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Developing autonomous vehicles is a highly important topic in automotive industry and

the field of intelligent transportation systems. A variety of classical control strategies

have already proved their merits in this field. However, with the increase in the non-

linearity and complexity of the driving system’s environment, the efficiency of these

approaches drop off due to the limitations of their computing capabilities with such

highly complex systems or to lack of efficacy related to maintaining the balance between

driving performance and driving smoothness. For example, model predictive control

(MPC) is very well known classical control strategy that is used for steering system due

to its abilities in solving the optimization problem in real time, handling the system

constraints and dealing with changing dynamics of the vehicle. However, its efficiency

is negatively affected in high complex environment and may not be able to meet the

real time requirements due to the fact that it solves the optimization problem at each

time step which massively increases the computational loads. As a result, developing

robust systems becoming more crucial and remains an open challenge for researchers

and automotive companies alike. The motivation in this work was to contribute to the

optimization of the autonomous vehicle driving system. we tackled this problem in two

different aspects. In the first part, we focused on optimizing the the implementations

of the classical control, precisely MPC control on limited resources platform (low-end

FPGA). It is certainly noticeable that the use of artificial intelligence (AI) in this field

is unavoidable due to the efficiency that has been achieved in different fields. In the

second part we focused on taking advantage of machine learning algorithms to provide

an efficient alternative solutions to the classical control. In addition to optimize the

deployment of DNN on FPGA using a new innovative tool.
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Chapter 1

Introduction

Autonomous vehicles have been researched since 1980, for the time, these researches

represented impressive technological advancements. In the 1980s, the Defense Advanced

Research Projects Agency put its first 600-meter-distance prototypes on the road. In

2004, the same agency introduced the "DARPA Challenge," which encouraged insti-

tutions to innovate in this area. The objective was traveling 240 kilometers through

the Mojave Desert without human assistance. Over time, more innovations have gained

popularity, and diverse companies and research centers have taken up the challenge of de-

veloping a fully autonomous vehicle. Tesla, Waymo, Zoox and automakers like Mercedes

and Ford are currently the most well-known in this field [BGC+21], [TMD+06].

The automotive industry has agreed on a definition of autonomous driving, and it is best

summarized as" the ability of the vehicle to drive partly or fully without or with limited

human interaction". According to the Taxonomy and Definitions for Terms Related to

On-Road Motor Vehicle Automated Driving Systems "SAE-J3016", vehicle autonomy is

divided into six different levels, from fully manual (level 0) to fully autonomous (level

5). Level 0 (No Automation) depends on the human driver to perform all the driving

tasks, it is manually controlled. Level 1 (Driver Assistance) is considered as the low-

est automation level, where the driver has full responsibility, but some assistant driving

systems are included for certain circumstances. Level 2 (Partial Automation) combines

different automated functions which can be working simultaneously, such as steering

and acceleration tasks, but the driver is still involved in the driving tasks such as per-

forming the maneuvers and has to monitor the environment all the time. At Level 3

(Conditional Automation) the vehicle has the capability of detecting the surrounding

environment and making decisions in normal conditions, but the necessity of the driver

still exists, meaning that the driver has to be ready to take control over the vehicle at

any time. At Level 4 (High Automation) the vehicle performs all the driving tasks in

1



Introduction 2

most circumstances, and the driver still has the option to take control. At Level 5 (Full

Automation) the vehicle is capable of performing all driving tasks in all circumstances,

and the driver has the option to manually override [Com14], [UDoT18]. Generally speak-

ing, the vehicle needs to be able to coordinate and effectively implement functions under

three main pillars in order for it to be able to partially or fully drive. Observing the

driving surroundings to detect risks and emergency scenarios, then automatically taking

action to protect the passengers and eliminate potential collisions. The Advanced Driv-

ing Assistance Systems (ADAS), which include functions like driving assistance, collision

protection, and emergency breaking keeps track of safety-related issues. The ADAS tech-

nologies are anticipated to advance and play a crucial role in the autonomous driving

system optimization. Autonomous vehicle are made up of three main parts, the vehicle,

driving software, and hardware, where it depends on sensor, actuators, complex control

algorithms, and powerful processors in order to perform its tasks [DTP21]. The core

functions of the autonomous vehicle can be categorised into three main categories: per-

ception, planning, and control as figure 1.1 shows. The environment perception provides

the vehicle with the required information about the surrounding driving environment,

including the vehicle’s location, the drivable areas, the velocity, etc. Different sensors

and tools can be implemented to tackle the perception task, such as using ultrasonic sen-

sors, cameras, LiDARs (Light Detection And Ranging), or even a combination of these

(sensor fusion) to decrease the uncertainty of the data. Based on the collected data, the

best scenarios are obtained and the required control actions are made in the planning

module in order to drive the vehicle efficiently to the desired location. In the control

function, the commands are sent to the actuators to put the control strategy into action

Figure 1.1: The interaction of the autonomous vehicle within the surrounding envi-
ronment.
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[BSDD17]. Adaptive behaviour in autonomous vehicles provide the ability to changes

their behavior parameters in accordance with their environment, while a the autopilot

technology is used to automatically manage a vehicle’s operation without any manual

control. Essentially, the core of autonomous driving is the development of systems that

can automate the function of driving. Despite the fact that autonomous vehicles have

been around for a while, the demand to develop one that is completely functional has

accelerated in the past decade.

In a scientific point of view, the work presented in this document globally proposes a

research, In the context of automated driving and precisely a contribution in automated

steering and safety. After the introduction where an overview of the autonomous vehicles

is presented, the necessary theoretical and hardware background of the different aspects of

the researches including control strategies for path tracking, Re-configurable Computing

and Hardware Acceleration, and the recent machine learning-based applications in the

field are presented in the second and the third chapters. Then comes to the contribution

part which is provided in the next 4 chapters. The last chapter summarise the entire

work and the provided theses.



Chapter 2

Background

This chapter presents a scientific background for the major topics covered in the per-

formed works including the commonly used vehicle models and control strategies for path

tracking task of autonomous vehicles. In addition to the Re-configurable Computing and

Hardware Acceleration.

2.1 Autonomous vehicles model and control strategy for

path tracking tasks

Generally speaking, building the vehicle model is a crucial stage in the development

process. Vehicle (like a robot) model can be divided into two main classes, holonomic

system, and non-holonomic system based on the number of controllable degrees f freedom

(DOF) against the total number of DOF. In a holonomic system, the number of control-

lable degrees of freedom is equal to the total number of DOF. In contrast, a system with

a number of controllable degrees of freedom less than the total number of DOF is called

a non-holonomic system. It is worth mentioning that most of the vehicles are considered

non-holonomic due to the fact that only two degrees of freedom are controllable (the lat-

eral positions and the longitudinal directions) [CQCD15], [RNS04]. One more thing to

take into consideration is that the vehicle model can be reduced to two tire model which

is called a bicycle model. In bicycle models, the right and the left tires are assumed to

have the same behavior. The autonomous vehicle’s motion in regard to tracking tasks

can be divided into three main types, point-to-point motion, trajectory tracking, and

path following. Point-to-point motion is the basic task, where the goal for the vehicle

is to reach the desired point starting from the initial one with no regard for a specific

path. The goal of the vehicle in the case of a path-following task is to reach the desired

point starting from an initial one by driving the car through a specific geometric path

4
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with no regard for time constraints. In case of the trajectory tracking, the goal is to

drive the vehicle from the initial point to the desired one based on a specific geometric

path with a time concern. In this section, the most commonly used vehicle models and

control strategies for path-tracking tasks are described.

2.1.1 Geometric Path Tracking

Due to its simplicity, geometric path tracking is considered one of the most commonly

used autonomous vehicle models for tracking tasks. In the geometric vehicle model,

only the dimensions and the positions of the vehicle are taken into consideration with no

regard for internal or external forces, velocity, or acceleration . The geometric model was

developed based on the Ackerman Configuration as it is described in Figure 2.1, and the

steering angle of the vehicle is defined by equation 2.1, where L is the distance between

the axles of the front and the rear wheels and R is the radius of the turn [Sni09].

Several controllers for autonomous vehicle steering control were provided based on the

geometric model. Geometric controllers are considered the most common and simple

type of controllers in the field of path tracking due to their stability and simplicity,

where the state variables are simple with the absence of derivatives. The common control

strategies used for this model can be divided into three main categories which are, Follow

the Carrot, Pure Pursuit, and Stanley Method. The idea behind the "Follow the Carrot"

strategy is very simple, where a point on the desired path is chosen to be the current

destination of the vehicle. The chosen point is called the carrot point and it should be

chosen at one look-ahead distance from the vehicle. In order to drive the car toward the

carrot point, the steering angle should be determined to minimize the orientation error

which is the difference between the orientations of the vehicle and the carrot point. The

steering angle δ is calculated as equation 2.2 shows where ψe: is the difference between

the vehicle orientation and the carrot point orientation, while kcarrot is the proportional

controller used to reduce the error. Briefly, the vehicle chases a moving point through the

desired bath. The look-ahead distance is a crucial parameter and should be determined

accurately. If the distance is too large, the vehicle will be driven to the carrot point with

no consideration for the corners of the path. Conversely, if the distance is too small,

the vehicle will oscillate especially at high speed. In order to minimize the oscillation

problem and achieve smooth driving, "Pure pursuit" which is very similar to the "Follow

the Carrot" method, uses another technique to determine the steering angle in order

to drive the car toward the goal point. The steering angle is determined in relation to

a circular arc which is a line connected and goes through the current position of the

vehicle and the goal (carrot) point as equation 2.3 shows [Sni09], [AZHK17], where Ld

is look-ahead distance, L is the dimension of the vehicle, and Le is a lateral error. The
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steering angle in the Stanley method is calculated based on two main factors, lateral

error and heading error as equation 2.4 shows, where v is the vehicle velocity and k is a

gain parameter [HTMT07], [TMD+06]. It is worth pointing out that the method name

“Stanley” is the name of an autonomous vehicle that was developed by the Stanford

University team during the participation in the second DARPA Grand Challenge in

which the team achieved first place. Figure 2.2 shows the main parameters used in the

geometric controllers.

Figure 2.1: The Geometric Model (Ackerman configuration).

Figure 2.2: Configuration of Geometric Controllers.

δ = tan−1L

R
(2.1)

δ = Kcarrotψe (2.2)

δ = tan−1 2LLe

Ld
(2.3)
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δ = tan−1kLe

v
(2.4)

2.1.2 kinematic Path Tracking

The kinematic term in general, concerns studying the motions of the body with no

regard for the internal or external forces. In this section, the vehicle model and the

control strategies for kinematic path tracking are described.

Unlike the geometric vehicle model, the kinematic model describes the motion of the

vehicle taking into consideration the velocity and the acceleration with no regard for

its internal forces (internal dynamics). The kinematic model is usually used to study

the lateral position and yaw angle. As mentioned earlier, the full vehicle model can be

reduced to the bicycle model. In this case, the direction of the longitudinal vehicle’s

direction is the same as the vehicle heading direction. Figure 2.3 and Equation 2.5

describe the kinematic vehicle model (bicycle model), where vx and vy are the velocity in

the local coordinates (X-Y), vX and vY are the velocity in the global coordinates (X-Y),

δ is the steering angle and ψ is the vehicle orientation, v is the total velocity and r is

yaw rate of the vehicle or ψ̂ [RGNR+09], [JSS09]. (kinematic model).

