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ABSTRACT



Control and systems engineering proboblems commonly may be expressed as multiobjective optimisation problems involving the simultaneous optimisation of multiple, often conflicting, design criteria, such as performance, reliability, environmental impact, and cost. The global solution to such problems is a family of compromise solutions known as the Pareto-optimal set. These solutions are optimal in the sense that improvement in any objective can only be achieved at the expense of degradation in at least one of the remaining objectives. Here, it is shown that multiobjective genetic algorithms (MOGAs) can be a powerful decision-making aid. for designers. Applications of MOGAs being pursued include controller design (including on-line tuning), model selection in system identification, scheduling, and multidisciplinary optimisation problems.
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1  INTRODUCTION



Real-world control problems usually involve the satisfaction of multiple performance measures, or objectives, which should be solved simultaneously. The simultaneous solution of multiple, possibly competing, objective functions is unlikely to yield a single Utopian solution. Instead, the solution of a multiobjective optimisation (MO) problem is a set of Pareto-optimal solutions which in most practical situations is likely to be very large.  Subsequently, there is a difficulty in representing the set of Pareto-optimal solutions and in choosing a suitable solution from this set when there is no information regarding the relative performance of each objective. The size of the solution set can, however, be reduced by including a set of objective function goals which must also be satisfied.

Various non-linear programming methods have been developed to solve the MO problem (see, for example, Becker et al, 1979).  However, this is not a trivial task as practical problems are generally non-convex, multimodal and  frequently non-smooth or exhibit discontinuities. These traditional approaches use deterministic transition rules, generally to  implement a form of hill climbing, and as such can only be expected to work well if the problem is small and has few local minima, i.e. distinct regions in decision variable space that yield Pareto-optimal solutions. Additionally, they will require a good estimate of the solution if they are not to converge to some local, sub-optimal solution. For larger, more realistic problems or ones that may have many local minima, algorithms with probabilistic transition rules offer greater potential for success.

Here, after an introduction to the basic components of an evolutionary algorithm, the benefits of this population-based approach are are revealed through contemplation of MO problems. A multiobjective genetic algorithm (MOGA) is described and its value as a decision making aid is revealed. Application examples are cited which demonstrate the versatility and utility of the approach.



2  EVOLUTIONARY ALGORITHMS



Evolutionary algorithms are based on computational models of fundamental evolutionary processes such as selection, reproduction and mutation, as shown in Fig. 1.  Individuals, or current approximations, are encoded as strings composed over some alphabet(s), e.g. binary, integer, real-valued etc., and an initial population of chromosomes, Chrom, in Fig. 1, is produced by randomly sampling these strings. Once a population has been produced it may be evaluated using an objective function or functions that characterise an individual’s performance in the problem domain. Where the encoding of chromosomes uses a mapping from the decision variables to some other alphabet, e.g. real-values encoded as binary strings, it will be necessary to decode the chromosomes before the objective function may be evaluated and a cost vector, Cost, assigned to the population. The objective function(s) is also used as the basis for selection and determines how well an individual performs in its environment. A fitness value is then derived from the raw performance measure given by the objective function(s) and is used to bias the selection process towards promising areas of the search space. Highly fit individuals will be assigned a higher probability of being selected for reproduction than individuals with a lower fitness value.  Therefore, the average performance of individuals can be expected to increase as the fitter individuals are more likely to be selected for reproduction and the lower fitness individuals get discarded. Note that individuals may be selected more than once at any generation (iteration) of the EA and that the temporary vector of selected individuals, Sel, may therefore contain more than one copy of any individual in the original population.



