaches.

Since Rosenberg’s work, a variety of approaches have appeared (Fonseca and Fleming, 1995)�. One class of these is the aggregating methods which combine multiple objectives into one fitness measure in order to provide scalar fitness information on which evolutionary algorithms can work. Here, the use of genetic algorithms has been widely studied. However, multiperforming genetic programming seems to offer significant potential benefits.

Previous aggregating approaches using genetic programming have had the aim of generating parsimonious computer programs by incorporating the number of nodes included in their associated tree representation  into the fitness measure (Koza, 1992). Iba et al. (1994) and Zhang and Mühlenbein (1996) have proposed a Minimum Description Length (MDL) based fitness function which is a trade-off of the model code length and the error code length. Siegel and Chaffe (1996) have introduced a different approach that incorporates a time constraint in order to penalise evolved programs that take excessive  execution time.

Other multiobjective evolutionary approaches do not use a combined fitness function. Instead, they assign fitness measure on the basis of a separate evaluation of each of the multiple objectives. An example is the MultiObjective Genetic Algorithm (MOGA) approach proposed by Fonseca and Fleming (1993). This is a Pareto-based technique which is based on the concept of nondominance or Pareto-optimality. Here fitness of an individual is assigned on the basis of relative non-dominance, i.e. all nondominated individuals in the population are assigned  rank 1, those individuals dominated by one or more points are ranked 2 or higher. Fonseca and Fleming's approach also includes schemes to combat the formation of lethals (mating restriction) and genetic drift (fitness sharing) - special problems arising from the evolution of a set of Pareto-optimal solutions.

The MOGA approach is extended here to its use in conjunction with genetic programming to provide a multicriteria tool.



2. MULTIOBJECTIVE GENETIC ALGORITHM 

The multiobjective genetic algorithm approach proposed by Fonseca and Fleming (1993) uses on a rank-based fitness assignment, where the rank of a certain individual xi at generation t is related to the number of individuals pi(t) in the current population by which it is dominated. It can be given by

� EMBED Equation.2  ���                                                       ...  � SEQ ..._ \* ARABIC �3�

All non-dominated individuals are assigned rank 1 and remaining individuals are penalised according to equation (2).



2.1. Fitness Assignment

Fitness is assigned by interpolating from the best individual (rank=1) to the worst, and then the fitness assigned to individuals with the same rank is averaged where the global population fitness is kept constant. However, this fitness assignment tends to produce premature convergence (Goldberg, 1989) due to the fact that all non-dominated (best rank) points are considered equally fit.

In order to overcome this deficiency, Fonseca and Fleming have used a niche induction method  to assist the distribution of the population over the Pareto-optimal front in order to maintain diversity. This is done by the method of fitness sharing which promotes the reproduction of isolated individuals and favours diversification.



2.2. Preference Information.

Preference information is introduced in the form of a goal vector, which provides a means of evolving only a specific region of the search space. This allows the decision maker to focus on a region of the Pareto front by providing external information to the selection algorithm.

The ranking procedure described previously is modified to introduce the goal information by altering the way in which individuals are compared with one another. Degradation in vector components that meet their goals  is acceptable here, provided it results in the improvement of other components that do not satisfy their goals and provided that goal boundaries are not violated. This allows discrimination between  individuals (solutions) even though they are non-dominated. This concept is formalised in terms of a transitive relational operator (preferability), instead of the simple partially less than operator, based on Pareto-dominance. The preferability operator additionally takes into account whether or not the objectives meet their goals.

The combination of the notion of preferability coupled  with the concept of nondominance introduces a preference articulation framework for multiobjective and constraint optimisation. Because the rank-based fitness assignment and fitness sharing of MOGA takes place in the objective function domain instead of the parameter domain, they can be directly applied to genetic programming. Thus, the structure of MOGA can be mapped onto genetic programming by introducing a hierarchical tree representation with its associated genetic operators.