Figure 2.3: Kinematic Vehicle Model.


vx

vy

r

 =


cosψ 0

sinψ 0

0 1


[
v

ψ̂

]
(2.5)

The development of the kinematic control strategy is mostly based on the kinematic

vehicle model integrated with the geometric model without taking into consideration the

vehicle’s dynamic. Several interesting studies provided in regard to kinematic controlling.

Sun et [ZCN+12] presented a study to address the problem of path tracking for the
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autonomous vehicle and analyses the relationship between the road model and path

tracking method. New methods were provided called “Ribbon Model” for vehicle–road

and “Ribbon Tracking Method” for path tracking. De Luca et al [AOS05] provided a

comparison study of different feedback solutions for different tasks such as path tracking

and stabilization for car-like robots.

2.1.3 Dynamic Path Tracking

Kinematic and Geometric models are widely used and effective for systems where there

is no need to take internal and external forces into consideration. On the other hand,

these forces should be taken into consideration under specific conditions such as a sharp

trajectory curvature. Ignoring the vehicle dynamic for such conditions negatively affects

the performance and the safety aspect In the dynamic vehicle model, the motion of the

vehicle is described with respect to its position, velocity, and acceleration, taking into

consideration the applied internal and external forces such as the gravity force (G) and

the lateral forces (Ff , Fr) as it is shown in Figure 2.4, which also describes the parameters

that are taking into consideration in the designing process of the vehicle model, where

(θ) is the vehicle heading,( θf , θr ) are steering angles of the wheels, (L) is the vehicle’s

wheelbase, (Lf , Lr) are the half wheelbase and (βf , βr) are the side slip angles of the

wheels, noting that r and f refer to rear and front wheels respectively.

In the path-tracking task of autonomous vehicles, the control law of the dynamic con-

troller includes the dynamic properties of the system. Taking the effects of the vehi-

cle dynamics into consideration naturally makes the dynamic controllers more efficient

and stable compared to geometric and kinematic controllers [NHZHAK11]. However,

dynamic feedback (such as the torque) is required for these control strategies, which

in turn requires a special type of sensor and more data processing. Consequently, dy-

namic controllers are more expensive in terms of cost and computational loads [[PCvL11],

[NSMN10].

2.1.4 Adaptive and Model Predictive Control

The adaptive controller is developed to deal with systems that have uncertain, unknown,

or changeable parameters. Meaning that the main objective of using the adaptive con-

troller is to provide a robust control system under uncertain and changeable environ-

ments. The plant parameters are estimated and used in the model in order to adjust the

controller [ch212]. Adaptive controllers are widely used for autonomous vehicle tasks.

Martins et al [FNCMBF08] used an adaptive controller for vehicle path-tracking tasks
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Figure 2.4: Dynamic vehicle model [DLTR17]

and the proposed model used linear and angular velocity as a reference signal. The pro-

posed controller provided a stable control system with high performance. Dørum et al

[JUG15] provided a comparison between two adaptive controllers for vehicle trajectory

tracking tasks. For the first controller, the adaptive law was implemented to estimate

the unknown parameters of the model, while in the case of the second controller, a Model

Reference Adaptive Controller (MRAC) was provided. The compression shows that the

MRAC achieved the best performance. Machine Learning is widely used with adaptive

controllers in order to improve control decisions in terms of speed and accuracy. In the

study [XHL+18], a lateral motion control method was provided where the objective of

the suggested method is to maintain the yaw stability and minimize the tracking error.

Model Predictive Control (MPC) is a multi-variable feedback control strategy that solves

an online optimization problem, taking into consideration the interactions between the

variables of the target system. Based on the plant model, the MPC controller calculates

its inputs and uses an optimizer to ensure that the output of the plant follows the ref-

erence output. MPC uses predicts the outputs based on the future prediction strategy.

MPC controller simulates several future scenarios and the optimizer chooses the best sce-

nario based on the cost function which represents the error between the reference target

and the predicted outputs, where the optimal scenario corresponds to the minimum cost

function. Figure 2.5 shows the main structure of the model predictive control strategy

[PBT+08].

2.2 Re-configurable Computing and Hardware Acceleration

The computing architecture research community is currently dealing with the explo-

sive scale of diverse data explosion due to the rising big data applications like Machine
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Figure 2.5: Model Predictive Controller.

Learning, Voice Recognition, and DNA Sequencing in recent years. Therefore, the ne-

cessity of exploiting the parallelism and acceleration provided by hardware is increased

and the studies are inducted to make data-intensive computing highly efficient. In this

context, heterogeneous accelerators have become a popular topic in the computer archi-

tecture field. The deployment of heterogeneous accelerators currently primarily relies on

heterogeneous computing components including application-specific integrated circuits

(ASIC), graphics processing units (GPU), and field programmable gate arrays (FPGA).

ASIC-Application Specific Integrated circuit – designed by the user and produced by

chip maker, optimized from the point of view of size, computation speed and power con-

sumption. However, the long design cycle, the high cost, and the lack of flexibility are

the main disadvantages of ASIC. On the other hand, FPGA is a type of reconfigurable

device, that combines the adaptability of software with the effectiveness of hardware

computing, resulting in a design cost for FPGA-based hardware accelerators that is sig-

nificantly cheaper than that of ASIC- ones. It is made up of hardware blocks with user-

programmable interconnects to modify the functionality of a specific application, with

good customization and scalability. This flexibility makes FPGA a suitable choice for

applications where the standards are changeable. Overall, accelerator based on reconfig-

urable hardware has advanced significantly in recent years, not only in terms of hardware

but also in terms of software and algorithms. Improve the dependability of reconfigurable

architecture, which offers a strong foundation for creating a new type of computer sys-

tem and encouraging the industrialization of AI chips and systems. In comparison to

CPU and GPU, FPGA is essentially an instructionless, shared-memory-less chip that

more effectively speeds algorithms, which encompasses numerous compute-intensive and

communications-intensive tasks. Over the past decade, numerous well-known companies,

like Google and Intel, as well as academic institutions have demonstrated a keen interest

in this field. In 2014, The HARP project was proposed by Intel after acquiring FPGA

producer Altera. This project aimed to develop a teaching-related platform [CLG+17].
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At the same year, IBM successively released and makes an FPGA Accelerator service

available for the developers in order to provide them with a platform for creating, design-

ing, and testing in many emerging areas [JGCC15]. The F10A, a jointly designed FPGA

accelerator card by Inspur and Intel, was released in November 2016. which fulfills the

high-density, and high-performance demands of Open-CL. The powerful Adaptive Com-

pute Acceleration Platform (ACAP) has been introduced after AMD acquired Xilinx.

ACAP is a fully software-programmable, heterogeneous compute platform that com-

bines Scalar Engines, Adaptable Engines, and Intelligent Engines [XIL20]. Many studies

on heterogeneous reconfigurable systems are also carried out in the academic field such as

Xilinx’s Zynq-7000 [CEES14], ZCluster [ZC13] at the University of Toronto, and others.

The Zynq-7000 [CEES14], a programmable heterogeneous multi-core system-on-chip in-

troduced by Xilinx Inc. It has great performance, flexibility, and reconfigurability and is

made up of programmable logic devices and processing systems. ARM processor serves

as the processing system’s core, which can function independently.

Prior to the development of the Zynq, processors were coupled with the FPGA which

complicated the communication between the Processor System (PS) and Programmable

Logic (PL). With the Zynq architecture, a dual-core ARM Cortex-A9 processor is com-

bined with a conventional (FPGA) where Advanced eXtensible Interface (AXI) serves

as the interface between the different components of Zynq architecture. AXI enables

communication with low latency and high bandwidth. Users were using a soft core pro-

cessor like Xilinx’s Microblaze before integrating the ARM CPU within the Zynq device.

The adaptability of the processor instances inside the design is the primary benefit of

Microblaze. Figure 2.6 presents Zynq overall view.

Figure 2.6: Overall view of Zynq architecture.

Generally speaking, the design flow of Zynq architecture goes through several steps. In

the first step, the specifications and requirements of the system are to be defined. In

the second step, the different functions are to be assigned in either the processor system
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or programmable logic. Developing and testing hardware and software come next. In

terms of the PL part, the tasks are to determine the function blocks that are required

to meet the design characteristics, create the IPs (Intellectual Property) and connect

them. For the software part, the task is to develop code to run on the PC. High-

level languages like C++ have made programming comparatively simple compared to

thousands of assembly lines of code. High-level languages, on the other hand, also seem

to be a dead end with a highly complex design which rises the necessity for more efficient

tools. The VIVADO IP integrator, a graphic tool for automatic HDL code generation,

is utilized in the case of Xilinx systems designs. As a result, system integration and

testing are necessary to complete the design. Figure 2.7 presents the architecture of

the Xilinx Zynq family. It shows that the processor communicates with flash memory

controllers, SDRAM, on-chip memory, and peripheral blocks using ARM AMBA AXI-

based interface. The Processing System is made up of these parts collectively. Two CAN

controllers are among the common interfaces that the PS fixed peripheral control block

offers. Analog-to-digital converters (ADCs), which are also included in Zynq devices,

allow for the direct connection of external sensors without the requirement for external

digitization. Using multiple ARM AMBA AXI connections coupling between the two

crucial elements of the Zynq architecture and PL, providing a high bandwidth that

enables a high-speed data transfer. The Zynq SoC’s programmable logic component,

like other FPGAs, is made up of customizable logic blocks (CLBs) that comprise slices.

Flip-flops (FFs), switch Matrix, and look-up tables (LUTs) are all present in each slice,

in addition to Block RAMs and DSPs.

Figure 2.7: Zynq architecture-Processor Subsystem and Programmable Logic
[VSFA14]
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2.3 Chapter Summary

In this chapter, I introduced the main topics covered in this work. An overview of the

vehicle models and control strategies for path tracking tasks and the Re-configurable

Computing and Hardware Acceleration which is related to the hardware used to perform

the implementations of the suggested algorithms. These concepts pave the way for a

better understanding of the next chapters.



Chapter 3

Machine learning and FPGA

-Applications and Methods

This chapter focuses on providing a detailed academic review of the latest control meth-

ods including machine learning algorithms to perform different autonomous vehicle tasks.

This chapter also focuses on reconfigurable computing accelerators in both industry and

academia, mainly covering FPGA-based accelerators and application-specific solutions,

presenting the achieved results and the implementation concerns and challenges.

3.1 Introduction

Machine Learning is a power full method used to build complex models to perform a

prediction task using data. It becomes one of the most interesting research areas in the

last dedicates. It provides effective solutions for many complex tasks and a wide range

of applications [PSN+17], [LYS18], [GDDM14a]. Machine Learning can be categorized

into three main categories, supervised learning, Unsupervised learning, and Reinforce-

ment learning. In terms of embedded systems, the applications of Machine Learning take

advantage of existing developed hardware such as FPGA which is known for its high com-

putational capability and the limitation constraints in power consumption [AMM+18].

Machine learning accelerators have the potential to greatly improve performance. ML

has been applied in a variety of applications, especially in complex and multi-task ap-

plications such as autonomous vehicles [BMKY18]. We address the problems and pre-

sented the solutions in both the software and hardware space. Autonomous vehicles are

equipped with multiple sensors such as cameras, radars, and LiDARs, to perceive the

surrounding environment. These sensors generate huge data, hence real-time processing

of this data requires high-performance computing systems. Instead of using CPUs and

14
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GPUs for implementing AI, FPGAs are adopted since they feature high performance

with low power consumption. This chapter presents the latest solutions for autonomous

vehicles involving AI implemented on FPGAs.