Selected individuals are then reproduced, usually in pairs, through the application of genetic operators and these new individuals may then overwrite their parents in the vector, Sel. These operators are applied to pairs of individuals with a given probability and result in new offspring that contain material exchanged from their parents. The offspring from reproduction are then further perturbed by mutation.  These new individuals then make up the next generation, Chrom.  These processes of selection, reproduction and evaluation are then repeated until some termination criteria are satisfied.



procedure EA {

    initialise(Chrom);   

    while not finished do {   

        Cost = objv_fun(decode(Chrom));

        Sel = select(Chrom, Cost);

        Sel = reproduce(Sel);   

        Chrom = mutate(Sel);

        Gen = Gen + 1;   

    }   

}   



Fig. 1 An Evolutionary Algorithm



Although similar in concept, many variations exist in EAs. A comprehensive discussion of the differences between the various EAs can be found in Spears et al (1993).





3  MULTIOBJECTIVE OPTIMISATION AND DECISION MAKING



The use of multiobjective optimisation (MO) recognises that most practical problems require a number of design criteria to be satisfied simultaneously, viz.:

� EMBED Equation.2  ���

where p=[p1, p2, ..., pq] and ( defines the set of free variables, p, subject to any constraints and F(p) = [f1(p), f2(p), ... , fn(p)] are the design objectives to be minimised.



Clearly, for this set of functions, F(p), it can be seen that there is no one ideal `optimal’ solution, rather a set of Pareto-optimal solutions for which an improvement in one of the design objectives will lead to a degradation in one or more of the remaining objectives. Such solutions are also known as non-inferior or non-dominated solutions to the multiobjective optimisation problem.

Generally, members of the Pareto-optimal solution set are sought through solution of an appropriately formulated non-linear programming problem. A number of approaches are currently employed including the (-constraint, weighted-sum and goal attainment methods (Hwang and Masud, 1979).  However, such approaches require precise expression of a, usually not well understood, set of weights and goals.

If the trade-off surface between the design objectives is to be better understood, repeated application of such methods will be necessary. In addition, non-linear programming methods cannot handle multimodality and discontinuities in function space well and can thus only be expected to produce local solutions.

Evolutionary algorithms, on the other hand, do not require derivative information or a formal initial estimate of the solution region. Because of the stochastic nature of the search mechanism, genetic algorithms (GAs) are capable of searching the entire solution space with more likelihood of finding the global optimum than conventional optimisation methods.  Indeed, conventional methods usually require the objective function to be well behaved, whereas the generational nature of GAs can tolerate noisy, discontinuous and time-varying function evaluations, see Goldberg (1989).  Moreover, EAs allow the use of mixed decision variables (binary, n-ary and real-values) permitting a parameterisation that matches the nature of the design problem more closely. Single objective GAs, however, do still require some combination of the design objectives although the relative importance of individual objectives may be changed during the course of the search process.
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Fig. 2  A General Multiobjective Evolutionary Optimiser



A general view of multiobjective evolutionary optimisation has been proposed by Fonseca and Fleming (1995) and is illustrated in Fig. 2.  The decision-maker block represents a utility assignment strategy, which may be anything from a straightforward weighted-sum approach to an intelligent decision maker or human operator.  The EA is employed to generate a set of candidate solutions according to the utility level assigned by the decision maker to the current set of solution estimates. The decision-maker thus influences the production of new solution estimates and as these are evaluated they provide new trade-off information which can be used by the decision maker to refine its current goals and preferences. The effect of any changes in the decision process, perhaps arising from taking recently acquired information into account, is seen by the EA as a change in environment. In the next section, a multiobjective decision making process, based on a Pareto-ranking approach, is described and a multiobjective evolutionary algorithm developed.





4  MULTIOBJECTIVE GENETIC ALGORITHMS



The notion of fitness of an individual solution estimate and the associated objective function value are closely related in the single objective GA described earlier. Indeed, the objective value is often referred to as fitness although they are not, in fact, the same. The objective function characterises the problem domain and cannot therefore be changed at will. Fitness, however, is an assigned measure of an individual's ability to reproduce and, as such, may be treated as an integral part of the GA search strategy.



As Fonseca and Fleming (1995) describe, this distinction becomes important when performance is measured as a vector of objective function values as the fitness must necessarily remain scalar. In such cases, the scalarisation of the objective vector may be treated as a multicriterion decision making process over a finite number of candidates - the individuals in a population at a given generation.  Individuals are therefore assigned a measure of utility depending on whether they perform better, worse or similar to others in the population and, possibly, by how much. The remainder of this section describes the main differences between the simple EA outlined earlier and MOGAs.



