Chapter One. Basic Principles of System Modelling








1.1. Introduction





	Modelling of dynamic systems has been of great interest to engineers for a long time. Within recent years the subject has increased in importance for three reasons. 


The first one is undoubtedly the appearance and development of the digital computers. Before the invention of the digital computer the calculations required for meaningful applications of the subject were often too time consuming and proned to error. In that way gross simplifications were made and only the simplest models of transient behaviour were used. Now computers and widespread pocket calculators allow us to consider more complicated and detailed models and more complex algorithms for analysis are available.


Second, engineers aided with increased computational power, have correspondingly increased the performance specifications required of their designs to make better use of limited materials and energy, or to improve safety.


	Finally the use of computers as system elements for measurement and control allows more complex algorithms to be employed for data analysis and decision making.





1.2. Systems





	A system is a combination of elements intended to act together to accomplish an objective. For example a network consisting of a resistor, a capacitor and an inductor can be considered a system in the sense of our definition. The electrical resistor is an element for impeding the flow of the current, it is usually not considered to be a system in the sense of the definition, but an element of the system. Similarly a mass m attached to a spring of constant k acts as a system, or a car’s engine is a system whose elements are the carburettor, the ignition, the crankshaft, the clutch, the radiator, the battery, and so on.





1.2.1. The Systems Approach.





	In the process of approaching a system in order to solve a problem is widely used the „black-box“ concept, which means that an element of a system is treated as a black box and the analysis focuses on how the connections between the elements influence the general behaviour of the system, according no importance to the elements themselves. That viewpoint implies a willingness to accept a less detailed description of the operation of the individual elements.


	The behaviour of a black-box element is specified by its input-output relation. An input is a cause , an output is an effect due to the input. For example a voltage V applied to a resistor R causes a current i to flow. Than the input-output relation is i=V/R where V is the input and i is the output.





1.2.2. Block Diagrams





The black-box treatment of an element can be expressed graphically as shown below and they are called block diagrams.


Some examples of block diagram representation:


a.)
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�b.)








�c.)








d.)


�





	Thus the symbol in the box represents the operation that must be performed on the input to obtain the output. Whenever the output is the time integral of the input the element is said to exhibit integral causality.


	A simple example of a system diagram is provided in the Figure 1.1. Suppose that mass m is connected to one end of a spring. The other end of the spring is attached to a rigid support. In addition to the spring a force fs,an other force fo acts on the mass. This force is considered to be due to the external world and acts across the system „boundary“; that is it is not generated by any action within the system itself. It might be due to gravity , for example.
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	The cause-and-effect relations can be summarised by the system diagram in fig 1.2.b. The net force acting on the mass in the direction of the positive displacement x is  fo-fs, since the spring will pull up on the mass if the mass position is below the rest position. The addition and the subtraction of forces to produce the net force are represented by a new symbol the comparator , a circle whose output is the signed sum of the inputs. The plus sign indicates that fo is to be added , the minus sign indicates that fs is to be subtracted to obtain the net force.





1.3 Modelling and Analysis





1.3.1 Modelling





	We call a model a description of the objects and processes involved in order to deal in a systematic and efficient way with problems involving time-dependent behaviour. The models can take several forms. A physical model , like a scale model helps us to visualise  how the components of the design fit together and can provide insight not obtainable from the print (which is another model of the problem). An another type of model is a graph or a plot. These model types can be very useful and we will rely on them. The model type we will use frequently is the mathematical model, which is a description in terms of mathematical relations. These relations will consist of differential or difference equations if the model is to describe a dynamic system. There are a lot of mathematical models familiar to every undergraduate student from the elementary physics as the Ohm’s Law: v=iR, or the mathematical model of Newton’s second Law. The aim of these text is to provide an introduction to the development of mathematical models for describing the time-dependent behaviour of some phenomena: electrical systems, mechanical elements, fluid flow, thermal processes.


