2.4. Mechanical Systems



	The analysis of mechanical systems means the analysis of forces and motions in solid bodies. In many cases the internal forces in the body resulting from elastic deformation are small compared to the forces which act external. In this case the mass or moment of inertia can be considered to be lumped at a point, and its motion is analysed by rigid-body dynamics.



2.4.1. The Laws of motion.

	In this section we will summarise the Newtonian laws of motion for rigid bodys. They are as follows:

� EINBETTEN Equation.2  ����

(2.4.1.1.)��This means the time rate of change of momentum P equals the resultant of external forces acting on the body. If v is the vector velocity of the body’s centre of mass and m the mass then P = mv , and this relation is :

� EINBETTEN Equation.2  ����

(2.4.1.2.)��or

� EINBETTEN Equation.2  ����

(2.4.1.3.)��where x is the vector displacement.

In case the body effects rotational motion as well then in addition we have the following equations:

� EINBETTEN Equation.2  ����

(2.4.1.4.)��which means that the time rate change of the angular momentum equals the external torque acting on the body.

Chasle’s theorem states that the general motion of a rigid body can be considered as a translation plus a rotation about a suitable point. The centre of mass is often taken to be this point. Most of the systems which will be considered in this section involve rotation about a fixed axis. In this case the angular momentum is:

(=I(�(2.4.1.5.)��where I is the body’s mass moment of inertia about the axis and is defined as follows:

� EINBETTEN Equation.2  ����(2.4.1.6.)��

and ( is the vector angular velocity. So we obtain:

� EINBETTEN Equation.2  ����

(2.4.17.)��equation, which will be sufficient for most of the problems involving rotation .If the co-ordinate system has one axis parallel to the axis of rotation then this last vector relation will be a scalar one. Many problems involving translation and rotation can be simplified by decomposing them into problems involving pure translation and pure rotation using (2.4.1.2) and (2.4.1.7.).



2.4.2. Mass moments of inertia.

	By definition the mass moment of inertia is. � EINBETTEN Equation.2  ��� where r is the distance of the point of mass m to the axis of rotation.

Further on we determine the mass moment of inertia for different bodies.



Example 2.4.2.1.

Determine the mass moment of inertia  of a point mass m 

Solution. By definition the mass moment of inertia is. � EINBETTEN Equation.2  ��� where R is the distance of the point of mass m to the axis of rotation.

Example 2.4.2.2.

Determine the mass moment of inertia of a homogeneous circle line of mass m and radius R rotating about an axis which goes through its midpoint and is perpendicular to its plane.

Solution: By definition the mass moment of inertia is: � EINBETTEN Equation.2  ���. Where ( is the density and ds is the element of the arc.



Example 2.4.2.3.

Determine the mass moment of inertia of a homogeneous circle plate of mass m and radius R rotating about an axis which goes through its midpoint and is perpendicular to its plane. Solution: By definition the mass moment of inertia is: � EINBETTEN Equation.2  ���. In order to compute this integral we will substitute x for rcost , y for rsint , dxdy for rdrdt ( where r is the Jacobian of x and y with respect to r and t.), and integration domain ( C ) will be as follows: � EINBETTEN Equation.2  ���.



Example 2.4.2.4.

Determine the mass moment of inertia of a cylinder rotating about the axis of symmetry. 

Solution : � EINBETTEN Equation.2  ���, where R is the radius of the cylinder and m is its mass.



Example 2.4.2.5.

Develop a model for a homogeneous cylinder of radius R and mass m rotating about its axis of symmetry, which is connected to a support by a spring and to another support by a damper, and the cylinder rolls without slipping on the surface of inclination ( shown in Figure 2.4.2.5.
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We have chosen arbitrarily the axes of system, but in order to simplify the problem, the x represents the tangential displacement of cylinder’s mass centre from its equilibrium position. In this position the spring force is balanced by the tangential component of the cylinders weight. We have chosen ( to be the positive angle of rotation when the cylinder moves in the positive x direction. The spring force is kx and the damper force is cv the normal component of the reaction force due to gravity is � EINBETTEN Equation.2  ��� and the tangential reaction force will be determined from the rotational motion using (2.4.1.7): � EINBETTEN Equation.2  ���. According to the condition of no slipping we can write:� EINBETTEN Equation.2  ��� So we obtain: � EINBETTEN Equation.2  ���. ,the tangential reaction force. The tangential motion gives the following equation:� EINBETTEN Equation.2  ��� using (2.4.1.1.). Substituting the quantities in the last equation we obtain the equation: � EINBETTEN Equation.2  ���.

This the mathematical model for the physical spring-cylinder-damper system.



Example 2.4.2.6. Develop a model for the pendulum in Figure 2.4.2.6. , consisting of a body of mass m (the bob) and a rod of length L, assuming that the mass of the rod and air resistance are negligible.
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Solution. First Step. Setting up the Model.

