Aliasing of sampled signals


The above example shows us a very important issue. The uniform sampling cannot distinguish between two sinusoidal signals when their circular frequencies have a sum or difference equal to a multiple integer of � EINBETTEN Equation.2  ���. This means that the only effective frequency range for uniform sampling is � EINBETTEN Equation.2  ���. That is the signal being sampled must have no circular frequency content above � EINBETTEN Equation.2  ���, if uniform sampling is not to distort the signal’s information. The frequency � EINBETTEN Equation.2  ��� (radians per time unit) is called the Nyquist frequency or the folding frequency, because by uniform sampling all frequencies in the signal are folded into the interval � EINBETTEN Equation.2  ���. This phenomenon is called aliasing. It is typically seen in motion pictures when a rotating spooked wheel or an aircraft propeller rotates faster it appears to slow down then stop or even rotate backward. That is because the sampling process produced by the picture frames „aliases“ the high rotation speed (high frequencies) into a lower frequency interval defined by the Nyquist frequency.


As explanations we consider a continuous-time signal x(t) that has the Fourier transform X(() and that is sampled periodically. It follows from the previous example that the sampled signal � EINBETTEN Equation.2  ��� can be interpreted as Fourier coefficients of the function � EINBETTEN Equation.2  ���. The function � EINBETTEN Equation.2  ��� was denoted as the Fourier transform of the sampled signal � EINBETTEN Equation.2  ��� and is periodic with period that corresponds to the sampling frequency � EINBETTEN Equation.2  ���. If the continuous-time signal has no frequency components higher than the Nyquist frequency, the Fourier transform � EINBETTEN Equation.2  ��� is a simply periodic repetition of the Fourier transform � EINBETTEN Equation.2  ���. So, after sampling it is no longer possible to separate the contributions of frequencies that differ in integer multiples of the sampling frequency. This means that a frequency � EINBETTEN Equation.2  ��� can be considered to be an alias of the frequency � EINBETTEN Equation.2  ���.


The sampling theorem (Shannon’s theorem)


The concept of aliasing leads directly to the sampling theorem or Shannon’s theorem. This is connected to the reconstruction of continuous signals from the sampled ones.


If the originally continuous signal has to be reconstructed from the sampled signal, this has to be done by filtering it with an ideal bandpass filter with cutting frequencies � EINBETTEN Equation.2  ��� and� EINBETTEN Equation.2  ���, where� EINBETTEN Equation.2  ��� and� EINBETTEN Equation.2  ��� delimit the frequency spectrum of the continuous signal. This can be achieved exactly only if the sampling frequency:


� EINBETTEN Equation.2  ��� .	(1.104)


The Shannon’s sampling theorem summarises these and can be enounced as follows:


A band-limited continuous-time signal that has a maximum frequency � EINBETTEN Equation.2  ���, can be reconstructed from its uniformly sampled values if the sampling frequency � EINBETTEN Equation.2  ��� is at least twice the maximum frequency. That is:


� EINBETTEN Equation.2  ��� .	(1.105)


Notice that Shannon’s theorem presupposes the existence at disposal of infinite samples.


With the principal exception of a pure sinusoid, most physical signals have no finite upper frequency � EINBETTEN Equation.2  ���. Their frequency spectra approach zero only as � EINBETTEN Equation.2  ���. In such cases � EINBETTEN Equation.2  ��� is estimated by finding the frequency range containing most of the signal’s energy.


In engineering applications (signal processing, control, identification, etc.) a safety factor of 2 to 10 is applied to determine the sampling rate. This factor is necessary because an infinite sequence of impulses is not available, as it is required by the sampling theorem.


To avoid aliasing, usually a low-pass filter (analogue filter), called guard filter or anti-aliasing filter, is inserted before the sampler in order to eliminate the frequencies above the Nyquist frequency. Commonly, standard first- or second-order low-pass filters are used. Sometimes one may use higher order filters (Butterworth, Bessel, Cebisev). By definition, the filtered part has low energy and is considered equivalent to noise in the system that should be filtered out anyway. In modelling it is necessary to include the model of filter (if exists) when dealing with sampled data systems.