3.2 Autonomous vehicle applications-specific solutions

Driving an autonomous vehicle within an uncertain environment is a very critical task,

therefore, the necessity of developing efficient algorithms to overcome this challenge is

increased. The researchers in [DTMD08] suggested a method to deal with the complexity

of creating a path planner and performing the optimization for continuous variables in

free areas. This method mainly depends on a "Search Algorithm", which consists of two

main steps. In the first step, the sub-paths which is away from the goal are excluded

based on the fact that this heuristic can be processed using of-line data. After that, it can

be formulated to correspond to the current goal. The second step is used to determine

the U shaped and the dead ending in order to determine the shortest path to the goal by

using the obstacle map. The proposed method uses a heuristic search by applying the

Hybrid A∗ algorithm. However, there are different types of search algorithms including

A∗ and D∗. Figure 3.1 shows the main differences between the three methods. Left: A∗

only moves to the states that correspond to the grid-cell centers and the cost function

is associated with the center of the cells. Center: D∗, the cost function is associated

with the cell corners, and arbitrary linear pathways between cells are permitted. Right:

Hybrid A∗, where each cell is associated with a continuous state, and the cost of that

continuous state determines the cell’s cost. The hybrid A* provides a sub-optimal path

plan which needs to be improved. In this paper, the researchers applied a non-linear

optimization on the vertices to increase the path’s length and smoothness.

Figure 3.1: Graphical comparison between the search methods.

In the last years, autonomous vehicles becomes one of the most interesting areas for

researchers. The automated driving tasks include several main tasks such as object

detection, road segmentation, path planning, etc. The conventional algorithms are based

on cameras that provide the data as images. The efficiency of these algorithms is subject

to environmental conditions such as lane marking and light conditions. In this context,
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the researchers in papers [BH18] discussed the road segmentation task to determine the

derivable area of the car by implementing a convolution neural network using LiDAR.

The proposed method can be divided into three main steps, prepossessing, neural network

processing, and post-processing. In the first step, LiDAR collects the required data from

the surrounding environment and provided it to the trained neural network as inputs. In

the last step, the results are obtained from the neural network and the required actions

are taken. The structure of the suggested neural network is presented in figure 3.2

Figure 3.2: Architecture of the convolutional neural network for road segmentation
[BH18].

Uncertainty and noise have a significant impact on the systems. The uncertainty that

varies within a range of data is called heteroscedastic. Providing an accurate estimation

is the greatest challenge of the systems that use probabilistic filters to estimate the

probability distributions. Kalman filter is an optimal estimator that fuses the information

of two sources in the covariance uncertainty matrix. In the paper [RR21], a new method

is provided to obtain an accurate uncertainty covariance matrix for the task of tracking

the velocity and position of the vehicle. The proposed approach is based on a deep

neural network that is trained using two different methods. In the first method, the

suggested DNN is trained to directly predict the distribution of the training data using

the Gaussian density loss function, while it is trained using the error of the Kalman

filter instead of the loss function. The obtained results show that the new approach

using DNN provides a great improvement compared to the conventional approach of the

Kalman filter. Deep neural networks are efficient solutions across a wide range of high-

level applications. Increasing the environment complexity is aligned with increasing the

DNN size in order to manage the massive amount of input data, which in turn leads to an

increase in computational loads and power consumption. Constraints on size, memory,

power, and other resources have an impact on how well-embedded systems that use

DNA-based methods perform. In this context, there are several hardware architectures

solutions were provided, such as The systolic array architecture which was provided

by Google’s TPU and colleagues in both academia and industry. It achieved a very

high performance compared with conventional architectures. It is a parallel computing

architecture that can perform tasks at a high frequency with a small amount of data

transferring. The main problem with this architecture is that the systolic array has
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fixed shapes overall the implementation which means, it is not scalable. Near-data

processing is another hardware architecture that allocates the processing unit near to

the data and places DRAM memory on the chip which in turn improves the data moving

efficiency. Generally speaking, hardware accelerators provide efficient solutions to bridge

the gap between artificial intelligence implementations and the hardware platforms in the

embedded systems area. An autonomous driving system can be implemented on hybrid

computational technologies GPU-FPGA, where the GPU’s primary job is self-driving

and the FPGA’s job is to perform some subtasks such as pedestrian and traffic light

detection [HSJ+19]. An end-to-end solution for the design of self-driving cars based on

the Xilinx PYNQ-Z2 board is proposed in [WLJ19]]. The most important characteristic

of this design is the presence of the Data Process Unit that accelerates the deep learning

process. FPGA is faster than the CPU and consumes less power than the GPU when it

comes to accelerating the CNN Networks process [AMM+18]. The proposed architecture

permits to reduce the execution time and energy consumption compared to the CPU.

A few years ago, FPGA designs were quasi-exclusively performed by electrical engineers

since the implementation tools were low levels of abstraction. It was hard to design

complex solutions using Hardware Description Language, thus the increase of the de-

sign productivity gap. The considerable progress of the implementation tools including

reusable IPs increases the popularity of FPGAs allowing a large variety of engineers

(from hardware to software engineers) to develop FPGA-based systems. There are many

ways to deploy algorithms on FPGAs:

HDL: Using VHDL (Very High-Speed Integrated Circuit Hardware Description Lan-

guage), an implementation of a vehicle collision avoidance solution has been proposed

considering a PID (Proportional–Integral–Derivative) controller based on fuzzy logic

[IAZB08]. A HW/SW (Hardware/Software) co-design to implement an Advanced Driver-

Assistance Systems was presented in [MCGZCM19]. The hardware accelerator, perform-

ing an ANFIS (Adaptive Neuro-Fuzzy Inference System) clustering in the Programmable

Logic side of the Zynq SoC, was implemented in VHDL.

HLS (C/C++): Vivado HLS (High Level Synthesis) has been used in [WKA+18]

to deploy C/C++ code into a Xilinx FPGA to implement a white line detector where

the single line search method gives better results than Hough transform in terms of

processing time.

Python:One of the latest trends on FPGA development is the use of Python. The

authors in [HWA19] proposed a software/hardware co-design for lane line detection (FP-

GA/Python). To evaluate the efficiency of the suggested method, the author imple-

mented and executed the application using only software (OpenCV) without hardware

deployments. The results show that the execution time of FPGA/Python is 6.34 times
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faster than software execution, considering the implementation of median blur, adaptive

threshold, and accumulation of Hough transform.

MicroBlaze soft processor: A soft processor is an intellectual property core that

is constructed utilizing the FPGA’s logic primitives. MicroBlaze™ is Xilinx 32/64-bit

soft processor core with a rich instruction set optimized for embedded application [XIL].

The classification of traffic signs is an important aspect in autonomous driving. [SGH15]

is presented an implementation method for traffic sign detection using HW/SW code-

sign. The classification is processed on a MicroBlaze soft core and the prepossessing is

performed on hardware.

PS+PL vs. MB+IP: Xilinx SoCs are made of two major parts, PS (Processing

System) and PL, which can be exploited to have HW/SW codesign based systems. The

authors in [HVPO15] show that implementing a TSR (Traffic Sign Recognition) system

on a Xilinx SoC gives better results than its implementation in an MicroBlaze + IP

based system.

XSG (Xilinx System Generator): XSG or Model Composer is a powerful devel-

opment tool to implement FPGA designs as it is suitable for Digital Signal Processing

applications. The authors in [HAM18] used XSG to model, simulate and implement a

traffic signs detection system which presents promising results.

The accuracy and delay of autonomous driving systems have a major impact on how the

vehicle handles the surrounding environment. To make the delay, resulting from data

inputs, deterministic a solution is proposed in [AW18] considering bypassing the CPU

from the input data path figure 3.3

Figure 3.3: Bypassing the CPU from the input data path [AW18].

The biggest challenge when implementing AI algorithms in FPGAs is the difficulty of the

hardware design. H. Bingo [Bin18] proposes a solution to this problem applying PYNQ
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board which allows the use of Python for its wide range libraries, especially in AI and

Image processing. O. Chang-song and Y. Jong-min [sOmY19] discuss the most popular

technologies to accelerate deep learning processes for autonomous cars industry. Some

steps are introduced to avoid collisions in the air for UAV (Unmanned Aerial Vehicle)

using four cameras based on FPGA SoC [KZN19]. The collision avoidance algorithm

has already been implemented in GPU-based system, but the solution is not practical

as it requires high energy. Road segmentation is a very important process in self-driving

cars which identifies and describes the drivable parts of the roads. The problem with

this process is the need of high computational resources. A model based on FPGA is

suggested in [LBH18] to perform a real-time and low power road segmentation. The au-

thors suggest the use of LiDAR than the use of traditional cameras since they suffer from

image unclarity in poor lighting conditions. FPGA is used for scene perception based

on CNN. It took about 16.9 ms to accomplish a CNN operation using Xilinx UltraScale

XCKU115 FPGA. In self-driving cars environment, if there is more than one car start-

ing from the same place and going to the same destination, the decision-making system

will choose the same optimal path for all cars. There will be one busy road/track and

other uncrowded. To solve this issue, paper [DHa+19] proposes a solution implemented

on FPGA applying game theory. This solution relies on direct communication between

vehicles to apply game theory instead of using the cloud. The author of [WHA18] re-

lies on the use of two FPGA board. PYNQ-Z1 to deal with detecting obstacles and

pedestrians by implementing light weight BNN (Binarized Neural Networks) and Zynq-

Xc7Z010 to recognize traffic lights and detect road lines. The two FPGA boards were

connected to each other using Ethernet to be able to communicate. The obtained results

show an improvement in terms of execution time and the accuracy of identifying the

obstacles. Generally, designing machine learning-based models goes through two main

steps, training and inference phases. In [LOG+18] a hybrid methods is suggested, and a

machine learning platform was built so that the training phase takes place in the GPU

and inference phase in FPGA as figure 3.4 shows.

In [ZWZ+18] a tool is provided to accelerate and improve the performance of applying

Deep Neural Network (DNN) on FPGA. The proposed design used two different methods

to manage the on-chip FPGA memory. The first one is to store the complete feature

maps on the chip in order reduce the complexity of the data movements. The second

technique is to automatically generate buffers to overcome the data shortage when the

processes are fetching data from the external memory. The proposed design provides

real-time performance for processing HD videos and deliver a higher efficiency (up to

4.35x) than the GPU-based solutions. The article [Ahm20] presented multi-core process-

ing units capable of increasing the level of automation in Urban Air Mobility (UAM)

aircraft by using a parallel sensor fusion structure to increase accuracy and safety during
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Figure 3.4: The architecture of the hybrid machine learning platform [LOG+18].

landing. These processing units are based on FLS (Fuzzy Logic System), Which interacts

with several sensors that have different in frequency ranges and spatially separated. The

proposed method was designed and tested using MATLAB and VHDL on Intel Altera

OpenVINO FPGA board. Paper [KVRB20] presents an FPGA-based method for opti-

mizing LSTM functionality in a critical-time environment. The proposed architecture

gives a similar output in quality compared to a traditional LSTM, but in terms of speed

it is 415 times faster. This method proposes an approximate computing scheme that

enables the calibration of the QoR (Quality of Result). This model approximates the

weight arrays in a neural network using low-rank SVD (Singular-Value Decomposition)

in addition to the distribution of weights arrays based on the importance of their com-

ponents. These techniques allow to restructure the calculations for LSTM and design

computing system that carries out the most important operations first, to get peak QoR

within time constraints.