	In displaying mathematical models block- diagrams are often used, which form allows us to understand the interactions between the system elements. For example the mathematical model of the mass-spring systems shown in Figure 1.1.a. Thus the diagram can be of a valuable aid, but if we wish to solve for the displacement x=x(t), we need the model in equation form: 


�EINBETTEN Equation.2 \s ����



(1.3.1.).�
�



1.3.2 Analysis





	Every time when a mathematical model has been set up the question of its verification shows up. The mathematical model represents a concise statement of our hypotheses concerning the behaviour of the system under study. The verification of the model can be achieved in two ways: verification by experiment or testing it, this is what it is ultimately required of all projects. This is not always carried out, especially than when such component types are dealt with whose behaviour is understood. This is often the case for the types of problems which will be dealt with in this study, consisting of components whose individual behaviour is well understood from past experience. For example using a model with a resistor and its model of  �EINBETTEN Equation.2 \s ���. 


	Analysis is called predicting the behaviour and performance of the model once we are satisfied with the validity of our chosen component models. Most of our mathematical models will describe dynamic behaviour and therefore will consist of differential or difference equations, which ones will not be easy to solve in each case. 





1.4. Types of Systems and Models





1.4.1. Static and Dynamic Systems. Quantitative and Qualitative problems:





	We define a dynamic element to be one whose present output depends on past inputs. For example the present position of a car depends on where it started and what its velocity has been from the start. A dynamic element output can change even than the input is constant or removed. For example the engine of a car is turned off , but the car still moves, it still has a changing output. Conversely, a static element is one whose input at any given time depends only on the input at that time.  That means that a static element’s output can change with the time only if the input changes and will not change if the input is constant or absent.


	For example the current flowing across a resistor, than the resistor is a static element. Will the electromotive force (as input ) be removed, will not flow any current across the resistor (no input cause no output). 


	In the same way we also speak of a static system which one contains all static elements. For example static systems are the systems concerning with graph theoretic problems, routing problems. Any system that contains at least one dynamic element is a dynamic system, which we will concern with.


	There are two typical problems concerning the dynamic systems : a) quantitative problems respectively b) qualitative problems. 


Solving a quantitative problem means to render numerical solution of the equations describing the system, Qualitative analysis of dynamic systems include questions concerning stability and instability ( in sense of Liapunov); boundedness of the solutions (Lagrange stability); estimates of trajectory behaviour; input-output properties. 





1.4.2. Deterministic and Stochastic Models





	We define a model as a deterministic (analytical) one if the inputs, respectively the values of the coefficients are well determined (even with approximation) and there is no any uncertainty in this values.


	A model is called a stochastic (statistical) one if there is uncertainty in the values of the coefficients or the inputs. In such a model the coefficients and the inputs  would be described in terms of probability distributions, involving for example their means and variances.





1.4.3. Lumped and Distributed-Parameter Models





	We define a model as a distributed-parameter model when the output depends on the spatial co-ordinates and time . The model consists of one or more partial differential equations containing partial derivatives with respect to the independent variables( time and the spatial co-ordinates). For example if T is the temperature of a heated metal plate (or room) the temperature will be a function of location and time : T=T(x,y,z,t) and the mathematical model will be an equation containing all the partial derivatives of T with respect to all four variables: 


�EINBETTEN Equation.2 \s ����



(1.4.3.1.)�
�
	A model is called lumped if the spatial dependence is ignored by choosing a single representative value and the output depends on time (if it is dynamic) and the inputs. For example if a metal plate is heated and is considered that the temperature has the same value in the whole plate, and the temperature in every point of the plate depends only on time. The model consists of an equation build up from the unknown T(temperature) and its derivative with respect to time t: 


�EINBETTEN Equation.2 \s ����



(1.4.3.2.)�
�
	The model can be described as the spatial equivalent of the process of dividing a system into static and dynamic elements.





