2.6. Pipe flow and tank systems





	Some industrial processes, such as refinery, chemical reactors, require the transport of large quantities of fluids such as liquids, gases and stream. On the other hand hydraulic and pneumatic control components use comparatively low flow rates in small diameter lines . Both cases involve the motion of a fluid in a conduit.


Newton’s viscosity law states that: 


� EINBETTEN Equation.2  ����



(2.6.1.)�
�
where ( is the shear stress in lubricating film , ( is the lubricant viscosity coefficient , and du/dy is the velocity gradient in the film normal to the surface. If we assume that the gradient is constant and that the fluid velocity near the surface is zero relative to the surface, it can be shown that the friction force is :


� EINBETTEN Equation.2  ����



(2.6.2.)�
�
where A is the lubricated area under the mass and d is the film thickness. For high velocities these assumptions are not valid and (2.6.2.) must be replaced by non-linear relation.


Assume that Newton’s viscosity law (2.5.1.) holds. For flow in which the average particle velocity is equal to the actual velocity (laminar flow), it can be shown that the volume flow rate through a level circular pipe is :


� EINBETTEN Equation.2  ����



(2.6.3.)�
�
where D is the pipe diameter, L is the pipe length, and ( is the fluid viscosity, and the pressures at the pipes ends are � EINBETTEN Equation.2  ���. This is the Hagen-Poiseuille law.
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The generalised form of this relation (2.6.3.), is the case when the pipe is not level, can be obtained from this substituting the pressures for � EINBETTEN Equation.2  ��� respectively for � EINBETTEN Equation.2  ���. 


� EINBETTEN Equation.2  ����
(2.6.4.)�
�
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The Hagen-Poiseuille law strictly applies only to steady-state conditions in which the effects of the pipe entrance on the flow are negligible. However, the law has been found to give satisfactory answers in many situations involving a pressure drop that changes with time.


If the effort variable is taken to be the pressure then relation (2.6.3) specifies the resistance relation between effort and rate: 


� EINBETTEN Equation.2  ����
(2.6.5.)�
�
where the resistance for laminar flow in the pipe is :


� EINBETTEN Equation.2  ���� EINBETTEN Equation.2  ����
(2.6.6.)�
�
	Flow in which the average particle velocity does not equal the actual velocity is turbulent .A useful criterion for predicting the existence of turbulence is the Reynolds number : the ratio of the fluid’s inertial forces to the viscosity forces. For a circular pipe :


� EINBETTEN Equation.2  ����
(2.6.6.)�
�
where the average fluid velocity is :


� EINBETTEN Equation.2  ����
(2.6.7.)�
�
For � EINBETTEN Equation.2  ��� the flow is often turbulent whereas for � EINBETTEN Equation.2  ��� laminar flow usually exists. The exact value of � EINBETTEN Equation.2  ��� above which the flow becomes turbulent depends on for example the flow conditions at the pipe inlet.


The resistance relation for turbulent flow is non-linear and of the form :


� EINBETTEN Equation.2  ����
(2.6.8.)�
�
where � EINBETTEN Equation.2  ��� is the turbulent resistance and for turbulent pipe flow it is :


� EINBETTEN Equation.2  ����
(2.6.9.)�
�
where f is the friction factor and it is empirically determined quantity.


Components such as valves ,elbows ,or other fittings, resist flow and can be described by the relation:


� EINBETTEN Equation.2  ����
(2.6.10.)�
�
with D usually taken the outlet diameter . The dimensionless number � EINBETTEN Equation.2  ��� is the head-loss coefficient , so named because the pressure drop caused by the restriction is equivalent to a decrease in the head driving the flow. 


Comparing (2.5.4.), (2.5.5.) and (2.6.8.) results that the orifice resistance is :


� EINBETTEN Equation.2  ����
(2.6.11.)�
�
�The symbol of resistance is :
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Example 2.6.1.