3.3 Chapter Summary

In this chapter, we introduced the latest proposed FPGA-based solutions to accelerate

AI processes dedicated to autonomous vehicles. It is doubtless that reaching fully au-

tonomous and safe cars requires overcoming many challenges, for instance real-time pro-

cessing of the huge data coming from multiple sensors, considering the energy consump-

tion in addition to the safety issues. Exploiting reconfigurable computational technologies

significantly enhance the performance of the solutions that especially involve artificial

intelligence and autonomous vehicles since they require parallel computing. Depending

on the solutions discussed in the paper, we are about to witness fully autonomous and

safe vehicles in the next few years considering embeddability requirements.



Chapter 4

Model Predictive Control for

Autonomous Vehicle Steering

System and FPGA Implementations

The autonomous vehicle steering system, a multi-input multi-output (MIMO) system, is

challenging to design using traditional controllers due to the interaction between inputs

and outputs. If PID controllers are used the control loops are executed independently

of each other as there is no interaction between the loops. Designing a larger system

increases the controller parameters requiring tuning. Model Predictive Control (MPC)

overcomes this problem, as it is a multi-variable control method taking into account the

interactions of the variables in the target system. Achieving a high safety level is also crit-

ical for autonomous vehicle systems. This can be provided by an MPC controller, which

can handle constraints such as maintaining a safe distance from other cars. The wider

applicability of the Model Predictive Controller calls for more efficient hardware architec-

tures for implementation. The aim of this work is to achieve optimal implementation of

the MPC controller by increasing the computational speed in order to reduce execution

time for optimization. An MPC controller is used to control the steering system of an

autonomous vehicle to keep it on the desired path. A traditional MPC controller is used

to control the system where the plant dynamics do not change, whereas an Adaptive

MPC controller is used when the system is nonlinear or its characteristics vary with time

(the longitudinal velocity changes as the vehicle moves). Results are discussed in terms

of performance, resource utilization, cost, and energy-effective implementations taking

into consideration a reasonable size number of constraints handled by the controller.

21
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4.1 Introduction

In recent years, research in the automotive industry has been growing in order to address

the challenges of this application domain. Automotive control applications require high

performance and cost reduction at the same time [UDoT18]. The control system require-

ments are becoming higher, and to improve control performance, the optimization process

is incorporated into the control system design. The optimization process is subject to an

increased number of factors, such as physical, safety, and economic constraints (power

consumption, actuator saturation, etc.). In this context, Model Predictive Control is a

powerful optimization strategy for feedback control based on the model of the system.

Basically, an MPC controller runs a set of forecasts forward in time on the system model

for different actuation strategies. MPC determines the immediate next control action

based on the optimization. Next, it reinitializes the optimization in order to define the

next control input [PBT+08]. The current and future control inputs are determined

based on minimizing the difference between the target set-point and the predicted out-

put [LYM06]. MPC features and capabilities are very effective in terms of meeting the

requirements and achieving the optimization tasks. A basic MPC controller solves Lin-

ear Programming (LP) problems, which can be formulated as a quadratic programming

(QP) problem [LWM08]. Also, the MPC controller has a natural capability to handle

soft and hard constraints. That means the requirements that are imposed by the oper-

ating conditions can be managed and formulated using the constraints. However, MPC

controller implementation has several challenges such as high computational load and

high power consumption, whereas the embedded system applications have limitations in

their hardware resources.

One of the most effective solutions, in order to achieve MPC implementations for embed-

ded system applications that have constraints related to the computational time, is the

use of hardware acceleration. In this context, the deployments of an embedded MPC con-

troller can achieve using reconfigurable hardware such as Field Programmable Gate Array

or System on Chip, which is popular due to its high computational capabilities, parallel

processing and development framework [LYLM09]. In this context, the main contribu-

tions of this paper can be summarised in two main points. First, studying, analysing and

improving the implementations of the MPC controller for the task of automated driving

especially with changing dynamic systems. Second, the use of rapid prototyping method

(hardware/software co-design) to deploy the design on FPGA (hardware-embedded sys-

tem). We used three different optimization strategies to optimize the deployment consid-

ering performance, execution time and resources consumption. These strategies involves

Logical optimization, placement of logic cells, and routing the connections between cells.

The research applied functional on-target rapid prototyping using Embedded Coder and
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HDL coder. The suggested implementation method is based on taking the optimization

problem of the control method through MATLAB Simulink, Fixed-Point Designer, Em-

bedded Coder, and HDL Coder. The suggested method allows the authors to focus on

the verification, validation, and test of the embedded system rather than programming,

which in turn gives the ability to refine the design, tune the MPC controller parameters

and see the results in the real time. Finally, different optimization strategies were imple-

mented and the obtained results were compared in terms of reducing the execution time

and hardware resources consumption.

FPGA-based systems have been applied for a variety of applications, such as image and

signal processing, aerospace, energy, autonomous vehicles, telecommunications (5G), and

the medical field. In paper [AG11] an analytical study for an Adaptive MPC controller

under external disturbances signals was provided, the Lipschitz-based approach was used

and provides satisfactory stability and robustness. Saragih et al. used the MPC controller

for a visual-based control system application (face tracking system) to control the motion

of a robot, where the MPC controller was implemented to control the camera movements

in order to keep the tracked face at the center of the camera – see [SKM+19]. Paper

[CK18] provides an overview of a real-time optimization problem for automotive and

aerospace applications with a focus on MPC controllers. The optimal control problem

was formulated based on the cost function (J) and the system constraints, in addition,

numerical algorithms and their implementations on an embedded computing platform

were discussed. The improvement of fuel economy for power-split hybrid electric vehicles

(HEV) was discussed in [BVP+11]. The energy management system was formulated as

a nonlinear and constrained system. The MPC controller was used to split the power

between the combustion engine and electrical machines at the different system operating

conditions. The proposed approach provided an improvement compared to the controllers

in commercial Powertrain System Toolkit (PSAT) software. The research reported in

[FTAH08], proposed a control approach based on combining steering and braking MPC

controllers. The authors in the paper introduced two model predictive controllers. The

first one was implemented on a four-wheel vehicle model which determines the steering

angle and braking torques to track the desired trajectory. The second MPC controller

was implemented on a simplified bicycle model with a smaller number of inputs. The

obtained results showed that the first controller provides good performance in terms of

tracking the reference trajectory at low and high speed, but the computation was time-

consuming. On the other hand, the second controller showed unsatisfactory performance

at high speeds due to the simplicity of the vehicle model [FTAH08].

Paper [STAK18], presented research of edge cloud on the Internet of Things (IoT) where

the Model Predictive Controller evaluates the system properties. The paper presented



Model Predictive Control for Autonomous Vehicle Steering System and FPGA
Implementations 24

the potential of merging the IoT, 5G, and cloud computing with the efficiency of de-

ploying the automatic control system for time-sensitive and mission-critical processes.

Haidegger et al. in [HKP+11] stated that the predictive and model-based control gives

satisfactory performances only in the case of providing the accurate system’s behavior

and cascaded control approach. An empirical design with the use of the Smith predictor

for a telesurgical robot system was suggested in order to deal with the large latencies. In

the same context as the paper [HKP+11], the article [TKP+11] suggested a cascaded con-

trol structure to deal with the time delay in a teleoperation robot system. The suggested

method used the extended Kessler’s method sported by a predictive control method. A

fuzzy–PID controller was also suggested to improve the performance. Using the extended

Kessler’s method with the Smith predictor provides good control. MPC controller deals

with the linear-time-invariant (LTI) plant model, which allows for predicting the future

behavior of the system [WIP02]. Nevertheless, the paper [NG19] suggested a strategy to

control heterogeneous traffic flow. Linear Parameter-Varying (LPV) model was suggested

where the model deals with a non-linear traffic flow system that contains autonomous

and human-driven vehicles with different operating conditions. LPV provides the abil-

ity to control the nonlinear system which uses different linear controllers for different

operating points. LPV model uses a scheduling variable to enable the controller based

on the current operating point of the system [Eig17]. Our work discusses the use of an

MPC controller for an autonomous vehicle steering system and its implementation using

MATLAB Simulink and an FPGA board. The implementation of FPGA is conducted

using HDL coder. In our work, the contributions presented in two main point, provid-

ing a methodology for adaptive MPC development for the changing dynamics system

and optimizing the hardware deployment (FPGA) using different optimization meth-

ods, including logical optimization, placement of logic cells, and routing the connections

between cells.

4.2 MPC and Adaptive MPC Working Principles

In a control problem, basically, the goal of the controller is to calculate the input variables

to the plant so the plant responds in a way that makes its output track the reference

output. Figure 4.1 shows the standard control loop diagram.

4.2.1 Model Predictive Controller

Model Predictive Control uses a future prediction strategy in order to calculate the

input. To ensure that the output of the plant follows the target reference output, the

MPC controller uses what is called an optimizer. The prediction strategy is based on
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Figure 4.1: Standard Control Loop

Figure 4.2: Traditional MPC control diagram

Figure 4.3: Future Prediction Strategy for Optimization Problem

the use of a plant model (car model) by the MPC controller to simulate the car’s path

in the next P time steps, where P is the prediction horizon which represents the time,

the MPC controller looks forward in the future to make the prediction. The Model

Predictive Controller simulated different future scenarios in a systematic way, and here

the optimizer comes to the picture by determining the best scenario which achieves the

minimum error between the reference and the predicted trajectory. The minimum error

corresponds to the minimum cost function, which means the scenario of the predicted

trajectory with the minimum cost function provides the optimal solution. Figure 4.2

shows the traditional MPC controller, and figure 4.3 shows a future prediction strategy,

where each scenario represents a series of steering wheel movements in order to follow

the reference trajectory, and as mentioned above the optimal scenario is the one that

achieves the minimum cost function [Mat18a], [NVR13].

The scenario with the minimum cost function J = 20 is the optimal solution, which

achieves the optimal reference trajectory tracking. The design presented in this article
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proposes that the new state of the car model can be measured, while in the case of

the state model cannot be measured. The MPC controller uses the so-called “state

estimator” to estimate the state of the system and feed it back to the controller. The

MPC controller uses static Kalman Filter (KF) in order to update the controller states

(plant model states, measurements noise model state and disturbance model state).

4.2.2 Adaptive Model Predictive Controller

The traditional MPC controller is unable to deal with the changing dynamics systems

effectively since it uses a constant internal plant. When the system is nonlinear or its

conditions vary with time, the accuracy will be negatively affected and the performance

becomes unacceptable. To deal with these systems, an Adaptive MPC (AMPC) controller

is used. AMPC controller handles the changes in operating conditions by providing a

new linear model at each time step to achieve accurate prediction for the new conditions,

as shown in figure 4.4 [Mat].

Figure 4.4: Adaptive MPC Controller

The optimization problem in the Adaptive MPC controller remains the same, which

means the same number of states and constraints for the varied operating conditions. The

Adaptive MPC controller requires a discrete plant model, which means, the continuous-

time state space needs to be converted to discrete-time (zero-order hold method). The

Adaptive MPC Controller receives the updated discrete-time state space containing the

following [AG11]:

A: nx by nx matrix signal, where nx the number of plant model states.

B: nx by nu matrix signal, where nu the total number of plant inputs.

DX: Vector signal of length nx.
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where DX is computed by equation 4.1, which provides the updated discrete-time state,

where uk and xk are respectively the inputs and the state values for the current time

step k

DX = A(uk) +B(xk)− xk (4.1)

4.3 The optimization Problem

The MPC controller solves an online optimization problem, which is a Quadratic Problem

(QP) for specific at each control interval. Figure 4.5 shows the control algorithm of the

Model Predictive Controller.