1.4.4. Linear and Non-linear Models





	Let y be the output and x the input of an element that can be either static or dynamic. Its model is written as:�EINBETTEN Equation.2 \s ��� (1.3.4.1) where the function �EINBETTEN Equation.2 \s ���may include operations like differentiation and integration. The model (or element) is said to be linear if for an input of the form �EINBETTEN Equation.2 \s ��� the output is:


�EINBETTEN Equation.2 \s ����
(1.4.4.1.)�
�
where a and b are arbitrary constants. The linearity property is also called the superposition principle because it states that a linear combination of the inputs produces an output that is a superposition (linear combination) of the outputs that would be produced if each input term were applied separately.


	A model is called non-linear if any of its relations do not satisfy (1.4.4.1.).


Differential equations represent input-output relations also, and they can be classified as linear or non-linear. The outputs (solutions) of the model depend on the inputs and the outputs’ initial values. We will see in chapter three that a superposition principle applies to linear differential equations. This is useful because it allows us to separate the effects of more than one input and thus to consider each input one at a time. It also allows us to separate the effects of the initial values of outputs from the effects of the inputs. For this reasons we will always attempt to obtain a linear model for our systems provided that any approximations required to do so to do not mask important features of the system’s behaviour. A differential equation is easily recognised as non-linear if it contains powers or transcendental functions of the dependent variable. For example :


�EINBETTEN Equation.2 \s ����



(1.4.4.3.)�
�
�EINBETTEN Equation.2 \s ����



(1.4.4.4.)�
�
are non-linear models (equations), whereas :


�EINBETTEN Equation.2 \s ����



(1.4.4.5.)�
�
�EINBETTEN Equation.2 \s ����



(1.4.4.6.)�
�
are linear models (equations).





1.4.5. Time Variant and Time Invariant Models





	Models with constant coefficients are called time invariant or stationary models (for example (1.4.4.3.), (1.4.4.4.), (1.4.4.5.)) while those with variable coefficients are time variant or nonstationary models (for example (1.4.4.6.)). The presence of a time-varying coefficient do not make the model non-linear. For example the spring-mass model is a time-invariant model if the mass m do not change in the process, whereas it is a time-variant model if the mass m changes with respect to time, for example it is a tank of water with an opened orifice, where water is flowing.





1.4.6. Discrete and Continuous-time Models





	It is recommended to use a discrete variable to measure time in all the cases when it is inconvenient to view the system’s dynamics in terms of a continuous-time variable. The most common and important situation suggesting the use of discrete-time models occurs when a system contains a digital computer for measurements or control purposes and measurements can not be taken continuously but only at fixed intervals, thus the computer „samples“ the measured variable at these instants.





1.4.7. Model Order





	We will say that a model is a first-order one if it described by a first order differential equation (when it is a continuous-time model) or by a first order difference equation (when it is a discrete-time model.). For example an electric circuit with a resistor of resistance R and an inductor of inductance L and a battery with an electromotive force E. Than the mathematical model of this technical and dynamic system is a differential equation of the first order, as follows: 


�EINBETTEN Equation.2 \s ����



(1.4.7.1)�
�
where i =i(t) means the electrical current, which has to be determined.


	We say that a model is a second-order one if is described by a second-order differential equation (respectively by a second-order difference equation ), or by to coupled first-order equations ,where one can not be solved without solving the other. For example the mass-spring system, which can be described by the following second -order mathematical model:


�EINBETTEN Equation.2 \s ����



(1.4.7.2)�
�
�EINBETTEN Equation.2 \s ����



(1.4.7.3)�
�



1.4.8. Model Classification Diagram. The following diagram from below shows the classification of the models:
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The diagram has not been continued on every branch because of simplicity. Non-linear models can also be classified as discrete or continuous-time models. Every one of them can also be first-order or second-order or higher-order model.





