NoNLINEAR FilterS on Reconfigurable PROCESSORS
Béla Fehér, Gábor Szedő

Department of Measurement and Information Systems

Technical University of Budapest
Budapest, H-1521 Hungary

feher@mit.bme.hu
szedo@mit.bme.hu

Abstract

In this paper the structure of the digital median filter and its realisation on FPGA elements is described. A general scheme is supported, which - with minimal modifications on the modules - is able to realise both 1D and 2D, standard and recursive median filters. The design currently has been implemented on an XC6200 FPGA part. This reconfigurable processor unit is composed of a large array of simple, dynamically reconfigurable cells allowing quick hardware development, and easy hardware-software co-design.

Keywords: nonlinear filters, reconfigurable processors.

1. Introduction

Processors with fixed architecture and instruction set can not fully adapt their structure to the particular application, which can be a major drawback, for example in case of filtering high bandwidth signals. On the other hand, DSP processors can implement a wide variety of algorithms with less effort than in case of reconfigurable hardware. In the literature a lot of efficient algorithm have been presented to realise the median filter [1], [2], [3]. Processors extended with reconfigurable resources can implement very high throughput applications with flexible parameters and algorithms. Such an application could be a general noise filter with median and averaging or smoothing stages.

Median filtering is a non-linear operation that preserves sharp edges in signals or images. It is particularly effective in case of removing non-Gaussian impulsive shaped noise. Median filters can be classified by different properties.

The standard median filter is characterised by the following method: the output value of the median filter is the input sample value, which is located in the centre of the list of ordered samples. The sampling window is shifted through the full data window. If the window size is 2*N+1, the actual input sample values in the window are x(n), x(n-1)...x(n-N)… x(n-2*N+1), x(n-2*N). Let the magnitude ordered sample values of the window in the data vector be m(0), m(1), ... m(2*N), then the filter output is determined as y(n)=m(N).

In case of recursive median filters [4] half of the median window contains the latest output samples, the median values. Using the same notations, the sample window contains: x(n), x(n-1)…x(n-N), y(n-1),…,y(n-N). Opposing linear filters, using median filtering recurrently on a set of input data, the output of the filter converges to a stable signal in finite number of steps. These stable signals extracted from the input signals are called the roots [4]. The advantage of recursive median filters is the ability of abstracting the roots from input signals in one run. As shown later the hardware realisations of the two filters are almost identical, although the recursive median filter requires two ordering iterations for every input sample.

Selecting a signal sample other than the central one in median filtering also could have meaning. When the signal is interfered with impulsive noise, and the noise spikes can only increment the signal, it is reasonable to select an element left from the centre of the increasingly ordered window. In case of image filtering, this operation results to adjust the brightness of the image, so for the desired brightness a defined element should be selected.

Two-dimensional median filters are commonly used in image processing, where spike noise should be removed from an image while sharp edges should be retained. A 2D median filter with (2*N+1)*(2*N+1) window size can be established using one 1D median filter with (2*N+1)2 size buffer. When the 2D window is shifted by one pixel, 2*N+1 new samples (pixels) are entering the filter, and the 2*N+1 least recent elements are discarded respectively. Only after these 2*N+1 steps is the central element selected.

As seen, the implementation of a standard median filter requires an ordering operation to be applied on the samples inside the window. The complexity of this operation is strongly affected by the size of the data sample window (2*N+1), and in case of the usual software ordering algorithms, the performance decreases at least Q(2*N+1)×log(2*N+1)). General-purpose DSP processors with single operational core will exhibit strongly decreasing performance, hence they are not able to provide real-time median filtering in high-speed applications. FPGAs, on the other hand, are the best candidates in this field for the following reasons:

1. The internal arithmetic of a median filter is based on simple magnitude comparisons, data transfer and selection operations only, no multiplications are required. In the PEs the combinatorial and storage resources of the FPGA cells are equally well utilized, which results in high efficiency.