Develop a model for the behaviour of the liquid height in the Tank-pipe-valve system shown in Figure 2.6.1. Assume that turbulent flow exists  and show that the total turbulent resistance is the sum of all element resistance’s.
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Remark. In the liquid-level system shown in figure 2.6.1., energy is stored in two ways: as potential energy in the mass of liquid in the tank, and as kinetic energy in the mass of liquid flowing in the pipe. The transfer of energy between this compartments is opposed by the resistances , and energy is dissipated from the system by this process. The development of a model involves questions as accuracy and utility or generality and simplicity. Thus some of the energy storage compartments of less importance, might have to be ignored if the model is to be kept simple enough to be solved and evaluated conveniently. That means that the mass of liquid in the pipe is small enough or is flowing at a small enough velocity the kinetic energy can be neglected compared to the potential energy in the tank. The notion of small enough depends on accuracy and usually is identifiable only with difficulty. If the kinetic energy of the liquid is significant then more fluid theory is needed. High-velocity applications usually involve low-density fluids such as air, gases. 


Solution. Setting up The Model. 


We will denote the pressure drop over the length of pipe 1 by � EINBETTEN Equation.2  ���, the pressure drop over the length of pipe 2 by � EINBETTEN Equation.2  ���, and the pressure drop across the component (valve) by 


� EINBETTEN Equation.2  ���. Then according to (2.6.8) we have:� EINBETTEN Equation.2  ���, because the flow rate q is the same through each element. The pipe resistances � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� can be determined from the relation (2.6.9.) and � EINBETTEN Equation.2  ��� from (2.6.10). The total pressure drop across the elements is the sum of the drops across each element. This results :


� EINBETTEN Equation.2  ��� or � EINBETTEN Equation.2  ��� where � EINBETTEN Equation.2  ���. That proves the series law for resistance’s in the system. According to the law of conservation of volume (mass) and using the fact that the tank has vertical sides with cross sectional area of A and the relation between the pressure drop and height: � EINBETTEN Equation.2  ���, we obtain the following mathematical model:� EINBETTEN Equation.2  ���.


Example 2.6.2. 


Develop a model for the water-supply reservoir system shown in Figure 2.6.2.
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Solution: Setting up the Model.


We assume that the lake is large enough that its level is relatively unaffected by the withdrawal of the water to the lower reservoir. Thus the system input is taken to be pressure source, in contrast to the flow-rate inputs seen thus far. The volume of the fluid in the conduit is assumed to be much smaller then in the reservoirs, and its compressibility is neglected. Thus the only energy storage compartment of interest is the smaller reservoir. Note that a substantial energy storage is in the lake , but the energy level does not change and hence is of interest only for its input pressure. The bottom line is the level to which all the heights are referenced. According t the law of volume (mass) conservation in the lower reservoir gives: � EINBETTEN Equation.2  ���. In order to determine the flow rate q1 


we will use the laminar or the turbulent resistance formulas, with the pressure drop across the conduit taken as � EINBETTEN Equation.2  ���. If laminar flow is assumed, than the Hagen-Poiseuille law  for an unlevelled conduit can be used . This results:� EINBETTEN Equation.2  ���, where L is the length of the of the conduit , and D is the diameter of the conduit. For the inlet pressures we have the following relations:� EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� so that � EINBETTEN Equation.2  ���. The height difference � EINBETTEN Equation.2  ���produces a hydrostatic pressure difference .The difference � EINBETTEN Equation.2  ��� in the elevation of the conduit’s ends does not influence the flow rate. Thus the unknown � EINBETTEN Equation.2  ���will be obtained from the equation:


� EINBETTEN Equation.2  ���.





Exercise 2.6.4.


Develop a model for the liquid height h in a tank system whose input is the pressure � EINBETTEN Equation.2  ��� shown in Figure 2.6.4.
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Example 2.6.5.


Develop a model for the tank-pipe system shown in Figure 2.6.5. The input is the pressure p1 ,the output is the pressure p in the tank. Assume that we have laminar flow in the pipe.
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Solution. Setting up the Model.