1.5. Linearization





	Due to the usefulness of the linearity(superposition principle) we will attempt to obtain a linear model if possible. In some of the cases this can be achieved ignoring effects that would lead to a non-linear model. A common example of this is the small angle approximation. Assuming that the angle of rotation �SONDZEICHEN 113 \f "Symbol"�� of a lever of length L is small than the displacement x of its end is roughly proportional to �SONDZEICHEN 113 \f "Symbol"�� , such that  x=L�SONDZEICHEN 113 \f "Symbol"�� .The assumption of course is not true for large enough values of �SONDZEICHEN 113 \f "Symbol"��. Obviously this is an approximation based on the Taylor Series expantion of function. Systematically we can proceed in the following way: let consider the input-output model for a state element can be expressed as : y=f(x)  (1.5.1).  A model that is approximately linear in the neighbourhood of the reference point �EINBETTEN Equation.2 \s ��� can be obtained by expanding the function f(x) in a Taylor series near this point and truncating the series beyond the first order term (approximating the series by the first order Taylor polynomial) The series is: 


�EINBETTEN Equation.2 \s ����



(1.5.2)�
�
and the linear relation is:


�EINBETTEN Equation.2 \s ����



(1.5.3)�
�
The method of linearization can be extended to multivariable functions. For a function of two variables:


�EINBETTEN Equation.2 \s ����
(1.5.4)�
�
in the neighbourhood of the point P(a,b), where z=c=f(a,b) we have the following a Taylor series expansion: 


�EINBETTEN Equation.2 \s ����



(1.5.7.)�
�
that will look like:


�EINBETTEN Equation.2 \s ����



(1.5.6)�
�



1.9 Problems





Exercise 1.9.1.


	What is the causal relation for the following elements with the given inputs and outputs?


a.) Charge as input; voltage as output.


b.) Angular acceleration as input; angular velocity as output.


c.) Water volume as input; water height as output. (water tank with vertical sides, that means constant cross section).





Exercise 1.9.2.


Draw a block diagram for the following two models a.) and b.). The inputs are u and v, the output is y, x and z are internal variables:


a.) y=5x , x=v+3z-4y , z=u-2y 


b.)�EINBETTEN Equation.2 \s ���


Exercise 1.9.3.


Consider the following diagrams in Figure 1.9.3.a. and 1.9.3.b. Work out the input-output  relations for each of them. The inputs are : u,v ; Output is: y.
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Exercise 1.9.5.


Obtain a linearized expression for the following functions, defined in the neighbourhood of the given values:


a.) y = cos x , a=0.


b.) y = cos x , a=�SONDZEICHEN 112 \f "Symbol"��/4.


c.) y = exp (3x) , a=1.


d.) z = x �SONDZEICHEN 215 \f "Symbol"��sin y , a=1, b=�SONDZEICHEN 112 \f "Symbol"��/4.


e.) w = (x sin z) / y , a=2 , b= 5 , c=�SONDZEICHEN 112 \f "Symbol"��/4.





Exercise 1.9.6


Is the following model (x input, y output) linear or non-linear ? Why? Explain!


�EINBETTEN Equation.2 \s ���


�
Chapter Two. Quantitative Modelling of Dynamic Systems








2.1. Model development using integral causality.





2.1.1. Rate, Quantity, Integral causality 





	The dynamics of technical systems are mainly characterised by the loss , storage, or transfer of mass or energy. The one way to develop a mathematical model of the system is to identify the flow paths and storage compartments of mass or energy to describe quantitatively how this paths and compartments are connected.


Rates appear and they are always used in a model when the time-dependent behaviour of a system is intended to be described. Rate is the general term for one of the two variables, the other variable is termed effort. For example the liquid level system. Suppose that a thank is provided with an orifice at its bottom, where the outflow rate is qo and the tank is supplied with water through a pipe above the tank with an inflow rate qi. If m represents the mass of water in the tank after a time of t than in a short interval of time denoted by �SONDZEICHEN 68 \f "Symbol"��t the mass of the water accumulated will be �SONDZEICHEN 68 \f "Symbol"��m and we have the relation: �SONDZEICHEN 68 \f "Symbol"��m= (qi -  qo )�SONDZEICHEN 68 \f "Symbol"��t , conform the principle of conservation of mass .Dividing both sides by �SONDZEICHEN 68 \f "Symbol"��t and taking the limit when �SONDZEICHEN 68 \f "Symbol"��t tends to zero ,we will obtain the following differential equation :


dm/dt= qi - qo�
(2.1.1.)�
�
which states that the mass flow rate into the tank, minus the outflow rate , equals the rate at which mass is stored in the tank.


