Discrete-time functions

An amplitude modulated discrete-time function � EINBETTEN Equation.2  ��� generated by periodic sampling with sampling time � EINBETTEN Equation.2  ��� of a continuous-time function � EINBETTEN Equation.2  ��� is defined as:

� EINBETTEN Equation.2  ���	(1.117)

Discrete-time functions can be obtained as stated, by discretizing the time..

Discrete-time models

Just as sampling is used to convert a continuous-time signal into a discrete-time signal or just as discretizing the time is used for a continuous-time function to obtain a discrete-time function, a similar process is used to convert a continuous-time model (a differential equation) into a discrete-time model (difference equation). This last form allows us to obtain a solution of the model with a digital computer or calculator (inherently discrete-time devices).

Generating difference equations from differential equations

There are several algorithms for obtaining difference equations from differential equations. These are also known as numerical methods for solving differential equations.

The resulting numerical algorithms differ mostly as a result of the specific procedure used to obtain the difference equations. In general, as the accuracy of the approximation is increased, so is the complexity of the programming involved. Fortunately there are a lot of software products on the market that make easier the solving of even continuous or non-linear models.

Despite them it is important to review some methods widely used in engineering praxis. All presented methods will use as example a first order differential equation of form:

� EINBETTEN Equation.2  ��� .	(1.118)

Also, the signals and the functions are considered discretized in time, that is the time variable t has discrete values:

� EINBETTEN Equation.2  ��� .	(1.119)

Hence the discrete-time first derivative is approximated. Extension for the higher derivatives results immediately.

a) The Euler method

By definition, the first derivative for a continuous function � EINBETTEN Equation.2  ��� in a point � EINBETTEN Equation.2  ��� is:

� EINBETTEN Equation.2  ��� .	(1.120)

If the time is discretized and the time increment equals the sampling period: � EINBETTEN Equation.2  ��� and it is small enough, the derivative can be replaced by the approximate expression:

� EINBETTEN Equation.2  ��� .	(1.121)



Assuming to the right-hand side of Equation (1.118) a discrete-time function, the Euler method yields:

� EINBETTEN Equation.2  ��� ,	(1.122)

from where results the difference equation:

� EINBETTEN Equation.2  ��� ,	(1.123a)

or the recursive equation, that can be easily programmed on a computer:

� EINBETTEN Equation.2  ��� .	(1.123b)

The sampling period is called also as step size for the numerical iteration. The error in the Euler method increases with time and depends on the step size and on the number of significant figures of the computer. The accuracy can be improved by using a smaller value of the step size but in this case the computing time increases. Selecting the proper step size is always a correlation with the dynamics of the model and how fast the input signal of the model changes with time. The remarks concerning the choose of the sampling period are valid in this case, too.

The Euler method approximates the derivative by a forward difference. The method can be applied for determining the next discrete-time value (for example solving off-line a model) but it cannot be used when aiming the derivatives’ value at a moment when only previous samples are at disposal (on-line real-time applications as control or identification). In these cases the backward difference method is to be used.

b) The backward difference method

The derivative (1.120) can be approximated also with the expression:

� EINBETTEN Equation.2  ��� .	(1.124)

So, the backward difference method applied to Equation (1.118) yields:

� EINBETTEN Equation.2  ��� ,	(1.125)

from where results the difference equation:

� EINBETTEN Equation.2  ��� ,	(1.126a)

or the recursive equation, that can be easily programmed on a computer:

� EINBETTEN Equation.2  ��� .	(1.126b)

The method can be easily extended. For the second order differential results:

� EINBETTEN Equation.2  ���	(1.127)

that is a second order (two steps behind) expression.

c) The trapezoidal integration method

Consider the Equation (1.118) that can be seen as the function � EINBETTEN Equation.2  ���is the time-integral of function f. Integrating the Equation (1.118) between two successive sampling instants:

� EINBETTEN Equation.2  ��� ,	(1.128)

and approximating the right-hand side integral with the area of a trapeze, yields the difference equation:

� EINBETTEN Equation.2  ��� ,	(1.129a)

or the recursive equation:

� EINBETTEN Equation.2  ��� .	(1.129b)

The trapezoidal approach gives a better approximation, so it is preferred in many engineering applications.

d) Advanced numerical methods

In light of the large variety of differential equation types, it is no wonder that many different numerical methods exist for solving them. Unfortunately, some methods work well only for special classes of problems.

Further, we consider a short review of two methods that are generally useful and are widespread in engineering applications. The first is the so called predictor-corrector method and the second is the Runge-Kutta family of algorithms. The last algorithms are widely available in different software packages.

The predictor-corrector algorithm is based on the Euler method but has a greater accuracy. It combines Euler „prediction“ method with the trapezoidal „correction“ method of integration. The numerical solution of Equation (1.118) consists of two phases. In the first, applying Euler formula of Equation (1.123b) we predict (estimate) the value:

� EINBETTEN Equation.2  ��� ,	(1.130)

where for better understanding the function f was written explicitly. Then we correct the result using the trapezoidal method:

� EINBETTEN Equation.2  ��� .	(1.131)

For purposes of comparison with the Runge-Kutta methods to follow, the predictor-corrector method can be expressed as:

� EINBETTEN Equation.2  ��� ,	(1.132)

The Runge-Kutta methods have at the basis, analogous to many other methods for numerical solving of differential equations, the Taylor power series representation. Without developing the mathematical background for them, two of the Runge-Kutta algorithms will be presented, the second-order and the fourth-order algorithm. The names come from the truncation of theTaylor series after the second and after the fourth derivative, respectively.

The Runge-Kutta second-order algorithm is:

� EINBETTEN Equation.2  ��� ,	(1.133)

where w1 and w2  are weighting factors and ( and ( are constants. If f from g2 is expanded into a two-variable Taylor series:

� EINBETTEN Equation.2  ��� ,	(1.134)

where the omitted terms are of the order � EINBETTEN Equation.2  ��� and higher. If it is substituted together with g1, in the last relation of Equation (1.133), after collection of terms results:

� EINBETTEN Equation.2  ��� .	(1.135)

The partial derivatives can be calculated by applying the Euler or the backward difference method and the coefficients satisfy the relations:

� EINBETTEN Equation.2  ���	(1.136)

Thus the second order Runge-Kutta algorithm is categorised by the parameters � EINBETTEN Equation.2  ���, one of which can be chosen independently. The choice � EINBETTEN Equation.2  ��� minimises the truncation error, while for � EINBETTEN Equation.2  ��� the trapezoidal integration method is obtained if f is only a function of t and otherwise, is the same as the predictor-corrector algorithm.

The Runge-Kutta fourth-order algorithm is:

� EINBETTEN Equation.2  ���	(1.137)

There are ten parameters and the comparison with the Taylor series expansion (inclusive the fourth derivative) gives only eight equations. There are several methods to choose the parameters' value. The most utilised parameter values are:

� EINBETTEN Equation.2  ���	(1.138)

The so called classical Runge-Kutta fourth-order algorithm is:

� EINBETTEN Equation.2  ���	(1.139)
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