4.1 Decision Strategies



In the absence of any information regarding the relative importance of design objectives, Pareto-dominance is the only method of determining the relative performance of solution estimates. Non-dominated individuals are all therefore considered to be `best' performers and are thus assigned the same fitness (Goldberg, 1989), e.g. zero. However, determining a fitness value for dominated individuals is a more subjective matter.  The approach adopted here is to assign a cost proportional to how many individuals in a population dominate a given individual, Fig. 3. In this case, non-dominated individuals are all treated as desirable.



If goal and/or priority information is available for the design  objectives then it may be possible to differentiate between  some non-dominated solutions. For example, if  degradations in individual objectives still allow those goals to be satisfied whilst also allowing improvements in other  objectives that do not already satisfy their design goals, then these degradations should be accepted. In cases where different levels of priority may be assigned to the objectives then, in general, it is only important to improve the high priority objectives, such as hard constraints, until the corresponding design goals are met, after which improvements may be sought in the lower priority objectives.
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Fig. 3  Pareto Ranking



These considerations have been formalised in terms of a transitive relational operator, preferability, based on Pareto-dominance, which selectively excludes objectives according to their priority and whether or not the corresponding goals are met (Fonseca, 1995).

�
4.2 Fitness Mapping and Selection



After a cost has been assigned to each individual, selection can take place in the usual way. Suitable schemes include rank-based cost to fitness mapping (Baker, 1985), followed by  stochastic universal sampling (Baker, 1987) or tournament selection,  also based on cost, as described by Ritzel et al (1994).



4.3 Fitness Sharing



Even though all preferred individuals in the population are assigned the same level of fitness, the number of offspring that they will produce, which must obviously be integer, may differ due to stochastic nature of EAs. Over generations, these imbalances may accumulate resulting in the population focusing on an arbitrary area of the trade-off surface, known as genetic drift (Goldberg and Segrest, 1987). Additionally, recombination and mutation may be less likely to produce individuals at certain areas of the trade-off surface, e.g. the extremes, giving only a partial coverage of the trade-off surface.



Originally introduced as an approach to sampling multiple fitness peaks, fitness sharing (Goldberg and Richardson, 1987 helps counteract the effects of genetic drift by penalising individuals according to the number of other individuals in their neighbourhood.  Each individual is assigned a niche count, initially set to zero, which is incremented by a certain amount for every individual in the population, including itself. A sharing function determines the contribution of other individuals to the niche count as a function of their mutual distance in genotypic, phenotypic or objective space. Raw fitness values are  then weighted by the inverse of the niche count and normalised by the sum of the weights prior to selection.  The total fitness in the population is re-distributed, and thus shared, by the population. However, a problem with the use of fitness sharing is the difficulty in determining the niche size, (share , i.e. how close together individuals may be before degradation occurs.



An alternative, but analogous, approach to niche count computations are kernel density estimation methods (Silverman, 1986), as used by statisticians. Instead of a niche size, a smoothing parameter, h, whose value is also ultimately subjective, is used. However, guidelines for the selection of suitable values for h have been developed for certain kernels, such as the standard normal probability density function and Epanechnikov kernels (Fonseca 1995). 



4.4 Mating Restriction



Mating restrictions are employed to bias the way in which individuals are paired for reproduction (Deb and Goldberg, 1989). Recombining arbitrary individuals from along the trade-off surface may lead to the production of a large number of unfit offspring, called lethals, that could adversely affect the performance of the search. To alleviate this potential problem, mating can be restricted, where feasible, to individuals form within a given distance of each other, (mate. A common practice is to set  (mate =  (share so that individuals are allowed to mate with one another only if they lie within a distance h from each other in the `sphered' space used for sharing (Fonseca and Fleming, 1995).