Quantity is the term used to describe the accumulation of rate over time. Rate and quantity are related as cause and effect through the principle of integral causality as discussed in Chapter One.


In the example above the quantity variable is the water mass , the time integral of the net mass flow rate: 


�EINBETTEN Equation.2 \s ����



(2.1.2.)�
�
In the general case quantity results from the time integration of the net rate. Quantity is the effect, rate is the cause and the spatial way they are related is called integral causality. In general if we denote the quantity by Q and the net rate by r then the integral causality states that:


�EINBETTEN Equation.2 \s ����



(2.1.3.)�
�
In electrical systems the quantity variable is charge , the time integral of current, which is the net rate. In mechanical systems displacement( angular displacement) is the quantity variable since it is the time integral of velocity.( angular velocity). In thermal systems the quantity is the heat energy which is the time integral of the net heat flow rate.


In order to set up the models we will employ deferent principles:


a.) principle of conservation of mass 


b.) principle of conservation of energy 


c.) principle of conservation of charge in electrical circuits


d.) Newton’s second law of motion


e.) others


We can classify a system as electrical ,mechanical, fluid, or thermal , depending on what aspect of the system we are trying to model and what physical principles are used. The following table lists the rate variables for these system types.�
Table 2.1.1. Primary System Variables and Their Usual Symbols





Type�
Rate r�
Quantity �SONDZEICHEN 242 \f "Symbol"��r dt�
Effort e �
Flux �SONDZEICHEN 198 \f "Symbol"��=�SONDZEICHEN 242 \f "Symbol"��e dt�
�
Electrical�
Current i �
Charge Q�
Voltage v�
Flux �SONDZEICHEN 198 \f "Symbol"���
�
Mechanical


(translation)�
Velocity v�
Displacement x�
Force f�
Impulse Mx�
�
Mechanical (rotation)�
Angular velocity


           �SONDZEICHEN 119 \f "Symbol"���
Angular displacement �SONDZEICHEN 113 \f "Symbol"���
Torque T�
Angular impulse M�SONDZEICHEN 113 \f "Symbol"���
�
Fluid (incompressible)�
Mass flow rateqm volumeflow rate q�
Mass Q( or m), volume V�
Pressure p�
None�
�
Fluid (compressible)�
Mass flow rate qm�
 Mass Q or m�
Pressure p�
None�
�
Thermal�
Heat flow rate qh�
 Heat energy Qh�
Temperature T�
None�
�



	Effort is used to describe the cause that is due to the storage of potential energy. In the previous example of liquid level system the qo outflow rate was caused by the hydrostatic pressure due to the weight of water , more precisely due to the pressure difference across the outlet. Force is the effort variable in mechanical systems. It is generated when a spring is compressed, or when a mass is elevated against gravity, pressure is the effect variable in fluid systems. When allowed to act , pressure or force is capable to produce motion from the stored potential energy. In thermal systems temperature difference is the effort variable which causes heat energy to flow from the higher to the lower temperature. In electrical systems the effort variable is the voltage difference which produces a current when charge flow from the higher to lower charge quantity. Voltage is an effort variable in such systems.