Let ( denote the angular displacement , measured counterclockwise from the equilibrium position. The weight of the bob is mg  ( g acceleration gravity), and it causes a restoring force -mgsin(  tangent to the curve of motion of the bob.( the sign minus means that the force acting on the body and the force of acceleration have different diversion) The length of the arc measured from the equilibrium position is L( . This results that the velocity of the body is L(’, and the acceleration of the body is L(’’. By Newton’s second law , at each instant the force acting on the body -mgsin(  is balanced by the force of acceleration mL(’’. So we have : mL(’’= -mgsin( , or (’’+ksin(=0 ( k = g/L) . This is the mathematical model required. It is not a linear model because it contains the term sin(, a transcendental function of ( .The general solution can not be written in terms of finite elementary functions, but as a series of powers. In the case ( is small sin(  can be substituted by its first order Taylor Polynomial , which equals ( , and we obtain the linear model (’’+k(=0, and the general solution is of the form : � EINBETTEN Equation.2  ���, where A and B can be determined from the two initial conditions: ((0)=a and (’(0)=b.



2.4.3. Energy principles.

	The translational relation (2.4.1.1) can be written in an other form using the impulse momentum:

� EINBETTEN Equation.2  ����

(2.4.3.1.)��The rotational relation (2.4.1.7.) can be written in an other form using the corresponding impulse-momentum:

� EINBETTEN Equation.2  ����

(2.4.3.2.)��Usually f depends not only on time , but on displacement and velocity as well.

When the external force is derivable from a potential energy function that depends only on position, such as with gravity or a spring , the second law implies conservation of mechanical energy. A conservative force is derivable from a potential energy function V(x) such that 

� EINBETTEN Equation.2  ����

(2.4.3.3)��In this case use this relation and the identity:: � EINBETTEN Equation.2  ��� in the Newton’s second law: � EINBETTEN Equation.2  ���, which gives: � EINBETTEN Equation.2  ���, relation which can be written:

� EINBETTEN Equation.2  ����

(2.4.3.4.)��This is the statement of conservation of mechanical energy , which means that the motion is such that the sum of the kinetic energy and the potential energy is constant. This constant can be determined from the initial values of v and x .



Example 2.4.3.1. Consider the mass-spring system. Use the energy principle to determine how velocity of the mass varies with position if it is initially released from position x(0) with zero initial velocity, and zero external force. 

First step. Setting up the Model. From Newton’s second law we have: � EINBETTEN Equation.2  ���. The spring force f=-kx is derivable from the potential energy function: � EINBETTEN Equation.2  ���, thus this yields : � EINBETTEN Equation.2  ���. Using v(0)=0 we get: � EINBETTEN Equation.2  ���. The velocity as function with respect to position (displacement) is : � EINBETTEN Equation.2  ���, where the sign is + when the motion is to right, and - when the motion is to left. The velocity is zero when x=±x(0) .therefore the initial displacement is also the maximum displacement. Any time-related information, such as the period of the oscillation can be obtained by solving the differential equation � EINBETTEN Equation.2  ���

In the case the force depends only on velocity ( for example damper, and zero external forces) we use  � EINBETTEN Equation.2  ���.In this case we have only one compartment of energy the kinetic one.



Example 2.4.3.2.

Develop a model using the energy principles for a falling body of mass m , which is let to fall from a height of h, with zero initial velocity.(Neglect air resistance.)

Determine the time the body falls to the earth and velocity when the body reaches the earth.
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Solution: First Step. Setting up the Model.

Let the vertical displacement x be measured from the launch point. The force acting on the body is the gravity force: f = mg and is derivable from the potential energy function V = --mgx +K. The minus is because this function is a decreasing one and for x=0 we know that the potential energy is mgh (at the launch point, where no kinetic energy has the body). So we obtain V(x)=mg(h-x). Substituting this in (2.4.2.4.) we have: � EINBETTEN Equation.2  ���. For x=0 we have v=0 and C=mgh.So we now have : � EINBETTEN Equation.2  ���. This is the mathematical model for the problem.

Second step. Particular solution. For x=h we obtain: � EINBETTEN Equation.2  ���and from this relation we have :� EINBETTEN Equation.2  ���. This is the velocity when the body reaches the earth. In order to find the time of falling we need a solution for x or for v with respect to time.. We know that � EINBETTEN Equation.2  ���.By integration results � EINBETTEN Equation.2  ���.For � EINBETTEN Equation.2  ���, and v(0)=0 we have : � EINBETTEN Equation.2  ���and from this we obtain: � EINBETTEN Equation.2  ���.



Example 2.4.3.3.

Develop a model using energy principles for a body of mass m , which is thrown vertically upwards with an initial velocity v(0). Find the maximum height the body will reach. Find the time the body needs to reach the maximum height. How long will it take the body to reach the earth.?

Solution. First Step. Setting up the Model.

Let the vertical displacement x be measured from the launch point. Than for t=0 we have v(0) given and x(0)=0 .The only force acting on the body is the gravitational force :f=-mg (the sign minus because the motion and the force have different directions at the launching) and is derivable from the potential energy function V=mgx. Substituting in (2.4.2.4) results � EINBETTEN Equation.2  ���. Substituting x for 0 and v for v(0) we obtain:� EINBETTEN Equation.2  ���. That yields the following equation: � EINBETTEN Equation.2  ���. This is the required mathematical model.