Figure 4.5: MPC Control Algorithm

The optimization problem includes the followings:

Cost Function: also called objective function, it measures the controller performance,

and the goal is to be minimized.

Constraints: It represents the soft and hard constraints which must satisfy the system

conditions such as the physical bound. To achieve the optimization, the MPC controller

needs to calculate the control inputs driving the output of the plant that are very close
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to the desired reference. This process is performed in a systematic way by applying

different scenarios and minimizing the cost function of the optimization problem. The

cost function J of the autonomous vehicle’s steering system can be formulated as [Mat]:

J = Σp
i=1wee

2
k+i +Σp−1

k=0w∆u∆u
2
k+1, (4.2)

where we is the weight of the predicted error ek+i and w∆u is the weight of the steering

angle increments ∆uk+1. Cost function goals are to minimize both, the error between

the predicted trajectory and the reference and the change in the steering angle between

the consecutive time steps. The optimal solution corresponds to the smallest value of

the cost function.

Decision: Modify the manipulated variables in order to achieve the minimization of

the cost function and to satisfy the constraints. The MPC controller computes the

manipulated variable by solving the quadratic problem using a custom QP solver which

in turn converts the linear optimization problem to the general form of the QP problem.

4.4 Model Predictive Controller Design Parameters

Designing the MPC controller takes into consideration the required constraints such as

the steering angle limits. Figure 4.6 presents the main parameters and terms of the

MPC controller, where the following nomenclature applies: k is the current sampling

step and Ts the Control Time Step. Prediction horizon (P): number of time steps (the

time on which the MPC controller looks forward to the future to make the prediction).

Control Horizon (M): number of the possible control moves to time step k+P. The design

parameters of the MPC controller are very important as this affects the performance and

the computational complexity of solving the optimization problem. The choice of the

design parameters should achieve the balance between the computational load and the

performance. There are general recommendations, which can be taken into consideration

for the parameters.

Sample time (Ts): determines the rate that the controller executes the control algorithm.

In the case of Control Time Step Ts interval is too long, the controller will not be able to

respond in time to the disturbance, which means that the performance will be negatively

affected. On the other hand, if Ts is too short, the controller’s response will be faster,

but this causes a significant increase in computational load. The recommendation, in

this case, is to choose Ts between 10 to 20 samples of the Rise Time Tr in an open-loop
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system, where Tr is the required time that the response takes to rise from 10% to 90%

of the steady-state as figure 4.7 shows [Mat18a].

Prediction horizon : should be chosen in a way that covers the dynamic changes of the

system and the recommendation are to choose P to have 20 to 30 of samples covering

the open-loop transit system response [Mat18a], [NVR13], [Wor12] and [YZO16].

Control Horizon: Only the two control moves have a significant impact on the response

behavior, choosing a large control horizon will only increase the computation complexity,

based on that, the recommendation is to choose M to be 10 to 20 of the prediction

horizon. A small value of M provides stability while in contrast, large values reduce the

robustness. It is recommended to choose M to be between 3-5 – as presented in [GS10],

[Mat18a], [NVR13], and [TMT06].

Figure 4.6: MPC schema for the main terms [YLLL17]

For the model we suggested in our work, the following strategy was used in order to choose

the parameters which achieve satisfactory control performance: First, we initialized the

parameters based on the recommendations above regarding the Sample Time, Prediction

Horizon, and Control Horizon. Next step, is about tuning the parameters and then

evaluating the MPC controller performance using the MPC Designer MATLAB toolbox

until the optimal values provided the best control performance were determined. The

weights of the inputs and outputs were determined using the MPC Designer by setting

nonzero values to the inputs and outputs which need to track a reference value. Based

on that, the weight equal is set to zero for the steering angle as it does not track a target.

The weight of the lateral position and yaw angle were determined with nonzero values

as the main objective is position tracing.
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Figure 4.7: Control Time Step Tsand Rise Time Tr

4.5 The Vehicle Model

MATLAB MPC designer application was used to design the controller that steers the

vehicle autonomously. Figure 4.8 shows the global position of the vehicle in X and Y

axes where (X, Y) are the vehicle’s global position, vy is the lateral velocity and vx is

the longitudinal velocity. The parameters that need to be controlled are: Yaw angle θ

and the front steering angle δ. The state-space of the model is given by the following

equations:

d

dt


ẏ

θ

θ̇

 =


−2caf+2Car
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Iz

 (4.3)

ẏ = vxθ + vy (4.4)

where vx is the longitudinal velocity at the center of gravity of the vehicle, m is the

total mass of the vehicle, lz is yaw moment of inertia of the vehicle, lf and lr are the

longitudinal distance from the center of gravity to the front tires, caf is cornering stiffness

of tires and y is the lateral position.

MPC controller performs all the calculations using discrete-time state space. When a

plant model is specified for the MPC controller, the following needs to be performed

[Mat]:

Conversion to state space: the model is converted to linear time-invariant state space

model.
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Figure 4.8: The global position of the vehicle

Discretization or resampling: in the case of different sample times between the model

and the MPC controller the following occurs:

• In the case of a continuous model, it must be converted to a discrete-time dynamic

system model.

• In the case of the discrete model, the discrete-time dynamic system model is re-

sampled in order to generate an equivalent discrete-time model with a new sample

Time TS

There are different ways to discretize a continuous model, in the proposed one, the

continuous-time dynamic system model was discretized using zero–order hold on the

inputs and sample time of TS . This can be used also for resampling the discrete-time

dynamic system model with new sample time TS .

4.6 Design of the MPC and HDL Code Generation

Based on the MPC control diagram the Simulink model was built. First, the required

blocks (Plant model and Reference) were added to the workspace and linked to the

MPC controller. The first input of the controller is the measured output and the second

one is the reference trajectory, which was created using the Driving Scenario Designer

Toolbox in MATLAB. As mentioned before, the MPC controller was designed using MPC

Designer, where the internal plant model and the scenario are defined and the designing

parameters such as sample time and control horizon were set using the strategy defined

in section (3.4). In addition, the hard and soft constraints and their weights for the

inputs and outputs such as the steering angle and the rate of change were set. In the
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case of an unchanging dynamics system, the input of the vehicle model is the output

of the model predictive controller (the steering angle) and the outputs are the lateral

position and Yaw angle. Figure 4.9 presents the MPC controller model for linear systems

(unchanging dynamics system). On the other hand, in the case of changing dynamics

system, the longitudinal velocity is a second input for the vehicle model and the adaptive

MPC controller will use the plant mode output (State) to perform the new prediction

for the updated model state. Figure 4.10 presents the Adaptive MPC controller model

for nonlinear systems (changing dynamics system) with the Update Plant Model block.

Manual coding is time-consuming compared to automatic code generation, which in turn

lets the designers focus on verification, validation and testing rather than programming.

The model-based design generally provides an effective improvement in terms of system

reliability and reduces the total project time by up to 33% and the cost by 20% compared

to the traditional methods (handwritten code) [ST13].

The floating-point model needs to be converted to fixed point in order to reduce the

Figure 4.9: MPC controller model for linear system (Constant longitudinal velocity)

Figure 4.10: Adaptive MPC controller model for nonlinear system (varied longitudinal
velocity)
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hardware resources [OMM+14]. The steering system was designed and simulated using

MATLAB Simulink and implemented on System on Chip target using an embedded coder

and HDL coder. The working methodology is presented in figure 4.11. First, the MPC

controller model was created and the parameters were determined in MATLAB (see table

4.1), followed by the HDL coder model and functional verification. Intellectual Property

(IP) was created by Vivado. The MPC controller project was created and the MPC

IP was connected to the Processing System (PS) through the AXI interface. Figure

4.12 shows the block design of the MPC system. The next step of the development

(see figure 4.11) was the bit-stream generation and export to the software development

system (Xilinx SDK). The last step of the development was the software design and

test. The generated project in Xilinx SDK together with the bit-stream downloaded and

the target FPGA was programmed. In MATLAB Simulink the MPC model and MPC

hardware system were tested and checked with Hardware In the Loop (HIL) simulation.

The results are presented in the next section

Table 4.1: MPC design parameters

MPC controller parameters
Parameter Value

Sample time Ts 0.1 s
Prediction horizon 10 s
Control horizon 3 s

Constraints
Steering angle [-0.5 , 0.5] rad
Changing rate [-0.26 , 0.26] rad

Figure 4.11: The design workflow of the proposed solution
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Figure 4.12: Vivado Block Design

4.7 Simulation

4.7.1 Matlab Simulink Implementations

The steering system model was tested using MATLAB Simulink for both MPC and

Adaptive MPC. figure 4.13 shows the performance of the MPC controller at a constant

longitudinal velocity, and figure 4.14 shows its performance at varied longitudinal veloc-

ity. The obtained results in figure 4.13 and figure 4.14 show that the MPC controller

achieved satisfactory performance for the constant operating conditions, while it failed to

handle the system with changing longitudinal velocity. figure 4.15 shows the performance

of the Adaptive MPC controller for the changing dynamic system (varied longitudinal

velocity). Results demonstrate that using the Adaptive MPC controller for the chang-

ing dynamics system yields good performance in terms of tracking the reference (lateral

position and yaw angle).

Figure 4.13: MPC controller performance at constant velocity
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Figure 4.14: MPC controller performance at varied velocity

Figure 4.15: Adaptive MPC performance at varied velocity

4.7.2 FPGA Implementations

Both models (MPC and Adaptive MPC controller) were implemented on FPGA and the

results were compared with the results obtained using MATLAB Simulink. The exper-

iments showed slight differences in terms of performance between the implementations

(Simulink and FPGA). figure 4.16 and figure 4.17 show the performance of the MPC

controller at constant longitudinal velocity, and the performance of the Adaptive MPC

controller at varied longitudinal velocity, respectively. Figure 4.18 and figure 4.19 clearly

show the difference in performance between the two controllers’ implementation.

Figure 4.16: MPC controller performance at constant longitudinal velocity (FPGA)



Model Predictive Control for Autonomous Vehicle Steering System and FPGA
Implementations 36

Figure 4.17: Adaptive MPC performance at varied longitudinal velocity (FPGA)

Figure 4.18: MPC implementation using Simulink and FPGA: Performance compres-
sion

Figure 4.19: Adaptive MPC implementation using Simulink and FPGA: Performance
compression

The implementations of MPC and Adaptive MPC controllers on FPGA were analyzed

also in terms of resource utilization and power consumption using three different strate-

gies for implementation to achieve the optimization as table 4.2 and table 4.3 show.

In general, the implementations involve Logical optimization, placement of logic cells,

and routing the connections between cells [Xil16]. Implementation “Defaults strategy”

balances run-time with trying to achieve timing closure. The “PerformanceExplore-

PostRoutePhysOpt” strategy uses multiple algorithms for optimization, placement, and

routing in order to get potentially better results. In the “FlowRuntimeOptimized” strat-

egy, each implementation step trades design performance for a better run time [Xil16].

The results in table 4.2 show that the implementation of the MPC controller on FPGA
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using the “defaults” strategy has the highest resource utilization, whereas the “FlowRun-

timeOptimized” strategy achieved the lowest resource utilization, where the utilization

of LUTs (Lookup Tables) and FF (Flip-Flop) were reduced by 13.2% and 8.86% respec-

tively. For BUFG (Global Buffer) there is no change. On the other hand, the implemen-

tation of the MPC controller using the “PerformanceExplorePostRoutePhysOpt” strategy

achieved the lowest resource utilization. Table 4.3 shows that the power consumption for

all applied strategies is almost the same. Table 4.4 shows that 91% of the total power

was used by the Processing System (PS), whereas only 9% was used by Programmable

logic (PL) and only 6% of MMCM (Mixed-Mode Clock Manager) were used for both

MPC and AMPC implementations.