	Flux is the time integral of effort. A similar causal relation exists between effort and flux as between quality and rate. The general relation is :


�EINBETTEN Equation.2 \s ����



(2.1.4.)�
�
In mechanical systems flux is called impulse and it is the time integral of the force. The impulse Mx is given in terms of the force f by the following relation.:


�EINBETTEN Equation.2 \s ����



(2.1.5.)�
�
But Newton’s second law states that the change in momentum equals the applied impulse, or :


�EINBETTEN Equation.2 \s ����
(2.1.6.)�
�



where m and v are the mass respectively the velocity. Therefore from (2.1.5) and (2.1.6.) results:


�EINBETTEN Equation.2 \s ����



(2.1.7.)�
�
and differentiating both sides with respect to time , yields:


�EINBETTEN Equation.2 \s ����



(2.1.8.)�
�
which corresponds to an alternative statement of Newton’s law.


Flux in electrical circuits results from an accumulation of voltage over time. The change of current through an electrical inductor is related to the flux by :


�EINBETTEN Equation.2 \s ����



(2.1.9.)�
�
where L is the inductance .The flux is related to the voltage across the inductor by 


�EINBETTEN Equation.2 \s ����



(2.1.10.)�
�
Combining relations (2.1.9) and (2.1.10) and differentiating both sides with respect to time yields:


�EINBETTEN Equation.2 \s ����



(2.1.1.1.)�
�
which is the commonly used voltage -current relation for an inductor.


In thermal and fluid systems no elements have a flux variable , unless we choose to consider fluid systems as a subclass of mechanical systems.





2.1.2.	Power. Energy Storage. Power Dissipation. 





	The notion of power P is defined as the product of effort e and rate variable r : 


P=er�
(2.1.2.1.)�
�
with the exception of the thermal systems. So in electrical systems the power is the product of voltage (effort) and the current(rate variable) :


P=vi�
(2.1.2.2.)�
�
and in a mechanical system the product of force and velocity : 


P=fv�
(2.1.2.3)�
�
Since the energy is the time integral of power, we have:


�EINBETTEN Equation.2 \s ����
(2.1.2.4.)�
�
For example, the force deflection relation of a linear mechanical spring is f=kx where k is the spring constant and  x is the displacement. Hence  e=f  and : r=dx/dt gives the potential energy PE stored in the spring and we have :


�EINBETTEN Equation.2 \s ����
(2.1.2.5.)�
�
Similarly, the expression for the kinetic energy KE stored in a mass m moving with velocity v can also be found from (2.1.2.4) with e =f , r=v , f=m(dv/dt) ( the last one from the Newton’s law), it yields : 


�EINBETTEN Equation.2 \s ����



(2.1.2.6.)�
�
The power expression (2.1.2.1.) can also be used to compute the power dissipation in a system. For an electrical resistor , the effort e is the applied voltage v , and the rate is the current i. So the power dissipated by the resistor is : 


�EINBETTEN Equation.2 \s ����
(2.1.2.7.)�
�



2.1.3. State variables. State equations.





	When a system model is to be constructed in terms of variables , these variables have to describe those actions of dissipation and storage of energy, because dynamic systems are due to  dissipation and storage. The variables that describe a system state are its state variables. Since quantity and flux describe the potential and kinetic energy storage , they are the common choices  for this role.


	In general the number of state variables required equals the number of energy storage compartments in the system. This number is the order of the system. That means when we speak of first-order systems, we mean that it has one way of storing energy ; a second-order system has two energy compartments, and so on. It follows that a first-order system is described by a single first-order differential equation. Usually the rate and effort variables of one compartment have to be expressed as functions of the rate and effort variables of other compartments In this case the integration (2.1.3) and (2.1.4) can not be evaluated directly, and therefore we usually express the relation of each compartment as a differential equation: 


�EINBETTEN Equation.2 \s ����



(2.1.3.1.)�
�
respectively : 


�EINBETTEN Equation.2 \s ����



(2.1.3.2.)�
�
It follows that a second-order system is described by set of two coupled first-order differential equations. These coupled first-order equations are the state equation.