2. Because of the simplicity of the basic array processor elements (PEs), a direct, optimised mapping of the algorithm can be defined to the logic resources of the selected FPGAs. Between the PEs almost all the operations and data transfers are constrained to local, neighbour-to-neighbour communications. Only the actual input and output values need broadcast type, external signal propagation.

2. The Architecture

The architecture of the median filter consists of 2*N+1 simple PEs. The intended high speed of operation requires the parallel execution of the sample ordering and ageing of the stored samples. The concurrent activities of the PEs are determined by the value of the current input sample, the state of the neighbouring cells and the time stamp of the data item, which determines the "age" of the sample value in the window. The implementation of the time stamp is crucial for the high-speed on-the-fly computation of a real time median filter. The time stamps of the data items provide information to every processor nodes to check their status about the necessary preservation of the current sample value in the window. The oldest samples of the window, with time index x(n-2*N) should be discarded in every iteration, independently of the position and the sample value of it. The simplest way to realise the ageing function could be the application of a 2*N+1 depth first-in first-out (FIFO) memory. The output sample of the FIFO could identify the oldest element (or a numerically equivalent one) in the ordered window, but the dropout operation would need the same arithmetic comparison as the ordering itself. This inherently two step computation offers low throughput, needs excess amount of storage elements (depending from the number representation of the sample values in the storage), while leaves valuable logic resources in the FPGA cells unexploited. A better solution could be achieved by the attachment of the ageing function directly to the PEs. This is realised by a chain of independent index arithmetic unit, so actually the filter architecture is composed from double parallel processing nodes (Figure 1). These compound cells are able to determine in one operating cycle, whether or not the sample storage should be freed up (being the oldest one in the window), or to which direction can they shift their sample value to provide an empty place for the new input. The amount of the moving samples is determined by the number of samples falling into the span of the newest and already thrown away oldest values (x(n) and x(n-2*N-1)). The endpoint of the interval is signalled by the index arithmetic.

In case of recursive median filter implementation, first the “age” index of the currently selected PE (i.e. the actual median sample output) is cleared, while the indexes of all other PEs with younger age than this last median sample are incremented. This makes the median the newest sample in the window. Then the least recent sample is discarded, and finally the new input sample is injected with the parallel reordering and "ageing" of the samples of the PEs, just as in the case of the normal median filters.

The 2D filters require the processing of 2*N+1 input pixels for a single shift of the filter window. Row or columns wise reading of the input pixels allows vertical or horizontal scanning of the image. Entering of the new input pixels gradually reorders the 2D window and drops out the oldest pixels. After 2*N+1 iterations the new median is selected provided at the output.

[image: image1.wmf]R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

PE N

R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

PE N+1

R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

PE N-1

INPUT

REGISTER

Median OUT

INPUT Sample

Figure 1. Block Diagram of the Architecture

The architecture shown in Figure 1. is flexible enough to realise any of the filters mentioned above. The operation is controlled by a single clock signal. The new sample is loaded to the input register at the start of the cycle. In each node, this new sample will be compared to the sample value contained in the actual PE. The index arithmetic of the PEs through dedicated nets informs all of the nodes, whether the least recent sample will be drop out on their left or right side. From this information and from the result of the comparison with the new input sample, each PE decides whether the sample and the counter values should be passed or not, and if so, to which direction. The output, the median value is just obtained form one of the central PEs. When the filter is used in 2D mode, first 2*N+1 samples are injected, and only the last output is used, the first 2*N output values are just omitted.