Table 4.2: Resource utilization using different strategies

Defaults Strategy

Resource Utilization Available Utilization %
MPC AMPC MPC MPC AMPC

LUT 204 208 53200 0.38 0.39
FF 361 361 106400 0.34 0.34

BUFG 3 3 32 9.38 9.38
PerformanceExplorePostRoutePhysOpt strategy

LUT 181 184 53200 0.34 0.35
FF 329 329 106400 0.31 0.31

BUFG 3 3 32 9.38 9.38
FlowRuntimeOptimized strategy

LUT 177 231 53200 0.33 0.43
FF 329 361 106400 0.31 0.34

BUFG 3 3 32 9.38 9.38

Table 4.3: Power consumption – different implementation strategies

Name Strategy Total Power (W)
MPC AMPC

Impl_1 Implementation Defaults 1.791 1.791
Impl_2 PerformanceExplorePostRoutePhysOpt 1.792 1.792
Impl_3 FlowRuntimeOptimized 1.793 1.791

Table 4.4: Power Consumption on a chip - Summary

Power consumbtion Power on chip

Dynamic 91 %

Clocks less than 1 %
Signals less than 1 %
Logic less than 1 %

MMCM 6 %
PS7 91 %

Static 9 % PL Static 100 %
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Thesis I

I gave a methodology for adaptive MPC development for the changing dynamics system,

which yields good performance in terms of tracking the reference (lateral position and

yaw angle). To perform embedded system’s deployment, I applied and analyzed differ-

ent implementations of the proposed method from source utilization point of view. The

implementations included logical optimization, placement of logic cells, and routing the

connections between cells.

Related Publications: [RBV20], [RV20], [BRV20]

4.8 Chapter Conclusions and Summary

This chapter discussed the implementations of model predictive controller for autonomous

vehicle steering task. To deal with changing dynamics systems a linearized function was

used to adapt to the new changes and provide accurate prediction at each time step

(Adaptive MPC). The designed models were implemented on FPGA using MATLAB

HDL coder and different strategies were adopted to optimize resource utilization. The

results showed that the MPC controller provides satisfactory performance in the case of

a constant dynamics system, while it couldn’t handle operating conditions in the case of

changing dynamics. On the other hand, adaptive MPC controller handled the changing

dynamics efficiently. Additionally, the suggested model was deployed on FPGA where

different strategies were implemented to achieve the best behavior including logical opti-

mization, placement of logic cells, and routing the connections between cells. The results

were discussed in terms of resource utilization and power consumption.



Chapter 5

Deep Learning-Based Control

Strategy for Automated Driving and

FPGA Deployments Using a Novel

Automatic IP Generator Tool

With the increase in the non-linearity and complexity of the driving system’s environ-

ment, developing and optimizing related applications is becoming more crucial and re-

mains an open challenge for researchers and automotive companies alike. Model pre-

dictive control is a well-known control strategy that is used for automated steering task

due to its ability to solve an online quadratic optimization problem in the real-time,

in addition to its efficiency in handling the environment’s constraints. MPC controller

drives the vehicle autonomously along the center-line of the road based on two main

factors, the lateral deviation and relative yaw angle. Recently, machine learning has

become an effective alternative to classical control systems, and deep learning technol-

ogy has been widely used because of the promising performance achieved in different

applications and tasks. In this context, we suggested that the implementation of the

Deep Neural Network can achieve a great improvement in terms of efficiency compared

to solving an online quadratic problem, which in turns will naturally lead to reduce the

time and the complexity of implementations. This chapter can be structured in two main

parts, in the first one, A developed deep neural network (DNN)-based control strategy

for automated steering is provided, where the DNN model is designed and trained based

on the behavior of the traditional MPC controller, and the efficiency of replacing the

MPC-based controller with the suggested DNN-based model is studied and analyzed.

The performance of the DNN model is evaluated compared to the performance of the

39
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designed MPC which already proved its merit in automated driving task. Taking into

considerations the critical role of hardware implementations of deep neural network, a

new automatic intellectual property generator based on the Xilinx system generator has

been developed in order to deploy and optimize the implementations of the DNN based

models on Field Programmable Gate Array. The performance was evaluated based on

the ability of the controllers to drive the lateral deviation and yaw angle of the vehicle to

be as close as possible to zero. The DNN model was implemented on FPGA using two

different data types, fixed-point and floating-point, in order to evaluate the efficiency in

the terms of performance and resource consumption. The obtained results show that

the suggested DNN model provided a satisfactory performance and successfully imitated

the behavior of the traditional MPC with a very small root mean square error (RMSE

= 0.011228 rad). Additionally, the results show that the deployments using fixed-point

data greatly reduced resource consumption compared to the floating-point data type

while maintaining satisfactory performance and meeting the safety conditions.

5.1 Introduction and Background

The rapid increase in the number of cars on the roads has increased the risks associated

with safety and traffic congestion. Recently, autonomous vehicles are being considered

as a potential solution to overcome these problems. The autonomous vehicle can achieve

more robust systems by providing more efficient driving systems and automated control

[YLCT20]. Automated steering task is considered as a critical task and different control

strategies can be applied such as geometric and kinematic controller, dynamic controller,

optimal controller, adaptive and intelligent controller, classical controller and model-

based controller [Sni09],[AZHK17]. The improvement of the applied control strategies

becomes an ultimate goal for the researchers and the automotive companies which have

expanded their researches and developed the used technologies. Because of that, the

competition surely has intensified in this field [PLH15]. The increase in the complexity

of the system is accompanied by an increase in the computational loads, consequently,

an increase in the required computational capabilities which may be limited in a vari-

ety of environments [KTGL18]. In this context, and as we mentioned earlier, the MPC

controller solves a constrained online – optimization problems with high computation-

ally demanding (it is more challenging with the complex systems). Meaning that, the

MPC controllers are suitable for the systems with high computing capacity environ-

ments, and it does not meet the real –time computing requirements for the resources

limited environments. In addition to the computational requirements, many tasks such

as those for the vehicles have real–time requirements which are directly related to the

safety aspects. These requirements raised the challenges of running these applications



Deep Learning-Based Automated Driving and FPGA Deployment using a Novel
Automatic IP Generator Tool 41

on the different hardware computing platforms which are in turn constrained with sev-

eral factors such as size, weight, cost and power consumption limitations. Consequently,

the necessity of providing high efficient control strategies for the autonomous vehicle

systems with minimum computational cost becomes an urgent for the practical and the

economic aspects [YGDWS13], [EDC14], [SEZEHE20]. The significant developments in

Machine Learning technologies including deep neural network have enabled the devel-

opers to design and develop more robust and safe autonomous vehicles systems in the

complex dynamic environments. Many companies nowadays are effectively working to

develop their technologies toward fully automation vehicles. The promising results of the

deep neural networks associated with environment perception ,motion planning, objects

detection, and traffic routing sparked interest in developing deep neural network-based

control strategies [PLH15], [Sni09],[KLKK20], [nHTK15]. For example, Tesla provided

the “Model S” autonomous vehicle which used DNN to develop a vision-based system for

the obstacles detection task. Deep neural network is considered a self-optimized method

due to its ability to optimize its behavior based on the provided information, and that

makes DNNs suitable for complex dynamic systems [RHS+17]. In addition to the per-

formance, deep neural networks offer many other benefits such as reducing the execution

time and the which makes the implementations on limited-resource HW (Hardware) more

efficient [LXL17], [BMKY18], It is expected to use more DNN – based systems in the

near future for autonomous vehicle applications.

Custom IP generation is a tricky step but crucial for FPGA implementations. Var-

ious tools are provided for the designers to perform such steps, but all seem to be

time-consuming, especially for applications that consume huge computational resources.

DNNs are becoming widely used in all fields, hence, their deployment must be simplified

for developers, engineers, and scientists. However, DNNs are time and resource con-

suming if they are implemented on sequential computational systems such as µP/µC

(microprocessors/microcontrollers) or Digital Signal Processors (DSPs) [QZF+20]. That

is why DNNs are more likely to be implemented with parallel computing systems such as

FPGAs, field programmable analog arrays (FPAAs), graphical processing units (GPUs)

or dedicated hardware accelerators on application-specific integrated circuits (ASICs).

Some papers propose implementations of model predictive controllers on FPGAs consid-

ering different implementation methods such as high-level synthesis [KLKK20], a Xilinx

System Generator [STH20] or even HDL [nHTK15].

Generally speaking, it is evident that the most economical solution for these applications

is to adapt a dedicated ASIC conditionally upon mass production. GPU are known

for their ability to execute several parallel processes, which makes their application for

image-processing favorable [CDKDD21]. Since the neural networks can be computed in

a parallel way, GPU can be dedicated for such applications [MBBH21], [SH17]. However,
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they are known to be power consuming, which makes their use inadequate for embedded

applications. Re-configurable computing is an efficient alternative solution for parallel

processes where all the computations can be executed at the same time. The most

common re-configurable technologies are FPGAs [WGDL21], in addition, recently FPAAs

have become a hot topic for research [MBBH21], [SH17]. However, because of their lack

of hardware resources, the use of FPAAs are limited to scientific research applications

[DM20]. Many studies have proven that FPGA-based neural network implementations

provide much better results in terms of power consumption and timing performances

[CDKDD21], [LHW20]. the lack of FPGA hardware resources restricts their use to

limited DNN sizes, hence, an FPGA-GPU heterogeneous platform could be a solution

[CHPB21].

Despite the increasing popularity of Python, MATLAB is still a powerful environment

that users in various fields are utilizing for a huge range of applications. A MATLAB

toolbox was released in September 2020 for the creation of DNN IPs for FPGAs [Mat18b],

but this tool forces the developer to use high-end FPGA, even for small DNN structures.

Some works propose different methods or tools to implement DNNs on FPGA [GS20],

[GLX+17].

The suggested solution is to develop a deep neural network model based on the behavior

of the traditional MPC controller so that the DNN model can replace the MPC controller

in high complexity driving system environments. Additionally, one of the motivations

behind the work is to propose an alternative tool to implement deep neural networks on

low-end FPGA. The work includes creating the back-end of an automated tool to generate

deep neural network Intellectual Properties for further FPGA implementation. The

tool is based on the Xilinx System Generator, where blocks are automatically invoked,

parameterized, and linked from the script. The targeted FPGA which is used in this

work is the Xilinx Kintex-7- KC705 chip, which is known for its hardware resources

limitations. Nevertheless, the new tool has the ability to deploy the generated IP on

larger and smaller FPGAs/SoCs.

Autonomous vehicle systems mainly based on the data acquired from the sensors in or-

der to provide an accurate perception of the surrounding environment. The role-based

controllers are the conventional controllers used to control the early autonomous vehicles

where their parameters are tuned by the developers during the simulation process. Be-

cause of the non-linearity nature of the driving systems and the complex environments,

these controllers are not efficient enough [SBS13]. Deep neural networks have become

an alternative to the classical approaches and has gained a great attention as they have

shown considerable performance and overcomes the problems of these approaches.
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5.2 Design of the MPC Controller

The MPC drives the vehicle to the target point along the desired trajectory by controlling

the lateral deviation d and the relative yaw angle θ of the vehicle. Maintaining these

variables to be zero or as close as possible to zero is the online optimization problem that

the MPC controller must handle in real time. Since MPC is a model-based controller, the

design process has two main steps, designing the plant model (the vehicle) first and then

designing the MPC controller in the second step. The design process includes tuning the

parameters of the controller and formulating the operating conditions that are imposed

by the system in the form of soft and hard constraints.