For example the mass spring system we have :


�EINBETTEN Equation.2 \s ����



(2.1.3.3.)�
�
respectively


�EINBETTEN Equation.2 \s ����
(2.1.3.4.)�
�
which yields: 


�EINBETTEN Equation.2 \s ���;�EINBETTEN Equation.2 \s ����



(2.1.3.5.)�
�
are the state equations of the system in terms of variables x and v .The system model is second-order because it contains two energy storage modes , one potential and one kinetic. The state variable x is seen to indicate the amount of potential energy stored, corresponding to the relation (2.1.2.5), and the state variable v describes the kinetic energy storage, corresponding the relation (2.1.2.6). The choice of state variables for a system is not unique and not always obvious. Before this choices are made, we must first make simplifying assumptions based on the goals of our analysis and on the limitations of available information.





2.2. The Constitutive Relations: Resistance, Capacitance, Inductance.





2.2.1. Resistance





	Effort in a physical system is never completely free to act, it is always opposed in some manner. One way this occurs is with an element having the property of resistance. For example the friction of the fluid against the outlet pipe wall in the Figure 2.2.1.1. 


�





















�











�























resists the attempt of the pressure to force the liquid through the pipe. An electrical resistor opposes the current produced by a voltage difference. The magnitude of the frictional force depends on the fluid properties and on the flow conditions within the pipe. Thus for a given fluid , if a constant pressure difference is maintained across the pipe ends, the mass flow rate produced will depend on whether the flow condition is smooth (laminar means : the velocity of the average particle in the fluid equals the actual velocity) or rough (turbulent means: the velocity of the average particle in the fluid doesn’t equal the actual velocity ). If the pressure difference is changed the flow rate will also change. (Figure 2.2.1.1a.) For the laminar case the slope of the curve is 1/R, where R is the laminar resistance.


Resistance in mechanical and in fluid systems results from friction. In a fluid system the friction depends on the fluid viscosity. An example of such an element is the shock absorber on a car. The damper exerts a force f proportional to the velocity difference  v across the elements endpoints, for relatively small velocities. Thus f=cv (2.2.1.1) where c is a constant called the damping coefficient. For larger velocities the damper force varies as the square of the velocity. But because the resisting force changes its sign and the square of v doesn’t the relation must be written: 


�EINBETTEN Equation.2 \s ����
(2.2.1.2.)�
�
The general resistance relation is of the form : 


�EINBETTEN Equation.2 \s ����
(2.2.1.3.)�
�
where r is the rate variable , e is the effort variable and �EINBETTEN Equation.2 \s ��� denotes the functional form of the relation. In the case of a tank with an orifice if �EINBETTEN Equation.2 \s ��� is the outflow rate and we have a laminar flow , and the effort is p the pressure then (2.2.1.3) will be a linear functional relation between �EINBETTEN Equation.2 \s ��� and p : 


�EINBETTEN Equation.2 \s ���=(1/R)p�
(2.2.1.4.)�
�



Example 2.2.1.1.


Develop a dynamic model for the liquid mass m in the tank system of Figure 2.2.1.a. Assume that laminar flow exists in the outlet pipe.


Solution. First Step. Modelling .The system consists of an element for storing potential energy 


(the liquid mass in the tank), a resistance element that opposes the flow from the tank (outlet pipe) and an input flow rate qi . The appropriate integral causality relation is the quantity -rate relation.:


�EINBETTEN Equation.2 \s ����
(2.2.1.5.)�
�
The quantity variable Q is m the liquid mass. The net flow rate into the tank is �EINBETTEN Equation.2 \s ��� . The effort variable is the hydrostatic pressure p , the force per unit area caused by the weight of the mass. Thus : p=mg/A. The resistance element is described by the laminar flow relation given in figure (2.2.1.b) as 


�EINBETTEN Equation.2 \s ����
(2.2.1.6.)�
�
Thus the model will reduce to :�EINBETTEN Equation.2 \s ���;or:


�EINBETTEN Equation.2 \s ����



(2.2.1.7.)�
�
This the required mathematical model for the system.


Second Step General solution, particular solution. Given m(0) and qi  as function of time we can solve the equation for m(t) .


Third Step. Checking.