�

3. GENETIC PROGRAMMING AND SYSTEM IDENTIFICATION

System identification is defined as the process of constructing a mathematical model from observations and prior knowledge. However, the problem of identifying non-linear model structures cannot be formulated using only a single criterion. Identification involves diverse characteristics as linearity, degree of non-linearity, model structure, performance and model validation, which have to be considered.

In earlier work (Fonseca and Fleming, 1996), genetic algorithms have been applied to identify non-linear model structures where system identification has been formulated as a subset selection problem. More recently, Rodríguez et al. (1997), have used a tree-structured representation (Koza, 1992) to this problem. This approach is based on an input-output model that describes the input-output relationship of a system. To represent these systems, Leontaris and Billings (1985) have introduced a non-linear difference equation model known as the NARMAX (Non-linear Autoregressive Moving Average with eXogenous inputs) model. This model represents a wide class of non-linear systems. Leontaris and Billings also claim that the polynomial representation is one of the most common and has been demonstrated to work well in practical applications. A polynomial NARMAX model of degree l can be expressed by

� EMBED Equation.2  ���

� EMBED Equation.2  ���                         ...  � SEQ ..._ \* ARABIC �4�

where n=ny+nu+ne  (the sum of the corresponding output, input and noise maximum lags), (i’s are scalar coefficients and xi(t) represents lagged terms in y, u and e. e(t) is a zero mean independent sequence. This model is classified as non-linear in the input and output variables but linear in the parameters; the coefficients can be estimated by a least squares algorithm. Therefore, here the solution approach is formulated such that genetic programming is used for identifying the model structure of the non-linear system and least squares regression is applied to estimate the associated coefficients.

Potential model structures of the form of equation (3) can then be represented in a hierarchical tree structure as shown in Figure 1. This model is expressed in Polish notation as

(ADD  (ADD  X1  X4) (MULT  (ADD  X2   X3) (ADD  X1  X2)))

This expression represents the non-linear model defined as

� EMBED Equation.2  ���             ...  � SEQ ..._ \* ARABIC �5�

where X1, X2, X3 and X4 are equal to 1.0 (constant term), y(t-1), y(t-2) and u(t-1), respectively. Then, a least squares algorithm is applied to compute the coefficient vector (. In order to calculate the associated coefficients, Iba et al. (1994) have also proposed a least squares method and Sharman et al. (1995) have proposed a simulated annealing-based tool in order to estimate these constant values.



�

Figure 1. Tree-structured encoding for a non-linear  polynomial  model.



3.1. Fitness Evaluation

In Rodríguez-Vázquez et al (1997) fitness is based on the evaluation of an information criterion that is a compromise function  between the non-linear model structure and the performance of the model (minimisation of the residual variance). This is expressed as

� EMBED Equation.2  ���                                                            ...  � SEQ ..._ \* ARABIC �6��

where � EMBED Equation.2  ��� �is the variance of the residuals associated with the p model terms, � EMBED Equation.2  ��� is the p estimated coeffiecent vector, and N is the number of observed data points.

However, this approach does not consider the validation process. Thus, with the aim of the aforementioned multiobjective and constraint optimisation framework, the GP/NARMAX approach is extended to a multicriteria form. 



4. SIMULATION RESULTS

4.1. Example 1: The Simple Wiener Model.

The method described above is firstly demonstrated on the simple Wiener model and compared with conventional identification techniques such as stepwise regression and orthogonal regression (Haber and Ubehauen, 1990). The differential equation of the linear dynamic part of the simple Wiener model is

� EMBED Equation.2  ���                                                        ...  � SEQ ..._ \* ARABIC �7�

and the static non-linear part is expressed by

� EMBED Equation.2  ���                                                      ...  � SEQ ..._ \* ARABIC �8�

The input-output data used here are defined in [Haber and Ubehauen, 1990]  (see Figure 2).

Applying MOGP to the problem of identifying polynomial NARX  model structures, the terminal set  consists of all the linear terms with maximum input and output lags defined by nu and ny, respectively, and the real value 1.0 representing the constant term.  Thus, the terminal set  was

T = {Xo, ..., Xny+nu)}

where nu= ny=10, and Xo, ..., Xny+nu  are linear terms as expressed in Table 1.