5.2.1 The vehicle Model

The dynamic model is represented by equations 5.1, 5.2 and 5.3. Figure 5.1 shows the

global position of the vehicle, where vx, vy are the longitudinal and the lateral velocities

respectively, d is the lateral deviation, m is the total mass of the vehicle, lr is the distance

between the rear tire and the center of the gravity, lf is the distance between the front

tire and the center of the gravity, lz is yaw moment, cf , cr are the corner stiffness of

the front and rear tires respectively, δ is the steering angle, θ is the yaw angle, ρ is the

curvature, and ω is the yaw rate. The lateral and yaw motions are determined by the

fundamental laws of motion, meaning that they are determined by the forces that are

applied on the front and rear tires.

Figure 5.1: Global position of the vehicle model.
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5.2.2 The MPC model

The first step in designing the MPC model is to determine the input-output signals

of the vehicle model and the second step is to set the parameters and determine the

constraints. The manipulated variable (steering angle δ) and the disturbance (vx ρ) are

determined as inputs, while lateral velocity vy, lateral deviation d, yaw angle θ, and yaw

rate ω are determined as outputs as figure 5.2 is shown. The design parameters of the

MPC controller were tuned during the design process and the standard recommendations

were taken into consideration to determine their values. Sample time (Ts) determine the

rate that MPC controller executes the control algorithm. In the case of long Ts, the

controller will not be able to response in time to the disturbance. On the other hand, in

case of too small Ts, the controller will response faster, but the computational loads will

increase. Prediction horizon (P) is chosen in a way that covers the dynamic changes of the

environment. The recommendation is to chose P to be 20 to 30 samples. By taking into

consideration that the first two control actions have the highest impact on the response

behaviour, determining a large control horizon (M) increases the computational load,

while a small M increase the stability. The parameters of the MPC model are determined

as flows: the sample time Ts = 0.1 s, the prediction horizon P = 2 s, and the control

horizon M = 2 s. The constraints are determined as follows: the steering angle is in

the range [-1.04, 1.04] rad and the yaw angle rate is in the range [-0.26, 0.26] rad. The

parameters were maintained during the design process until satisfactory behavior was

obtained. The overall design of the MPC and plant model is shown in figure 5.3.
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Figure 5.2: Input/Output signals of the MPC plant model.

Figure 5.3: General MPC and plant model diagram.

5.3 Design of the Depp Neural Network Model

Designing the deep neural model goes through several steps including designing the model

architecture, defining the training options, and preparing the training data. The DNN

model is developed using Matlab environment.
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5.3.1 Design of DNN Model Architecture

In this step, the layers of the deep neural network architecture are chosen, and these

layers are defined based on the nature of the task as each layer has a specific function

( See figure 5.4) . The suggested architecture of the DNN controller model consists

of 8 layers which are the input layer, 6 fully connected layers (FC) and each FC layer

has activation function (ReLU). The last layer is a regression layer which holds the loss

function (mean-squared-error).

Figure 5.4: The DNN model architecture representation.

5.3.2 Training Options and Data Preparation

In this step, the optimizer (solver) for the suggested model is defined, where there are dif-

ferent types of optimizers based on the problem for which the model will be implemented.

The optimizer can be specified as one of three types, Stochastic Gradient Descent (SGD),

Adaptive Moment Estimation (ADAM) or Root Mean Square Propagation (RMSProp).

In addition to the optimizer, a set of options are also determined. Table 5.1 shows the

main training options that are chosen to train the model. The data set is generated by

implementing the MPC controller against a massive number of scenarios that cover the

maximum number of the possible environment’s states, and then obtaining and record-

ing the control actions in the data set. The size and type of the generated data set is

(120000 x 6), double data type, where 6 refer to the number of the state space variables.

The generated data set is divided into three sets, which are: training set that is used to

train the model, validation set that is used to validate the model during the training and

testing set that is used to test the model after being trained. After designing the deep

neural network, defining the training options, the training process is performed using

the training and the validation data sets. The training stops after the final iteration.
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The details showed that 9680 iterations are needed to perform the training, 40 epochs

and 242 iterations per each (40 *242 = 9680). The validation process was performed

every 50 iterations. The validation loss (root mean square error RMSE) was almost the

same for each mini batch (RMSE = 0.010799), which means that the trained DNN does

not over fit. After, the trained neural network was tested using the testing data set.

The performance of the DNN model is evaluated comparing to the performance of the

MPC controller, where the RMSE between the outputs of the controllers is calculated.

The obtained root mean square error by the end of the testing process was: RMSE =

0.011228, which is a very small compared to the range of the steering angle [-60 – 60]°.

This small value indicates to that the DNN model successfully imitated the behavior of

the MPC controller.

Table 5.1: Training options of the DNN model.

Training option name Value Description
Solver ADAM The optimizer
MaxEpoch 40 Maximum number of Epoch

MiniBatchSize 420
Size of mini batch that is used for
each
iteration

InitialLearnRate 0.001 Initial learning rate

LearningRateSchedule Piecewise The learning rate is updated every
specific number of epochs

LearningRateDropPeriod 20 The learning rate is updated every
20 epochs

LearningRateDropFactor 0.1 The factor that is used to update the
learning rate

5.4 Auto Generation of DNN IP Procedures

The procedure of the neural network’s IP auto-generating has two main steps, as shown

in figure 5.5. First, the user is asked to define the parameters concerning the DNN (the

structure, the data type and the activation function) and the targeted computational

HW and the values of weights and biases parameters are imported from the pre-trained

DNN. Then comes the step of setting the input/output interfacing mode, where 4 ways

are available: UART, AXI, constrained parallel, and no interface modes. If the UART

interfacing mode is selected, two additional pre-designed IPs are invoked that are re-

sponsible for receiving and transmitting UART data from/to the DNN IP. In this mode,

the user is asked to specify the ports to be used for Tx and Rx. If the AXI mode is

selected, it provides the possibility for the DNN IP to communicate with the processing

system or the soft microprocessor core. If UART or AXI modes are set, additional IPs

will be invoked (UART_Tx IP, UART_Rx IP, AXI-interface IP, and Processor System
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Reset IP), hence, some additional hardware resources and power are required. The other

disadvantage of the AXI interfacing mode is its power consumption since PS consumes

1.53 W. In our work, only the AXI interfacing mode is utilized (the UART mode will

be treated in a future work). The third interfacing mode is the constrained parallel

I/O where the user is asked to specify the ports to be used. This mode allows parallel

communication from/to DNN, and hence there will be no latency caused by the data

transmission and reception, however, this method consumes a lot of I/O resources. It is

therefore not practical for the majority of the DNN applications. If no interface mode

is selected, the connection is unconstrained, which permits IP-IP interconnection. Table

5.2 summarizes the interfacing possibilities for the presented tool, where AXI interface

remains the appropriate one for the studied application in our work. After setting up the

DNN-IP preferences, the XSG automation part begins, which consists of invoking the

elementary computational components needed for each neuron, linking the components

and the neurons, setting the weights and biases accordingly, implementing the I/O, and

then generating the IP. Figure 5.6 shows the auto-generated DNN circuit on the Xilinx

System Generator to be implemented on a low-end FPGA.

Figure 5.5: Flow of deep neural network IP automated generating.

Table 5.2: DNN IP generator tool interfaces

Connectivity Speed Power HW resources

Constrained I/O PL-out Very high Very low Null

Unconstrained I/O IP-IP Very high Very low Very high I/O

UART PL-out Low Low Low

AXI PL-PS High High High

5.5 Implementation of the Solution Considering the DNN

on a HW accelerator

The implementation of the FPGA design is not a straightforward process due to the lack

of a direct connection between the algorithms’ design and the hardware, in addition to
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Figure 5.6: The auto-generated deep neural network structure on Xilinx System
Generator to be implemented on a low-end FPGA.

the deviations that can be caused by the difference between the fixed-point and floating-

point implementations of the algorithm’s specifications. Also, the hand-written code is

error-prone and can be hard to debug. In order to address these problems and provide

an integrated workflow with an unified environment for algorithm design, simulation,

validation, and implementation, the suggested solution was performed using Matlab,

Simulink, and the Xilinx System Generator-based tool "Automatic DNN IP Generator".

Figure 5.7 shows the detailed steps of implementation.
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Figure 5.7: The implementation steps of the solution.

5.6 Results and Discussion

The implementations of the MPC, the DNN model, and the deployment of the DNN on

FPGA are discussed taking the response of the MPC as reference behavior. In addition

to the performance, the deployments using floating point and fixed-point data type are

discussed in terms of resource consumption. The performance of the controllers are

evaluated based on the settling time Ts, the overshoot Mp, and the final value (steady-

state) of the yaw angle and the lateral deviation of the vehicle. The overshooting shows

the amount that the lateral deviation/yaw angle overshoots its target value, while the

settling time shows the time required to settle and reach the final value within a certain

percentage. The settling time of the performance indicators were determined to be the

time that the signal reach 5% (commonly used) of its final value. Figure 5.8 clearly shows

that the DNN model and the traditional MPC have a very similar response, meaning

that the DNN model successfully imitated the behavior of the MPC, while the variant

of DNN on FPGA has a slightly different response. In order to evaluate these behaviors,

figure 5.9, figure 5.10 and table 5.3 present the performance indicators, which show that

the MPC, the DNN model, and the DNN on FPGA, all successfully drive the lateral

deviation and yaw angle to be zero or very close to zero as a desired steady state. The

detailed results show that the settling time for both indicators is almost the same in the

case of the traditional MPC and the DNN model, while approximately 0.342 s in the case

of lateral deviation and 0.3013 s in regards of yaw angle were noticed in the behavior

of the DNN on FPGA version. On the other hand, the behavior was very similar in

regards of the overshooting, where only 0.0492 m for the lateral deviation and 0.0339

rad for the yaw angle were noticed in the response of the DNN on FPGA compared to
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the response of the traditional MPC. These results demonstrate that the trained DNN

model provided satisfactory performance and the vehicle was driven smoothly to the

desired destination. Despite the slightly higher overshooting and settling time, the DNN

model after being deployed on FPGA provided a satisfactory performance and meets

the safety requirements that were determined in the designing process. Additionally,

the implementations proved that our DNN model provide an improvement in term of

execution time, where it provided a response three time faster compared to the traditional

MPC controller as it is shown in table 5.4. In addition to performance, in order to

evaluate the efficiency of deploying the DNN on FPGA in terms of resource consumption,

the main estimated resource utilization of the deployments using fixed-point and floating-

point data types were compared and presented in table 5.5. The results show that DNN

on FPGA using fixed-point data consumes fewer resources compared to using floating-

point data, where 86.29% of the LUTs and 51.54% of the DSPs were saved from the

overall resource availability of the FPGA board.

Figure 5.8: Estimated steering angle computed on FPGA compared to simulation
results of the traditional MPC and the DNN model.

Figure 5.9: Vehicle response in terms of lateral deviation: comparison of FPGA
implementation and simulation results.
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Figure 5.10: Vehicle response in terms of yaw angle: comparison of FPGA implemen-
tation and simulation results.