4.5 Progressive Preference Articulation



As the population of the MOGA evolves, trade-off information will be acquired. In response to the optimisation so far, the operator may wish to investigate a smaller region of the search space or even move on to a totally new region. This can be achieved by resetting the goals supplied to the MOGA which, in turn, affects the ranking of the population and modifies the fitness landscape concentrating the population on a different area of the search space. The priority of design objectives may also be changed interactively using this scheme.



The introduction of a small number of random individuals at each generation, say 10-20%, has been shown to make the EA more responsive to sudden changes in the fitness landscape as occurs when the optimisation is changed interactively (Grefenstette, 1992). This technique may also be employed by a MOGA and is used in the example presented in the next section.



4.6 Algorithm Description



A pseudo-code outline of the multiobjective genetic algorithm is shown in Fig. 4. The population is initialised and the chromosomes are decoded, if necessary, and then evaluated according to the multiple objective functions.  Preference-based ranking, pref_rank in Fig. 4, assigns a non-unique cost to each individual dependent on its dominance in the population such that all non-dominated individuals are ranked zero, as described in Section 4.1. As well as the vector of performance goals, GoalV, an additional vector of objective priority levels, PriV may also be specified, although this is not used in the example here.



The niche counts, Share, are calculated using a kernel estimator based on the Epanechnikov kernel.  The decoded decision variables, DVar are passed to the function twice as they are both the sample data and the points where the population density should be estimated.  The default smoothing parameter  Sigma (h) and a matrix R, such that DVar ( R has an identity covariance matrix, are also returned by the estimation function for use later during mating restriction.



The function ranking uses Share to perform fitness sharing between individuals of equal cost as part of the fitness assignment procedure.  Individuals can now be selected for reproduction, in this case by stochastic universal sampling, and allowance should be made at this point if random chromosomes are to be inserted into the population after mutation so that only the required number of individuals are selected.  Mating restriction is implemented by reordering the selected individuals in Sel so that consecutive pairs correspond to individuals within the required distance Sigma of one another within normalised decision variable space wherever possible (restrict in Fig. 4).



Recombination of individuals may now proceed as normal and the resulting population mutated.  If random chromosomes are to be appended to the population then this should occur after mutation so that they will have to survive selection before they can reproduce with the main population.  This is most likely to occur when the fitness landscape changes, as a result of changes in GoalV or PriV, and the population is no longer well adapted to it.





procedure MOGA {

    initialise(Chrom);   

    while not finished do {  

        DVar = decode(Chrom); 

        ObjV = multi_obj_fun(DVar);

        Cost = pref_rank(ObjV, GoalV);

        [Share, Sigma, R] =  epanechnikov(DVar, DVar);   

        Fitn = ranking(Cost, Share);

        Sel = select(Chrom, Fitn);

        Sel = reproduce (restrict(decode(Sel)(R, Sigma));

        Chrom = mutate(Sel);

    }   

}   





Fig. 4 A Multiobjective Genetic Algorithm





�
5  CONTROL AND SYSTEMS ENGINEERING APPLICATIONS



To conclude, the following range of applications provide an indication of the versatility of the use of MOGAs in multiple criteria decision making in control. 



5.1 Gas Turbine Engine Control System Design



In an early study based on a non-linear model of a Rolls-Royce gas turbine engine, Fonseca and Fleming (1998) demonstrated how parameters for an existing fixed-structure controller  could be found to satisfy a set of control system design requirements, extracted from the original stability and response requirements provided by the manufacturers. Frequency-domain measures were computed from a model linearised around an operating point. Time-domain characteristics were derived from the response of a full non-linear model to a (small) step input, obtained through simulation. The objective functions were not required to be conveniently mathematically tractable; rather they were common criteria used by practising control engineers, such as gain and phase margin, rise and settling time. 



The several objective functions, the multiobjective ranking algorithm and all GA routines were implemented as MATLAB M- and MEX-files. A graphical interface was also written as an M-file, making use of the graphical facilities of MATLAB. The model was simulated with SIMULINK. 