The main functions of the processor nodes are as follows. The oldest sample value is located somewhere in the chain of the nodes, let assume at index k, with 0 <= k <= 2*N (Index 0 stores the smallest and index 2*N stores the largest input sample value of the window). Every node, with indices less than k are prepared to pass their stored sample values to the right neighbour, i.e. to fill up the ordered list of the values, after dropping the oldest sample. Nodes with indices greater than k stay in the default state. All nodes compare the value of the locally stored older sample value to the new input on the global bus. Every node, for which the stored value is less than the input, are prepared to pass their values to the left neighbour, i.e. to preserve the magnitude ordered list of the sample values in the window. Let the index of the new sample input sample is p. Three cases are possible:

a) k = p. The new sample just replaces the oldest one, no other samples are moved. All of the prepared sample movements are cancelled. The new list will be the properly ordered list of the sample values.

b) k < p. The nodes from 0 to k-1 are prepared to move right, while the nodes from 0 to p are prepared to move left also. For the first k nodes the two assignment cancel each other, so they will remain in place, while the p-k sample will move left to provide place to the new sample. The new list will be the properly ordered list of the sample values.
c) k > p. The nodes from 0 to k-1 are prepared to move right, and the nodes from 0 to p are prepared to move left also. For the first p nodes the two assignment cancel each other, so they will remain in place, while the other k-p-1 samples will move to the right to give place to the new sample (see Figure 2). The new list will be the properly ordered list of the sample values.

[image: image2.wmf]5

2

0

4

3

1

N

5

2

0

4

3

6

1

?

The oldest sample, with index 6, is dropped

out. If the new input falls between samples

with indexes 5 and 2, then it takes the second

position, while samples with indexes 2, 0, 4

and 3 will move right. At the same time all

samples are aged.

N

New sample

0

Most recent sample

6

Least recent sample

6

0

3

1

5

4

2

Median out

N

Figure 2. Inserting a new sample to the magnitude ordered list
Operations of the processing nodes finished in a single cycle, and are started by loading the new sample. The output value is usually provided by the central processor node with index N, but in case of necessity any PE can be configured to be the output node.

The available operational speed allows application of the filter in case of real-time digital image processing or on-line video filtering. Because the median filters could not remove Gaussian noise from the signals, some linear averaging filter can improve the efficiency of the algorithm. The two filter stages together can realise a massive noise-removing block at the input of a digital image processing system. The linear averaging filter can be realised also on the reconfigurable processing unit (RPU).

3. FPGAs

FPGA devices have proved their advantages in high performance custom computing machines and reconfigurable accelerators. Applications of FPGAs in the DSP or multimedia environment verified their capability of the direct hardware implementation of computation intensive algorithms.

An FPGAs contain a large array of configurable cells (or logic blocks) on a single chip. Each cell can implement some basic logic function, provides a storage element, and/or performs routing to allow inter-cell communication. All of these operations can take place simultaneously across the whole array of cells. The basic architecture of an FPGA consists of a 2-D array of cells. Communication between the cells takes place through interconnection resources.

FPGA cells differ greatly in their size and implementation capacity. Some FPGA cells contain look-up tables capable of implementing logic functions of 4 or 5 inputs, RAM cells and dedicated arithmetic units. On the contrary, other FPGAs contain thousands of fine-grain cells that consist of only a few transistors. These parts provide the benefits of a custom CMOS VLSI chip, while avoiding the initial cost, time delay, and inherent risk of a conventional masked gate array. The static RAM based FPGAs can be reprogrammed an unlimited number of times and supports system clock rates up to 100 MHz, in case of regular computational structures. Some special FPGA families offer the possibility of the partial reconfiguration, which reduces the necessary transition time between task switching on the RPU. The configuration store of the partially reconfigurable Xilinx XC6200 FPGA family [5] can be mapped directly to the address space of the host processor, and internal registers can be accessed through simple read write operations, with 8, 16 or 32 bit wide data transfers. The capabilities of the XC6200 FPGAs support implementation of virtual hardware.

4. Implementation

The design is realised in VELAB, that is a special VHDL elaboration tool for building XC6200 applications. The implementation can be easily recompiled for almost arbitrary data with and window sizes, as well as data format representation (two's complement signed or unsigned and fixed point). Using this information the application and parameter dependent, custom filter blocks are ready to be synthesised to the target FPGA architecture. The high-speed filter stage is implemented in the H.O.T. Works [6] development environment of the Virtual Computer Company, what is an ideal platform for evaluation of application specific processing units.

