The inverse z transform


As in the case of Laplace transform, one of the major objectives of the z transform is, that for discrete-time signals (or functions, or models) algebraic manipulations can be made in the z domain and then the final time behaviour is determined by inverse z transformation. In general, the inverse z transform of the complex function � EINBETTEN Equation.2  ��� yields information only on � EINBETTEN Equation.2  ���, and not on � EINBETTEN Equation.2  ���. In other words, the z transform carries information only in a discrete fashion, information on the signals only at the sampling instants. With this in mind, the inverse z transform can be performed by using one of the following three methods:


a) The inversion formula


The time sequence � EINBETTEN Equation.2  ��� can be determined from � EINBETTEN Equation.2  ��� with the inversion formula:


� EINBETTEN Equation.2  ��� ,	(1.160)


that is a contour integration along the path (, where ( is any closed path (for example a circle centred at the origin) in the z-plane that encloses all singularities of � EINBETTEN Equation.2  ���.


One way of evaluation of integral from Equation (1.160) is by use of the residue theorem of complex variable theory. Equation (1.160) is equivalent to writing:


� EINBETTEN Equation.2  ���	(1.161)


For simple poles, the residue of � EINBETTEN Equation.2  ��� at the pole � EINBETTEN Equation.2  ��� is obtained as:


� EINBETTEN Equation.2  ���.	(1.162)


For a multiple-order q pole � EINBETTEN Equation.2  ���, the residue of � EINBETTEN Equation.2  ��� at the pole � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.163)


Illustrative example


Given the z transform functions:


a) � EINBETTEN Equation.2  ��� and b) � EINBETTEN Equation.2  ���


find the inverse z transforms by using the inversion formula (residue theorem).


Solution:


a) The given function has two poles: � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���. Formula of Equation (1.162) gives:


� EINBETTEN Equation.2  ���


b) The given function has a second order pole: � EINBETTEN Equation.2  ���. Applying formula (1.163) we get:


� EINBETTEN Equation.2  ��� .


b) The power series method


In this case, the z transform � EINBETTEN Equation.2  ��� is expanded into a power series in powers of � EINBETTEN Equation.2  ���. In view of Equation (1.159) the coefficient of � EINBETTEN Equation.2  ��� is the value of � EINBETTEN Equation.2  ���. The method can be easily programmed on a computer.


Illustrative example


Given the z transform function from the previous example a), find the inverse z transform by using the power series method.


Solution:


The given function can be expanded into a power series in powers of � EINBETTEN Equation.2  ��� by long division:


� EINBETTEN Equation.2  ���


Thus


� EINBETTEN Equation.2  ��� ,


which is the same result as was obtained before.


b) The partial-fraction expansion method


The z transform function � EINBETTEN Equation.2  ���is expanded by partial fraction expansion into a sum of simple recognisable terms, and the z transform table is used to determine the corresponding � EINBETTEN Equation.2  ���. In carrying out the partial fraction expansion, there is a slight difference between the z transform and the Laplace transform procedures. With reference to the z transform table (Table 1.3), we have to note that practically all the transform functions have the term z in the numerator. Therefor, we should expand � EINBETTEN Equation.2  ��� analogous to the partial fraction expansion presented in the case of Laplace transform and then multiply z across to obtain the desired form (for simple zeros), that is:


� EINBETTEN Equation.2  ��� .	(1.164)


Illustrative example


Given the z transform function from the previous example:


� EINBETTEN Equation.2  ��� ,


find the inverse z transform by using the partial fraction expansion method.


Solution:


Expanding � EINBETTEN Equation.2  ��� by partial fraction expansion, we have:


� EINBETTEN Equation.2  ���


Thus


� EINBETTEN Equation.2  ���


From the z transform table of Table 1.3., the corresponding inverse z transform is found to be:


� EINBETTEN Equation.2  ��� ,


which is the same result as was obtained in both previous examples.


Important theorems (properties) of the z transform


The following basic theorems extend the usefulness of the z transform method. They help one to obtain a better understanding of z transformations. The theorems are presented shortly, without proofing them.


1. Linearity of the z transform


The z transformation is a linear operation; that is, for any functions � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� whose z transform exists and for any constants � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���:


� EINBETTEN Equation.2  ���.	(1.165)


2. Real translation (z transform of a time-shifted function)


The real translation makes sense only if the time shift is an integer multiple of the sampling period. We will consider the time-shift equalling to � EINBETTEN Equation.2  ���, with n integer.


a)Real translation to the right (time delay)


The z transform of a time-delayed discrete-time function � EINBETTEN Equation.2  ��� is equal to the z transform of � EINBETTEN Equation.2  ��� multiplied by � EINBETTEN Equation.2  ���, that is:


� EINBETTEN Equation.2  ���	(1.166)


The property is also known as shift into the past.


b)Real translation to the left


The z transform of a discrete-time function shifted to the left � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ��� .	(1.167)


The property is also known as shift into the future. By shifting to the left, the function values of the original non-shifted function � EINBETTEN Equation.2  ��� for i=0,1,...,n-1 vanish, because the z transform is defined only for positive time sequences.


3. Multiplication by t


The z transform of a time-function � EINBETTEN Equation.2  ��� multiplied by its variable t and discretized in time with a sampling period � EINBETTEN Equation.2  ���, is:


� EINBETTEN Equation.2  ��� .	(1.168)


4. Multiplication by � EINBETTEN Equation.2  ���


The z transform of the dicretized time-function � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ��� .	(1.169)


5. Multiplication by � EINBETTEN Equation.2  ���


The z transform of the discretized time-function � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ��� .	(1.170)


Notice the change of sign of the coefficient a, or the effect of an exponential damping.


6. Convolution sum


The z transform of the convolution sum over n sampling periods of the discrete-time functions � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.171)


7. Initial-value theorem


If the z transform of � EINBETTEN Equation.2  ��� is � EINBETTEN Equation.2  ��� then:


� EINBETTEN Equation.2  ���.	(1.172)


8. Final-value theorem


If the z transform of � EINBETTEN Equation.2  ��� is � EINBETTEN Equation.2  ���, then the area of the impulse � EINBETTEN Equation.2  ��� as � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.173)


The pulse transfer function and the z transfer function


The mathematical model of a system represents the relationships that exist between the input signal � EINBETTEN Equation.2  ��� and the output signal � EINBETTEN Equation.2  ��� of that particular system. If the considered signals are sampled (time-discretized) by an ideal sampler, the mathematical description of signals is that of infinite impulse trains as was established in Equation (1.94).


The sampler operates at the input of the system as a forcing element that generates periodical impulses. If we consider the time response (the solution of mathematical model) for a singular unitary impulse denoted by the weighting function � EINBETTEN Equation.2  ���, the sampler at the output of the system will transform it to the impulse train:


� EINBETTEN Equation.2  ���.	(1.174)


The impulse train approximation of the input signal is:


� EINBETTEN Equation.2  ���.	(1.175)


The approximate impulse train of the output signal results as a convolution sum (the considered system is linear) over the infinite time interval:


� EINBETTEN Equation.2  ���.	(1.176)


This means that for a specific time instant � EINBETTEN Equation.2  ��� one obtains:


� EINBETTEN Equation.2  ���.	(1.177)


As for the convolution integral for continuous-time systems, the value of the output signal at the time instant � EINBETTEN Equation.2  ��� is given by the product sum of � EINBETTEN Equation.2  ��� and the opposite time-shifted � EINBETTEN Equation.2  ���. The time-shift can be realised either in the impulse response (the weighting function) or in the input signal, as given in Equation (1.176) and/or (1.177).
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