Difference equations representation of discrete-time models


There were presented different methods of obtaining difference equations from differential equations. Generally, for a differential equation of order n one will obtain a difference equation of the same order. This can be written in the form:


� EINBETTEN Equation.2  ���	(1.140)


Using the backward difference method, the same model appears generally as:


� EINBETTEN Equation.2  ���	(1.141)


where � EINBETTEN Equation.2  ��� represents the input signal and � EINBETTEN Equation.2  ��� means the output signal of the system, both considered at the discrete-time moment � EINBETTEN Equation.2  ���. As they are discrete-time functions, we will use further the much simpler notations:


� EINBETTEN Equation.2  ���	(1.142)


The coefficients � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) and � EINBETTEN Equation.2  ��� (� EINBETTEN Equation.2  ���) are real and constant numbers. They are not necessarily equal for the same discrete-time model expressed in the two forms. The coefficient � EINBETTEN Equation.2  ��� was not explicitly written as it was considered having unitary value. If it is not so, it is an easy matter to divide each term of the equation by it to yield the mentioned form of Equation (1.141). Note that � EINBETTEN Equation.2  ��� is the causality condition, that represents the pole excess of the considered linear model.


Solving the discrete-time model is easy with the aid of a computer. First it is necessary to express Equation (1.141) in a regressive computational form:


� EINBETTEN Equation.2  ���	(1.143)


and then to include it in a program loop. The n initial conditions from differential equation’s solution are transformed now to start conditions for calculus, that means that it is necessary to know the n previous values: � EINBETTEN Equation.2  ��� of the output.


Time-shift operator representation of the discrete-time models


As we have seen, differential operator calculus is a convenient tool for manipulating differential equations with constant coefficients (linear models). An analogous operator calculus can be developed for systems described by linear difference equations with constant coefficients. In the development of operator calculus, the systems (models) are viewed as operators that map input signals to output signals. For the time-shift operator the signals are considered as doubly infinite sequences � EINBETTEN Equation.2  ���.


The forward-shift operator will be denoted by q and has the property:


� EINBETTEN Equation.2  ���	(1.144)


Usually, in mathematical treatment, the signals have unitary norms. So it is considered the time-shift operator. This means that the calculus with shift operators is simpler than differential calculus, because the differential operator D (as was introduced) is unbounded.


The inverse of the forward-shift operator is called backward-shift operator or delay-operator and is denoted by � EINBETTEN Equation.2  ���. Hence


� EINBETTEN Equation.2  ���	(1.145)


Notice that it is important for the range of the operator to be doubly infinite sequences; otherwise the inverse of the forward-shift operator may not exist. In mathematical modelling either, forward-shift operator and/or backward-shift operator representations are used. For example, in discussion of problems related to causality, it is more convenient to use the backward-shift operator while the system order is easier to be found out from the forward-shift representation.


Operator calculus gives also a compact description of systems and makes it easy to derive relationships among system variables, because manipulation of difference equations is reduced to a purely algebraic problem. This is also the case of using the z transform, but the last uses the complex variable z. The separation is useful same as it is normally done between the complex variable s in the Laplace transform and the differential operator D.


Illustrative example


Find some approximate relations between the differential operator D and the time-shift operator q.


Solution:


a) Euler method


Using Equation (1.121) results:


� EINBETTEN Equation.2  ��� .


So, the approximate relation is:


� EINBETTEN Equation.2  ��� .�
�
a) Backward difference method


Using Equation (1.124) results:


� EINBETTEN Equation.2  ��� .


So, the approximate relation is:


� EINBETTEN Equation.2  ��� .�
�



The shift operator is used to simplify the manipulation of higher-order difference equations. Consider the difference Equation (1.140) where use of the shift operator gives:


� EINBETTEN Equation.2  ���	(1.146)


With introduction of the polynomials:


� EINBETTEN Equation.2  ���	(1.147)


the difference Equation (1.146) can be written simple as:


� EINBETTEN Equation.2  ��� .	(1.148)


A difference equation can be expressed also in terms of the backward-shift operator. Starting from Equation (1.141) and applying the backward-shift operator yields:


� EINBETTEN Equation.2  ���	(1.149)


Noting with:


� EINBETTEN Equation.2  ���	(1.150)


the backward-shift operator description results also in a simple form:


� EINBETTEN Equation.2  ��� .	(1.151)


Notice that both expressions (1.148) and (1.151) correspond to the same system discrete-time model, exprimed somehow differently by the use of different discretizing methods. To demonstrate this, one can easily observe that the polynomials:


� EINBETTEN Equation.2  ���	(1.152)


are obtained from the polynomials A(q) and B(q), respectively by reversing the order of the coefficients. These polynomials are known as reciprocal polynomials. Introduction of reciprocal polynomials allows the model in Equation (1.148), after some simple algebraic operations, to be written as:


� EINBETTEN Equation.2  ���	(1.153)


that is the same as that obtained in Equation (1.151).