If � EINBETTEN Equation.2  ��� is too large i.e. the sampling frequency is too small then:


� EINBETTEN Equation.2  ��� ,	(1.106)


and overlapping of fundamental and side spectra will arise. In this case an error-free filtering of the fundamental spectrum is not possible. Therefore with this incorrectly chosen sampling frequency the band-limited continuous signals cannot be recovered without errors.


Shannon’s sampling theorem gives the result of representing a continuous-time signal by its sampled values for periodic sampling. Aperiodic sampling will not be treated here.


Reconstruction of continuous signals from sampled signals


The inversion of the sampling operation, that is the conversion of a sequence of values (numbers) � EINBETTEN Equation.2  ��� to a continuous-time function x(t) is called reconstruction. This operation can be done by special filters or hold elements. An ideal filter would convert the sampled signal � EINBETTEN Equation.2  ��� back to the continuous-time signal x(t) without error. If such a perfect filter were possible in the practice, then the sampled-data system would behave the same as the continuous system. The practical filters (hold elements) reconstruct the continuous-time signals with less or more accuracy. Some reconstruction methods are discussed now.


a) Shannon reconstruction


For the case of periodic sampling of band-limited signals, it follows from the sampling theorem of Equation (1.105) and the inverse Fourier transform formula of Equation (1.102) (see also the previous illustrative example!) that the reconstruction is given by:


� EINBETTEN Equation.2  ���	(1.107)


because � EINBETTEN Equation.2  ���.


So, the characteristics of the Shannon reconstruction are given by the function:


� EINBETTEN Equation.2  ���	(1.108)


that has a maximum equalling to 1 at t=0 (or � EINBETTEN Equation.2  ��� for the general case), so each sample contributes with its whole power in reconstruction of the original signal.


Unfortunately, this reconstruction introduces a delay (see Equation (1.107): the reconstruction of a value at a moment t is expressed in terms of past and future values!). The weight (or error) is about 10( after about 3 samples and less than 5( if 6 samples are considered (before and after the moment t). This inevitable but necessary delay implies that Shannon reconstruction cannot be used in control (because it is not causal !). However, it is useful sometimes in digital communication or in signal processing applications (for ex. compact disc players). Shannon reconstruction can be used also for modelling purposes in off-line system identification.


Other drawbacks of the Shannon reconstruction are that it is complicated (hard calculus to be worked out) and that it can be applied only to periodic sampling. Therefore, other, more simple reconstruction methods are to be applied.


a) The Zero-Order Hold (ZOH)


The filter with most simple reconstruction is given by the zero-order hold (ZOH). The term zero order refers to a zero-order polynomial (a constant value) used to extrapolate between the sampling times. It means that the value of the last sample is retained by the hold element (filter) until the next sample is taken. The result is a staircase signal (Figure 1.9).
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Figure 1.9. The sampling and zero order hold operation





The staircase function can be described by the following relation:


� EINBETTEN Equation.2  ���	(1.109)


or by superposition of time shifted step functions 1(t):


� EINBETTEN Equation.2  ��� .	(1.110)


We may conclude that the reconstructed signal is peacewise constant, continuous from the right and equal to the sampled signal at the sampling instants.


Instead of time-description of the ZOH, sometimes it is preferable to work with its s transfer function. Applying the Laplace transform (with zero initial conditions) ant its time-shifting property to Equation (1.110), results:


� EINBETTEN Equation.2  ��� ,	(1.111)


where Equation (1.95) was used. The transfer function of the ZOH is:


� EINBETTEN Equation.2  ��� .	(1.112)


The zero order hold can be modelled as an integrator that is only effective for a time period T0 and resets at each sampling instant. Its impulse response equals to a rectangular pulse of height 1 and duration T0 . Its gain results from Equation (1.112) for � EINBETTEN Equation.2  ��� to � EINBETTEN Equation.2  ���. Hence the zero order hold supplies a gain T0 . As we stated before, the ideal sampler introduces a gain of � EINBETTEN Equation.2  ���, so, the sampler followed by a zero-order hold does not affect the average gain of the considered system.