According to the Hagen-Poiseuille law we have � EINBETTEN Equation.2  ���. The rate of flow into the tank is equal to the cross sectional area A of the vertical sided tank times the rate of change of height. Thus we have: � EINBETTEN Equation.2  ���. If h is the height of fluid in the tank than the relation between pressure p and height is :� EINBETTEN Equation.2  ���, where � EINBETTEN Equation.2  ��� is the mass density. then we can write:� EINBETTEN Equation.2  ���. We can write C instead of � EINBETTEN Equation.2  ��� so we obtain: � EINBETTEN Equation.2  ��� or :


� EINBETTEN Equation.2  ���, where C is the capacitance (compliance) of the tank and R is the resistance.


Analogies. We can observe that there is an analogy between this system and an RC circuit with v=v(t) voltage source. The following quantities are analogous: the analogue for the pressure is v, for the flow rate is the current i , for the fluid resistance is electrical resistance, and for the compliance is electrical capacitance.


Exercise 2.6.6. 


Develop a model for the tank system shown in Figure 2.6.6.. The inputs are:� EINBETTEN Equation.2  ��� output is the pressure p.
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Solution. Setting up the Model.


According to the Hagen-Poiseuille law we can write for both of the pipes:


� EINBETTEN Equation.2  ��� , respectively � EINBETTEN Equation.2  ���. The mass (volume) conservation of law states:� EINBETTEN Equation.2  ���. But � EINBETTEN Equation.2  ���, so we have :� EINBETTEN Equation.2  ��� � EINBETTEN Equation.2  ���, which results : � EINBETTEN Equation.2  ���.This is the required mathematical model.





Exercise 2.6.7.


Develop a model for the tank shown in Figure 2.6.7. Inputs are � EINBETTEN Equation.2  ��� , output is pressure p in the tank.
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Exercise 2.6.8.


Develop a model for the tank system shown in Figure 2.6.8. Determine the equation for the pressure p as a function of the inlet pressure � EINBETTEN Equation.2  ���. (� EINBETTEN Equation.2  ��� will not appear in the equation!)
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2.6.1. Two Tank-System.


Example 2.6.9.


Develop a model for the following two-tank-system model shown in Figure 2.6.9. and write the mathematical model in matrix form. The input is the liquid inflow rate q and the outputs are the heights of liquid in the tanks.
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Solution. Setting up the Model.


According to the mass (volume) conservation law we have in the first tank:


� EINBETTEN Equation.2  ��� ; respectively � EINBETTEN Equation.2  ��� in the second ( on the right hand side) tank. Since � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ��� we obtain the following equation for the first tank:  � EINBETTEN Equation.2  ��� , where � EINBETTEN Equation.2  ��� is the capacitance (compliance) of the first tank with cross sectional area � EINBETTEN Equation.2  ���, or � EINBETTEN Equation.2  ���. Analogously we have in the second tank: � EINBETTEN Equation.2  ��� or � EINBETTEN Equation.2  ���. The simultaneous equations can be written in the following matrix form: 


� EINBETTEN Equation.2  ���; where A is the transformation matrix and equals : � EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���


This is the required mathematical model.





2.6.2. Three Tank-System.


Exercise 2.6.10.


Develop a model for the three tank-system shown in Figure 2.6.10. The tanks are connected to each other. The input is q the flow rate into the first tank. The outputs are the heights: � EINBETTEN Equation.2  ���The pipe resistances are equal to R, the cross-sectional areas equal A.


Solve for A=R=1.
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� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���





Figure 2.6.3.





� EINBETTEN Equation.2  ���





� EINBETTEN Equation.2  ���
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Figure 2.6.4.





p=Rq (lam. flow) p pressure drop 


p=Rq2  (turb. flow) q flow rate





� EINBETTEN Equation.2  ���
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h





A





qi  (supply)





D





D





L1





L2





q


p2





p1





RT1





RT3





RT2





� EINBETTEN Equation.2  ���





Figure 2.6.1. Tank-pipe-valve system.
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Figure 2.6.2.
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Figure 2.6.4.
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Figure 2.6.5.
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Figure 2.6.6.
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� EINBETTEN Equation.2  ���� EINBETTEN Equation.2  ���
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Figure 2.6.7.





� EINBETTEN Equation.2  ���
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Figure 2.6.8.
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Figure 2.6.9.





Figure 2.6.10.
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