In the case of polynomial models, the function set was composed of just two functions. Thus, the function or non-terminal set is defined by

F = { ADD, MULT }

With these two functions, one is able to build any polynomial model of the form of equation (4).



Table 1. Terminal Set.

Element of T�
Linear Term�
�
X0�
1.0�
�
X1�
y(t-1)�
�
...�
...�
�
Xny�
y(t-ny)�
�
Xny+1�
u(t-1)�
�
...�
...�
�
Xny+nu�
u(t-nu)�
�


The multiobjective genetic programming (MOGP) approach was run considering five objectives representing the structure and the performance of the models. These were the number of terms, p, nonlinearity degree, DEG, maximum lag, LAG, the residual variance, VAR, and the long-term prediction error, LTPE. Crossover and mutation probabilities were 0.9 and 0.1, respectively, and the population consisted of 100 tree expressions. The MOGP method was run several times and gave similar families of solutions each time; Table 2 contains the results of one such run (MOGP1-4 are representative solutions of this run).

Polynomial NARMAX models obtained by the MOGP approach have similar model structures (Table 3) with some terms in common with the models obtained by conventional methods. All of the MOGP1-4 results dominate stepwise regression and orthogonal regression solutions when we consider the long-term prediction objective. In the case of MOGP3 and MOGP4, improved variance results are achieved and the LTPE results are also better than the stepwise regression case (see Table 2).



�

Figure 2. Simple Wiener Model Input-Output Data.

4.2. Example 2. Pilot Scale Level-System

The second example is based on 1000 input-output pairs of data generated by a pilot scale level-system (Voon, 1984), excited by a zero mean Gaussian input-signal. Data is divided into two groups. The first 500 points are used in the identification process, while the last 500 points are used for validation. Here, the polynomial NARX (Non-linear AutoRegressive with eXogenous inputs) �model was also considered (ne=0).



Table 2. Comparative Performance of the Identification Methods.

Model�
p�
DEG�
LAG�
VARx10-3�
LTPEx10-3�
�
MOGP1�
6�
2�
1�
2.3839�
6.0221�
�
MOGP2�
6�
2�
2�
2.1978�
6.7967�
�
MOGP3�
7�
2�
2�
1.6484�
6.4279�
�
MOGP4�
7�
2�
2�
1.6474�
7.8151�
�
Stepw.[4]�
7�
2�
2�
1.6808�
7.8526�
�
Orth. [4]�
7�
2�
2�
5.2243�
26.8080�
�


Table 3. Simple Wiener Model Structures.

Term�
MOGP1�
MOGP2�
MOGP3�
MOGP4�
Stepw.[5]�
Orth. [5]�
�
c�
X�
X�
X�
X�
X�
X�
�
y(k-1)�
X�
X�
X�
X�
X�
X�
�
y(k-2)�
�
�
�
X�
X�
X�
�
u(k-1)�
X�
�
X�
�
�
X�
�
u(k-2)�
�
X�
�
�
�
X�
�
y(k-1)2�
X�
X�
X�
X�
X�
�
�
y(k-1)y(k-2)�
�
�
�
X�
�
�
�
y(k-2)2�
�
�
�
�
X�
�
�
y(k-1)u(k-1)�
X�
X�
�
X�
X�
X�
�
u(k-1)2�
X�
X�
X�
X�
X�
X�
�
y(k -2)u(k-1)�
�
�
X�
�
�
�
�
u(k-1)u(k-2)�
�
�
X�
�
�
�
�


Additionally to the five objectives considered for the previous example, the autocorrelation function (ACF) of the residuals and the crosscorrelation function (CCF) between the input and the residuals, were also included. These latter two functions were treated as hard objectives which had to be satisfied when optimising the remaining objectives. In terms of system identification, the model had to be validated before it was considered a ‘good’ representation of the dynamic system. With respect to the goal information, setting all the goals to (( forces the method to attempt to evolve a discretised description of the whole Pareto set. Thus, the first five goal values were set to the maximum value of their range. ACF and CCF were assigned a 1.95/(N goal value which corresponds to the 95% confidence interval. Note, however, that the multiobjective optimisation framework permits changes to the  goals of the objectives�.