Some care must be exercised when operating with reciprocal polynomials because � EINBETTEN Equation.2  ���(the reciprocal of the reciprocal polynomial) is not necessarily the same as A. For example, if � EINBETTEN Equation.2  ��� then � EINBETTEN Equation.2  ��� and the reciprocal of this is � EINBETTEN Equation.2  ���, which is apparently different from A(q). This may represent a difficulty in handling difference equations in purely algebraic forms. As we have seen, the difference Equation (1.148) can be multiplied by powers of q that simply means a time-shift. Equations for shifted times can be multiplied by real numbers and added, which corresponds to multiplying Equation (1.148) with a polynomial in q. So, if Equation (1.148) exists, it is also true that:


� EINBETTEN Equation.2  ��� .	(1.154)


To obtain a convenient algebra, it is useful to be able to divide an equation like Equation (1.148) with a polynomial in q. If division is possible, an equation as Equation (1.148) can be solved with respect to � EINBETTEN Equation.2  ��� and one obtain:


� EINBETTEN Equation.2  ��� .	(1.155)


The following illustrative example shows that it is not possible to divide always by a polynomial in q unless special assumptions are made.


Illustrative example


Consider the first-order difference equation� EINBETTEN Equation.2  ���: � EINBETTEN Equation.2  ��� , where � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���.


Solve it using the classical method and the time-shift operator method� EINBETTEN Equation.2  ���.


Solution:


a) Classical method


We exprime the given difference equation in a recursive form:


� EINBETTEN Equation.2  ���


and then we give successive values for k starting with k0 . The solution will be:


� EINBETTEN Equation.2  ��� .


b) Time-shift operator method


Applying the time-shift operator q, the equation becomes:


� EINBETTEN Equation.2  ��� .


Dividing by q-a results:


� EINBETTEN Equation.2  ��� .


q-1  has unit norm, the right-hand side is a convergent series that can be expressed as:


� EINBETTEN Equation.2  ��� .


Comparing the solutions, it is clear that they are the same only if the initial condition is zero.


The example shows that division is allowed if there is some k0  such that all sequences are zero for � EINBETTEN Equation.2  ���. In this case the normal manipulations of multiplication and division of model equations by polynomials in the shift operator as well as addition and substraction of equations can be done without any assumption. The assumption that all initial conditions for the difference equations are zero will be used further, as a convention. If no such assumption is made, the division is permitted only with polynomials that have all the zeros inside the unit disc. This corresponds to the fact that effects of initial conditions on stable modes will eventually vanish.


The use of operator calculus permits the input-output relationship to be conveniently expressed as a rational function in either the forward and the backward shift operator. This function is called the pulse-transfer operator and is noted by W(q) in Equation (1.154). It is easily obtained from any system description using purely algebraic manipulations as:


� EINBETTEN Equation.2  ���	(1.156a)


or


� EINBETTEN Equation.2  ��� .	(1.156b)


Usually the polynomials A(q) and B(q) do not have common factors. In such cases, the denominator polynomial A(q) is the characteristic polynomial and it is of order n, specifying the order of the system model or the number of the poles. The zeros of the nominator polynomial B(q) are called zeros, similar to the poles or zeros of the transfer function in the case of continuous linear systems.


Notice that it is important to use the forward-shift form to determine the order of a system. The backward-shift form is useful to put in evidence the pure time shift (time delay) that exists between the input and output signals. The time delay gives rise to poles in the origin that should be also considered. For example in computer controlled systems there is no direct term in the discrete-time model as it exists at least one sampling period delay between the input and the output signals. This is due to the fact that the output is computed and is available through the D-A converter only at the next sampling moment.


If some common factors exist, then the pulse-transfer operator can be simplified and it will specify only the pure input-output dependencies. The internal compensating effects that appear in this case cannot be explicitly described. It is possible only when using the state-space representation of that system.
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