In an attempt to recover the continuous signal x(t) from the staircase signal xh(t) by averaging, this involves a time shifting of � EINBETTEN Equation.2  ���. So, the holding element introduces a phase-shift that approximately equals a dead-time element with the dead-time � EINBETTEN Equation.2  ���.


To study the frequency domain behaviour of the zero order hold a substitution � EINBETTEN Equation.2  ��� and a series expansion of Equation (1.112) yields:


� EINBETTEN Equation.2  ��� ,	(1.113)


where the approximation is valid for low frequencies, that is � EINBETTEN Equation.2  ���(much lower than the sampling rate). The result shows that for low frequencies the zero order hold behaves like a first-order low-pass filter. The gain results also of value T0.


The zero order hold is by far the simplest and easiest to construct physically or to handle it analytically. In digital computer systems the standard A-D converters incorporate the zero order hold as they are often designed in such a way that the last converted value is held constant until a new conversion is ordered.


The zero order hold has also the advantage that it can be used for reconstruction of nonperiodic sampled signals. Notice, however that the reconstruction gives an exact inverse of the sampling operation only for the signals that are right continuous and piecewise constant over the sampling intervals. For all other signals, the reconstruction in the case of periodic sampling gives an error that depends of the sampling period. This claims for small sampling periods (or higher sampling frequency, much higher than the Nyquist frequency!).


a) The First-Order Hold (FOH)


The zero order hold is regarded as a zero-order polynomial extrapolation. For better approximation of smooth continuous-time functions it is also possible to use higher-order polynomials in order to obtain smaller reconstruction errors. Such polynomial can be of first order (linear extrapolation), of second order (parabolic extrapolation), of third order (cubic extrapolation) and so on.


A first-order causal polynomial extrapolation leads to the first order hold (FOH). This polynomial is of form:


� EINBETTEN Equation.2  ���	(1.114)


The reconstruction is thus obtained by extrapolating the line between the two most recent samples (Figure 1.10).
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Figure 1.10. Sampling and first order hold operation





The transfer function of the first order hold follows by Laplace transformation as:


� EINBETTEN Equation.2  ��� .	(1.115)


The first order hold can be modelled as a double integrator that is only effective for a time period T0.. The frequency behaviour presents the same low-pass filter effect at low frequencies, but the phase shift (delay) due to averaging increase at about the sampling period’s value T0.. Its gain results to � EINBETTEN Equation.2  ���. It is the same as for ZOH, but in this case it resulted from Equation (1.115) for � EINBETTEN Equation.2  ���.


For periodic sampling of signals with smooth second derivative the reconstruction error depends on � EINBETTEN Equation.2  ���, hence a better approximation for higher sampling rates is obtained.


Note that Equation (1.114) is nothing else but the power series approximation of function x(t) between the sampling instants truncated at the first derivative. For signals with smooth higher order derivatives it is possible to construct similar extrapolation polynomials of higher order. Reconstruction of this type is not very common in practice, however because they are more complicated to implement or are time consuming in computing.


a) The exponential hold (EH)


One of the simplest filters used in engineering practice is the exponential hold (EH). The transfer function for an exponential hold is:


� EINBETTEN Equation.2  ��� ,	(1.116)


where Tf denotes the filter’s time constant or the slope of the exponential decay for impulse response at the first time moment.


Many system components have similar transfer function (similar model) and thus may be used as exponential filters. Well-known is the component low-pass filter in the detector of the AM radio receivers aiming the same role of extracting the continuous-time (useful) broadcasted signal from amplitude modulated semisinusoids of much higher frequencies. The output from an exponential hold is an exponential decay between the sampling instants. At each sampling instant, usually there is a step change (or discontinuity) between the successive exponential decays. The amount of step change at each sampling instant equals to the value (area) of the impulse at that particular moment.
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