In a second experiment, the information criterion (equation 6) was included instead of residual variance. This criterion is an aggregating function that implicitly involves the optimisation of the number of model terms. The objective regarding the number of model terms was, for this reason, ‘ignored’, but it remains in Figure 3 for monitoring purposes. Both runs 1 and 2 may be considered  similar.�. However the second approach provides a better determination of the number of model terms by reaching the minimum of the IC curve, as shown in Rodríguez et al. (1997). Results of this run  are shown in Figure 3. A population size of 100 individuals and probabilities of 0.9 and 0.1 for crossover and mutation, respectively, were used in all of these experiments.



4.2.1. Discussion

While the framework has previously been applied to identification problems using the subset representation approach (Fonseca and Fleming, 1996)�, the hierarchical tree encoding used here appears to be more powerful. Because, in subset selection, the total set of all possible linear and non-linear terms and the maximum length of the chromosome, corresponding to the maximum number of terms,  have to be set up a priori, the richness of the exploration of the search space is restricted. This situation could be ameliorated if the total set contains a wide range of terms but, it has been found that, if the number of terms is increased, the identification process can become unnecessarily time consuming. Even though the GP approach is also restricted by the number of nodes permissible in a tree, the search space is still extremely large and its variable size and dynamic representation provides diversification in the population. Thus, it is important to note that MOGP was able to evolve a tree structure of variable size which results in  models that have better prediction capabilities �than models resulting from the subset selection approach. 

Setting the goals for model degree and model lag to 3 and 8, respectively, MOGP approach provides better performing models in terms of residual variance (implicitly computed by means of the information criterion) and long term prediction error, than models produced by the previous multiobjective subset selection genetic algorithm. These comparative results are summarised in Table 4. As can be seen an increase in the performance  has been realised by models with a slightly higher degree and number of terms. Note that, in all cases,  the hard objectives (ACF and CCF functions) are satisfied.

�
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�

Figure 3. Trade-off graph of run 2.

�

Table 4. Comparative results of  MOGP and MOGA applied in non-linear system identification. 

Model�
No.Terms�
Degree�
Lag�
AIC�
LTPE�
ACF�
CCF�
VARx10-3�
�
MOGP_1�
12�
3�
8�
-6.2311�
0.0201�
(�
(�
1.7872.�
�
MOGP_2�
12�
3�
8�
-6.2307�
0.0190�
(�
(�
1.7879�
�
MOGP_3�
10�
3�
8�
-6.1754�
0.0283�
(�
(�
1.9200�
�
MOGP_4�
11�
4�
6�
-6.0660�
0.0291�
(�
(�
2.1249�
�
MOGP_5�
12�
3�
8�
-6.0419�
0.0179�
(�
(�
2.1590�
�
MOGA_1�
8�
2�
8�
-5.86768�
0.0262�
(�
(�
2.6540�
�
MOGA_2�
9�
2�
7�
-5.8555�
0.0249�
(�
(�
2.6653�
�
MOGA_3�
9�
2�
6�
-5.80792�
0.0652�
(�
(�
2.7951�
�
MOGA_4�
8�
2�
7�
-5.80560�
0.0472�
(�
(�
2.8240�
�




5. Conclusions and Future Work

The MOGP tool provides a set of potential models which can address separate objectives concerning the complexity, performance and validity of a model. It also provides the opportunity of manipulating the family of solutions by changing goals values of the objective functions depending on the purpose of the identification procedure. This is a way of controlling the search process by restricting the search space.

Further work will consider the control of genetic programming parameters in general by means of this approach. This application has confined itself to non-linear polynomial models. In new work, non-linear rational models are being considered using this genetic programming based identification technique.  
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