2.2.2. Capacitance 





	From the storage of potential energy in a compartment results every time an effort variable. The relation that describes how the effort depends on quantity is another constitutive relation known as capacitance. It is written in the following general form: 


�EINBETTEN Equation.2 \s ����
(2.2.2.1.)�
�
and for the linear case :


�EINBETTEN Equation.2 \s ����



(2.2.2.2.)�
�
where C is the capacitance of the element. The constitutive relation for an electrical capacitor is the voltage-charge relation: 


�EINBETTEN Equation.2 \s ����



(2.2.2.3.)�
�
Another example of a capacitance relation is given by the tanks. The hydrostatic pressure p in a liquid is related to the liquid height h by the relation :


p = �SONDZEICHEN 114 \f "Symbol"��gh�
(2.2.2.4.)�
�
where �SONDZEICHEN 114 \f "Symbol"�� is the mass density of the liquid. If the bottom area of the tank is A, and the tank has vertical sides the liquid mass in the tank is : 


m = �SONDZEICHEN 114 \f "Symbol"��Ah�
(2.2.2.5.)�
�
thus the pressure:


�EINBETTEN Equation.2 \s ����



(2.2.2.6.)�
�
Since p and m are the effort respectively the quantity variables for this system, shows that the capacitance of the vertical-sided tank is 


�EINBETTEN Equation.2 \s ����
(2.2.2.7.)�
�
If the tank’s side is sloped ( conical tank, hemispherical tank) then the relation  p = �SONDZEICHEN 114 \f "Symbol"��gh holds, but  m = �SONDZEICHEN 114 \f "Symbol"��Ah doesn’t. In this case the relation between the mass and height is non-linear, and so is the capacitance relation. Quite often the variable of real interest is not one of the rate , quantity, effort, or flux variables ,but is another related variable. For example we may be interested in the liquid height in the tank with vertical sides. Then a relation analogous to a constitutive relation can be used to obtain the model in terms of the desired variable. In this example this relation is  m = �SONDZEICHEN 114 \f "Symbol"��Ah. Substituting it into: �EINBETTEN Equation.2 \s ��� yields:


�EINBETTEN Equation.2 \s ����
(2.2.2.8.)�
�
Given h(0) ,qi and 1/R we can solve the differential, equation with respect to h(t) .


If in a mechanical system displacement acts against an elastic element such as a spring , potential energy is stored and a force is set up in the spring. The usual constitutive relation is f = kx . In analogy with the previous relations we might say that elastic capacitance is 1/k , but this usually is called the „compliance“ .





2.2.3.	Inductance 





	Inductance can be considered as the property that allows the storage of kinetic energy. The general expression for this constitutive relation is : 


�EINBETTEN Equation.2 \s ����
(2.2.3.1.)�
�
In the linear case this relation is : 


�EINBETTEN Equation.2 \s ����
(2.2.3.2.)�
�
An example is the current-flux relation for an electrical inductor: 


�EINBETTEN Equation.2 \s ����
(2.2.3.3.)�
�
Another example is the impulse-momentum statement of Newton’s second law written as: 


�EINBETTEN Equation.2 \s ����



(2.2.3.4.)�
�
where the net rate is the velocity difference.


These examples show that the mechanical inductance relation is linear and that the inductance of the system is the mass m.
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Voltage-current relation for a resistor: v(1/R=i
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Displacement-force relation for a spring: 	x�SONDZEICHEN 215 \f "Symbol"��k=f
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Force-acceleration relation for a mass: f�SONDZEICHEN 215 \f "Symbol"��1/m=a
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Displacement as the integral of velocity
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Figure 1.1  a.) Mass-spring sys. with external force. b.) Block diagram of the rel.
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Figure 1.9.3.a.
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Figure 1.9.3.b.
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Figure 2.2.1.1.a.





h





h





Figure 2.2.1.1.c.
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Figure 2.2.1.1.b.





Figure 2.2.1.1.d.
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