Second Step. Particular solution. The body reaches the maximum height when v=0 In order to determine the maximum height we will substitute v for zero. In this way we have:� EINBETTEN Equation.2  ���, which from we obtain:� EINBETTEN Equation.2  ���. In order to find the time the body reaches the maximum height we will consider the equation: � EINBETTEN Equation.2  ��� , which from we obtain :� EINBETTEN Equation.2  ���. When we have v(t)=0 then the body reaches the maximum height and we obtain the required time : � EINBETTEN Equation.2  ���. In order to obtain the time the body reaches the earth, after reaching its maximum height we have to add the two times. We know from exercise 2.4.2.2. that the time the body falls to the earth is � EINBETTEN Equation.2  ���, where h means the height of the launch point to the earth. So the total time from throwing the body upwards till it reaches the earth is � EINBETTEN Equation.2  ���.



Example 2.4.3.4.

Develop a model for the pendulum in exercise (2.4.2.6) using the energy principles.

The kinetic energy of the system is :� EINBETTEN Equation.2  ���, the potential energy of the system is � EINBETTEN Equation.2  ���. According to the law of conservation of energy we have K+P=C (const). Differentiating it with respect to t we obtain � EINBETTEN Equation.2  ��� , which results :� EINBETTEN Equation.2  ���. This is the required mathematical model.



Example 2.4.3.5.

Develop a model for the motion of a mass m connected to viscous damper with a damping coefficient c .
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The displacement x is measured from an arbitrary fixed point. There are two forces acting on the mass m: one of them in the direction of the motion (f), the next (F)one the damping force acting in the opposite direction. Experiments show that the damping force is proportional to the velocity  and the coefficient of the proportion is c the damping coefficient. According to Newton’s second law we have :

� EINBETTEN Equation.2  ���.�(2.4.2.5.)��

2.4.3. Modelling mechanical oscillations

Example 2.4.3.1.

Develop a model for the mass spring system , where the spring is stretched downwards at t=0 so that x(0)=A and v(0)=B.
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Let the vertical displacement x be measured from the static equilibrium. Experiments show that within reasonable limits , if x is a displacement of the spring than the force acting is proportional to the change in length of the spring. The minus sign means that the force and the change in length of the spring have opposite directions. The coefficient of proportionality k is the spring constant or modules and the stiffer a spring is , the larger is k. When the body is at rest gravitational force mg and spring force -k are in equilibrium , that means that their resultant is zero force. If we denote by x the displacement from the static equilibrium the resultant of the forces will be -kx.. Then according to Newton’s second law we have :

� EINBETTEN Equation.2  ����

(2.4.3.1.)��This the mathematical model.

Second Step. General solution.

Solving the second-order differential equation ( for ex. by using the Laplace Transforms) we obtain:

� EINBETTEN Equation.2  ��� where � EINBETTEN Equation.2  ���

That means that the body executes harmonic oscillations, � EINBETTEN Equation.2  ���cycles per second :this last quantity is called frequency of the oscillation and is measured in cycles per second called hertz (Hz).



Example  2.4.3.2.

Develop a model for the mass-spring-damper-driving force.

Solution. First Step.  Setting up the Model.

We have already determined the model of the mass-spring system :(2.4.3.1.) , respectively the model of a  mass-damper system-driving force : (2.4.2.5.). Using this results we obtain the mass-spring-damper-force model as follows:

� EINBETTEN Equation.2  ���.�

(2.4.3.2.)��

1. Remark: this equation is of the same form as the model of an RLC -voltage source in the paragraph  Electrical Models (2.3.6.).

The analogy between the Electrical and Mechanical Quantities are given in the table below.



Table 2.4.3.1.



Electrical System�Mechanical System�Units (SI)��Inductance  L�Mass m�kg��Resistance  R�Damping constant c�kg/sec��Reciprocal of 1/C of capacitance�Spring modules k�kg/sec2��Derivative of voltage dv/dt�Driving force f�N ( kgm/sec2��Current  i(t)�Displacement x(t)�m��

2. Remark: in the case of f=0 the system can be of the following type:

Type A. : for � EINBETTEN Equation.2  ���				(overdamping)

Type B. : for � EINBETTEN Equation.2  ���		(underdamping)

Type C. : for � EINBETTEN Equation.2  ���				(critical demping)

The constants � EINBETTEN Equation.2  ��� can be determined from the initial (boundary) conditions:

� EINBETTEN Equation.2  ���.

3. Remark : for f=495cos5t, m=1, c=1010, k=10000 we obtain the following mathematical model: � EINBETTEN Equation.2  ��� The solution of this model ( see Example 2.3.4.) is : � EINBETTEN Equation.2  ��� After a very short time the first two terms die down ( transient term) and we have : x(t)=� EINBETTEN Equation.2  ���. That means that the motion is a harmonic oscillation which is granted by the external force f.
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Figure 2.4.2.5.
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Figure 2.4.2.6.
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