A typical set of design trade-offs resulting from a MOGA design exercise is shown in Fig. 5. In this "parallel co-ordinates representation", each line in the graph represents a potential solution to the design problem, indicating the achieved objective values for that solution. All solutions are both non-dominant and satisfy the prescribed goals as represented by the "(" marks. The decision-maker (DM) must select a suitable compromise from this set of solutions. DM may interact with the MOGA as it runs to "tighten" or "slacken" the goals, in order to target a specific compromise solution. 



Through such a representation (Fig. 5), the DM is informed of conflicts, or otherwise, between objectives. For example, in Fig. 6, solution lines between Objectives 2 and 3 clearly cross one another, indicating that improvement in one objective can only be achieved at the expense of the other objective. Other refinements at the disposal of DM include the ability to specify "hard" constraints for objectives.



�



Fig. 5 Design Objective Trade-Offs





5.2 Control mode analysis for advanced concept aero-engines 



Chipperfield et al (1997) extended this approach to evaluate a set of candidate control modes in a study to consider some problems likely to be associated with new variable cycle engine concepts. The nine objectives considered included typical control system design criteria along with physical constraints, such as maximum turbine blade temperature. Simple controller implementations were evaluated for a variety of loop configurations and a selection of alternative actuators and sensors. This provided valuable insights into the characteristics of the alternative control mode solutions which satisfied the design criteria. For example, it was possible to identify control modes which offered solutions using reliable sensors or, for example, those which placed less stress on physical components at the expense of a less exacting performance.



5.3 System Architectures for Distributed Aero-Engine Control Systems



Recently, Thompson et al (1998) have explored the potential of the increasing use of embedded intelligence through deployment of smart sensors and actuators in future distributed control architectures for aero-engines. Use of MOGA in assessing the potential of alternative architectures is dramatically reducing design times, while providing an opportunity to contemplate a rich set of potential solutions. Metrics such as technological risk, fault diagnosis capability and cost are introduced. Variables include bus interconnection topology, number of smart interface units and "mix" of dumb/smart sensors and actuators. In 100 generations, the MOGA was able to consider 4000 architectures, assisting DM (expected, in this case, to be an expert systems architecture designer) to identify characteristics of classes of solution such as simplex, duplex and triplex architectures and to identify key conflicts between objectives.



5.4  Multidisciplinary Optimisation



Multidisciplinary optimisation (MDO) is needed for increasingly complex design problems where system performance characteristics are influenced by more than one discipline, for example, the aerodynamic-structural optimisation of an aircraft wing. The MOGA approach is proving effective in addressing the non-commensurate objectives which necessarily arise in such problems. Moreover, Khatib and Fleming (1997) have successfully applied the methodology to examples derived from the NASA MDO Test Suite (Padula et al 1996). Current work is successfully matching the use of MOGA with the industrial design environment's organisation and practice.



5.5  Related Work



Other interesting applications and developments grow apace. Dakev et al (1997) have harnessed MOGA to produce H(  designs for an electromagnetic suspension control system for a Maglev vehicle, simultaneously satisfying specific performance criteria within the framework of an H( loop-shaping design procedure. 



Schroder et al (1998) have successfully applied MOGA on-line to tune PID controllers for an active magnetic bearing application with an immediate 50% improvement in performance. Recent work has similarly placed this work within the framework of an H( loop-shaping design procedure. 



Rodriguez-Vazquez et al (1998) have advanced the contemplation of multiple design criteria into the domain of multiobjective genetic programming and demonstrated how non-linear system identification may be achieved through attention to competing criteria such as minimum residual error, long-term prediction error and model parsimony, while allowing the genetic program to evolve an appropriate model structure.



Finally, Shaw and Fleming (1997) have applied MOGA to a scheduling problem in a chilled ready meal industry in order to improve optimisation of production schedules, where objectives include minimisation of rejected orders, staffing balance and lateness of batches within orders. This particular technique is being currently extended to batch scheduling problems arising in the chemical process industry.
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