[image: image3.wmf]PCI Bus

CPU

Memory

Reconfig

.

FPGA

Local

Memory

Network

Display

Disk

I/O

Figure 3. Application of the reconfigurable processor unit in the PC host environment

The PCI bus based card contains an XC6200 Reconfigurable Processing Unit (RPU) that is mapped into a specific region of the memory of the main processor. The implementation of the median filter on XC6200 involves several design steps:

1. The modules of the design should be described in VELAB, that is a special structural VHDL subset for building XC6200 applications.

2. The design should be placed and routed by Xact6000, and a bit-stream (CAL file) should be generated.

3. A simple user interface should be developed in C++, which communicates with the H.O.T. Works card.
The board is plugged onto a PCI slot of the host PC. Through the FastMap interface of the XC6200 family the host PC can directly read and/or write all internal registers of the RPU. This communication takes place using member functions of a C++ object that represents the card.

5. Conclusions

This paper presented a general, high-speed parallel median filtering architecture suggested for direct hardware implementation on FPGA or RPU devices. The parameterised architectural description allows custom filter realisations, in terms of input sample resolution, filter window width, 1D or 2D implementation.

Compared to other parallel median filter realisations [2], where stack decomposition was brought to front, this architecture does not involve a huge additional matrix that makes realisations on hardware impossible. Compared to solutions carried out on real multiprocessor structures [3], our architecture contains only one FPGA, that is based on a single board plugged onto a PC.

The operational speed of the filter is sufficient for real-time 1D median filtering with arbitrary sized data window, limited only by the available logic and routing resources of the RPU. In case of the H.O.T. Works card, on the XC6216 RPU, 16 PEs with 8 bit wide data words can be realised.

5. References

[1] Olli Vainio, Yrjö Neuvo, Steven E. Butner, A Signal Processor for Median-Based Algorithms, IEEE Transactions on Acoustics, Speech, Processing VOL 37. NO. 9, September 1989.

[2] V.V. Bapeswara Rao and K. Sankara Rao, A New Algorithm for Real-Time Median Filtering, IEEE Transactions on Acoustics, Speech, Processing VOL ASSP-34. NO. 6, December 1986.

[3] M. O. Ahmad and D. Sundararajan, Parallel Implementation of a Median Filtering Algorithm, Int. Symp. on Signals and Systems, 1988.

[4] Dobrowiecki Tadeusz, Medián Szűrők (in Hungarian), Mérés és Automatika, 37. Évf., 1989. 3.szám

[5] XC6200 Field Programmable Gate Arrays Product Description, April 24, 1997 (Version 1.10)
[6] H.O.T. Works Development Sytems. Virtual Computer Company, 1997.
_966849112.doc

PE N+1

PE N-1

PE N

INPUT Sample

Median OUT

INPUT

REGISTER

R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

R

E

G

I

S

T

E

R

C

O

M

P

A

R

A

T

O

R

C

O

U

N

T

E

R

L

O

G

I

C

_968018551.doc

The oldest sample, with index 6, is dropped out. If the new input falls between samples with indexes 5 and 2, then it takes the second position, while samples with indexes 2, 0, 4 and 3 will move right. At the same time all samples are aged.

Median out

Least recent sample

Most recent sample

New sample

?

N

N

0

6

0

1

4

2

5

3

6

5

2

0

4

3

1

N

5

2

0

4

3

6

1

_966796650.doc

I/O

Disk

Display

Network

Local

Memory

Reconfig.

FPGA

Memory

CPU

PCI Bus

_378331042.doc

I/O

Disk

Display

Network

Local

Memory

Reconfig.

FPGA

Memory

CPU

PCI Bus

