Continuous models with dead-time


Many real systems present an unavoidable time delay in the signal flow between the components. The delay usually results from the physical separation of the components and due to limited speed of material or energy transfer that occurs between that components.


This may be encountered in various types of systems, especially systems with hydraulically, pneumatically or mechanical transmissions (ex. pipes, transportation bands), thermodynamic systems, etc. Typically, for control systems this pure time delay appears as a delay between a change in the manipulated variable and its effect on the controlled plant, or as a delay in the measurement of the output signal. Such time delays appear in digital controllers too, due to their sequential operation and limited computing speed.


In literature this type of time delay is referred as dead-time or transportation lag, in order to distinguish it from the delays (time constants) associated with the speed of energy changes that occur in that dynamic system.


For simplicity and better understanding let consider as example a fluid with a temperature � EINBETTEN Equation.2  ��� flowing through a pipe. This is shown in Figure 2. The fluid velocity is � EINBETTEN Equation.2  ��� and it is considered constant with respect to time. The pipe length is L, so it takes a time � EINBETTEN Equation.2  ��� for the fluid to move from one end to the other.
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Figure 2. Process with dead-time (fluid flow trough a pipe)





Let � EINBETTEN Equation.2  ��� denote the incoming fluid temperature and � EINBETTEN Equation.2  ��� denote the temperature of the fluid living the pipe. Now, suppose that the temperature of the incoming fluid suddenly increases. If this is modelled as a step function, the result can be followed in Figure 3.
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Figure 3. Time plots of the input and the response (fluid flow trough a pipe)





In assumption that no heat energy is lost, � EINBETTEN Equation.2  ���, the temperature at the output, is � EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ��� is the temperature at the input. Thus a time � EINBETTEN Equation.2  ��� later the output temperature suddenly increases with an equal value. A similar effect occurs for any change in � EINBETTEN Equation.2  ���, so in general we may write for our example:


� EINBETTEN Equation.2  ���.	(1.86)


Applying the Laplace transform together with the time-shifting theorem, results:


� EINBETTEN Equation.2  ���,	(1.87)


where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� represent the Laplace transforms of variables � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���, respectively.


If we generalise the above conclusions for models of linear continuous-time dynamic systems, the dead-time appears as a corresponding valued time-shift (delay) of the output variable. If we continue to note the time delay with � EINBETTEN Equation.2  ���, the general mathematical model is:


� EINBETTEN Equation.2  ���	(1.88)


Solving this model in time-domain means nothing else but solving it without dead-time and then shifting the result in time with a value equalling the dead-time.


Applying the Laplace transform to Equation (1.90) with zero initial conditions in order to determine the corresponding transfer function, we obtain:


� EINBETTEN Equation.2  ���.	(1.89)


Hence, the transfer function of a system that includes a deadtime element equals the transfer function of the system without dead-time multiplied with the term � EINBETTEN Equation.2  ���.


The presence of the dead-time means that the system does not have a characteristic equation of finite order. In fact our simple example shows that there are an infinite number of characteristic roots (zeros or poles) for a system with dead-time.This can be seen by noting that the term � EINBETTEN Equation.2  ��� can be expanded in an infinite Taylor-series as:


� EINBETTEN Equation.2  ��� .	(1.90)


In engineering practise one can use different polynomial approximations in algebraic modelling of dead-time systems. Two of them are commonly used; one rough:


� EINBETTEN Equation.2  ��� .	(1.91.a)


and the other, more precise but increasing the computational effort:


� EINBETTEN Equation.2  ��� .	(1.91.b)


� EINBETTEN Equation.2  ��� .	(1.91.c)


The last two approximations are known as first-order Padè approximation and as second-order Padè approximation, respectively.


There could be (or already were) developed approximations of higher order, but nevertheless the enumerated are commonly used in practice.
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