Table 5.3: Performance indicators for controller behavior

Performance Indicator Lateral Deviation Yaw Angle
Overshooting 0.9086 -0.4637
Settling Time 1.125 1.4912Traditional MPC
Final Value 0.00001 0.00166

Overshooting 0.9086 -0.4749
Settling Time 1.1924 1.5067DNN
Final Value 0.00063 0.00169

Overshooting 0.8592 -0.4976
Settling Time 1.4674 1.7925DNN on FPGA
Final Value -0.00427 0.00504

Table 5.4: Execution time comparison

Controller Execution Time (s)
MPC controller 1.54
DNN controller 0.34

Table 5.5: Resource utilization of DNN on FPGA for fixed point versus floating point
data

Used Resource Utilisation [%]Site Type Fixed-Point Floating-Point Available Fixed-Point Floating-Point
LUTs 7166 183034 203800 3.52 89.81
DSPs 393 826 840 46.79 98.33

Thesis II

I proposed deep neural network-based control strategy as an alternative solution to the

classical MPC controller for automated driving task aiming to reduce the complexity of

solving the online-optimization problem, therefore the execution time. I designed and

trained the DNN-based controller to imitate the behaviour of the traditional MPC con-

troller. I also proposed a new automatic intellectual property generator tool, which is
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developed not only to perform but also to optimize the deployments of deep neural net-

works on low-end Field FPGA.

Related Publications: [RBV21], [KRVB20a], [ch5]

5.7 Chapter Conclusions and Summary

This chapter concerns the inefficiency of the classical MPC controller with the complex

automated driving environment. A deep neural network model-based model was sug-

gested as an efficient alternative to the classical MPC controller, where the DNN model

was trained to imitate the behaviour of the MPC controller. The designing, testing and

validation processes were discussed in details. Also, this chapter concerns the deploy-

ment of the DNN model on low end FPGAs, where a new tool based on the Xilinx

System Generator was developed to perform and optimize the deployments of the DNN

model on FPGAs. The obtained results show that the suggested DNN model efficiently

succeeded in emulating the behaviour of the MPC controller and reduced the execution

time by 3 to 4 times. As a result, the traditional model predictive controller can be

replaced efficiently by our DNN model, which in turn reduces the execution time. On

the other side, the trained DNN model was efficiently deployed on low-end FPGA Xilinx

Kintex-7 FPGA KC705 using floating and fixed-point data type, achieving satisfactory

performance and meeting the design’s constraints.



Chapter 6

A Hybrid Machine Learning-Based

Control Strategy for Automated

Driving Optimization

Developing autonomous vehicles is a highly important topic in the field of intelligent

transportation systems. Automated steering is a crucial function in autonomous vehi-

cles. Therefore, it is urgent to either develop a new effective control strategy or improve

existing ones. A variety of control strategies are used for this purpose, most with limita-

tions related to their computing capabilities with the highly complex systems or to lack

of efficacy related to maintaining the balance between driving performance and driving

smoothness. This chapter concerns the use of machine-learning algorithms for automated

driving, where a new method is introduced to achieve performance optimization. The

new method leverages the advantages of supervised learning and reinforcement learning

algorithms in one control model to achieve a better generalization capability within the

complex driving environment. The efficiency of the suggested model is analyzed and com-

pared to two other machine learning methods. To sum up, in this chapter, three different

machine learning-based models were developed to perform an autonomous driving task:

a supervised learning model (Deep Neural Network), a reinforcement Deep Q-learning

model (DQN), and a hybrid model. The DQN was designed with the same structure as

the DNN and trained by directly interacting with the driving environment. The hybrid

model is a combination of supervised and reinforcement learning algorithms, where the

trained DNN model is used as a decision-maker (Actor) in a Deep Deterministic Policy

Gradient(DDPG) reinforcement learning model. The behavior of the designed models

was compared based on several performance indicators, including the ability to drive the

vehicle along the desired trajectory, the response time, and the smoothness of the driving

system.

54
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6.1 Introduction

The evolution of autonomous driving systems has seen the use of different technologies

aiming to improve efficiency, enhance driving safety and reduce the risks related to traffic

congestion. Driving in a structured environment and highway driving projects were some

of the earliest autonomous vehicle projects, carried out at Carnegie Mellon University

and Bundeswehr University Munich [DZ87]. Since then, projects and research related

to autonomous vehicles have been carried out by academic institutes and companies

alike.The vehicle interacts with the surrounding environment in order to perform several

related tasks: perception, where the required information about the driving environment

is provided to the system; planning, where the optimal scenarios and the control actions

are obtained based on the provided information; and the control function, where the

control strategy is put into action [BSBG12]. The automated steering task is a part

of the control function, where the tracking errors are minimized in order to follow the

desired trajectory. Driving the vehicle along the desired trajectory is considered one of

the most critical tasks due to the fact that any failure in the applied control strategy can

have severe consequences. A variety of control strategies have been used to perform the

automated steering task, such as the classical feedback control algorithm, Model-Based

Control, Dynamic Control, and Adaptive Control [HGCV21], [LWZC15], [WLTY08].

In this context, Model Predictive Control has become the most commonly used algo-

rithm for the autonomous vehicle steering system. The MPC controller solves an online

optimization problem with the ability to handle the system constraints (soft-hard) by

including them in the design process, which makes it a powerful strategy to deal with the

stability and the changing dynamics of the vehicle. On the other hand, with the increase

of the system complexity, the computational load of the MPC controller is increased,

since it solves the optimization problem in each time step, and it may not be able to

meet the real-time requirements. Additionally, MPC is resource-consuming, which makes

it invisible, especially when it comes to the limited resources of embedded computing

platforms such as system-on-chip and field-programmable gate array adaptive platforms

[BFEG17]. Recently, Deep Neural Network has gained attention and has been rapidly

developed and efficiently implemented with a variety of applications in different fields

such as image classification [KSH17], natural language processing, and speech recognition

[DLH+13]. In contrast to the classical control algorithms which are mainly based on tun-

ing predefined parameters related to a determined environment [KBJ+20], the behavior

of the deep neural network model is optimized based on the provided information (self-

optimized algorithm). In other words, the neural networks algorithm bypasses the need

for significant parameter tuning, which makes it more efficient to model highly complex

systems and to deal with unforeseen situations, especially after being well trained and

validated using sufficient datasets. Recently the implementation of deep neural networks
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within the domain of robotic applications has made massive progress and has provided

promising results such as perception and motion planning [PSN+17] and object detection

and semantic segmentation [GDDM14b]. In contrast to supervised learning, agents in

Reinforcement Learning (RL) are trained by directly interacting with their environment

rather than explicitly guiding the model on how to act based on the labeled data [Mah20].

The performance of the RL agent is evaluated based on the reward function, where the

agent is trained to act in the environment in a way that maximizes the cumulative re-

ward in order to improve the performance [LLL+19]. RL has proven to be a powerful

method mainly in the domains of game playing and robotic manipulation [GLL17], and

RL algorithms are considered a promising potential solution for many other applications,

especially in cases where classical supervised learning is not applicable. Although there

are promising results achieved by the implementations of reinforcement learning with

different complex tasks related to automated driving, RL is still an emergent field in this

domain, where the implementations and deployment of real-world applications are still

very much an open challenge and RL has not yet been applied to practice as successfully

as supervised and unsupervised learning.

The main contributions of this work can be summarized in two main points. The first is

leveraging the advantages of reinforcement learning and supervised learning by combining

them in one control model in such a way that the reinforcement learning-based model

optimizes the actions that are taken by the supervised neural work (DNN) model. The

second contribution comes in enriching the research on RL algorithms and paving the

way to bring RL closer to real-world implementations. In chapter 4, a classic MPC

controller was designed and deployed on FPGA for automated driving task, while in this

work three different machine learning-based models are developed for the same task and

compared to the traditional MPC.

The first model is a DNN-based model which is designed and trained using a supervised

dataset.

The second model is a reinforcement learning-based model (DQN) which is designed and

trained without any supervision data, but directly by interaction with the environment.

The third model is a hybrid one, which is a combination between the DNN and rein-

forcement learning methods. The trained DNN will be used as decision maker working

beside another network (critic) within a DDPG reinforcement model.

The combined method is expected to provide an optimized solution, as the actions that

are taken by the decision maker (trained DNN) will be evaluated and optimized by

another neural network in order to minimize errors. Additionally, the combined model

will be able to deal with and adapt to new cases that have not been faced during training.
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6.2 Background

In this section, an overview of the reinforcement learning algorithms and the most rel-

evant studies are presented. Also, the RL algorithms were briefly compared to the

supervised algorithms, presenting the key differences.

6.2.1 Reinforcement Learning Algorithms and Related Works

Sequential decision-making problems can be formulated by Markov Decision Processes

(MDPs), which are considered as a bedrock of the problems that reinforcement learning

solves. MDPs consist of a decision maker (agent), set of states (S), set of actions (T),

transaction function (A), and reward function (R) which can be represented as a tuple

<S, A, T, R>. At each time step (t), and based on the received state (St ∈ S), the agent

takes an action (At ∈ A) which represents a pair (At, St) in the next time step. Based

on the taken action the environment is transitioned to a new St+1 ∈ S, and the agent

receives a reward Rt+1 ∈ R, [Put14] (see figure 6.1). The cumulative reward is simply

represented as a sum of the expected return at each time step and can be mathematically

formalized as it is shown in equation 6.1. In the case of tasks that have a final time step,

the interaction between the agent and the environment is performed based on episodes,

where each episode has a terminal state at the final time step T. At the beginning of

every next episode, the environment is reinitialized to some standard state, meaning that

each episode starts running independently from the final state of the previous episode.

The notion of total return at each time step becomes a problem when it comes to the

continuing tasks, where the agent interacts with the environment continually, meaning

that the final time step will be T= ∞, and here is where the discounted return comes

into the picture, where the agent seeks to maximize the discounted future return which

is represented in equation 6.2. The concept of discounted return makes the future return

heavily discounted compared to the immediate reward and that in turn makes the actions

that are taken by the agent more influenced by the immediate return.

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (6.1)

Gt = Rt+1 + γRt+2 + γ3Rt+2 + ... = Σ∞
i=0γ

i
Rt+i+1 (6.2)

Where Gt is the total reward at the time (t), (Rt+1, Rt+2, ..) are the rewards of the

next steps, RT is the reward of the final time step, and γ is a discounted factor and

it is designed to be in the range [0 – 1]. In the case of a small value of γ, the agent
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will seek to maximize the short-term reward, in contrast, the high value will encourage

the agent to look more forward and seeks to maximize the rewards of the longer term.

Generally speaking, the discounted factor is chosen to be closer to the value 1 in the

case of the finite number of time steps of the MDP model, or goal-oriented applications

in order to force the agent to focus on the goal. Whereas, in the case of infinite time

steps, the discounted factor is chosen to be smaller in order to make the balance between

the long- and short-term rewards. The probability of selecting an action by the agent

from all possible actions at all possible states is determined by the policy (π) that the

agent follows. In addition to the probability of the selection action, the value function

evaluates how good it is for the agent to select an action at a given state under a policy,

and this is called the action-value function (qπ), or how good it is for the agent to be at a

given state following a policy, and this is called the state-value function (vπ). Equations

6.3 and 6.4 are the mathematical representations of the action-value and the state-value

functions, respectively.

The action-value function qπ(s, a) is the expected reward (Σ∞
k=1γ

kRt+k+1) starting from

the state (s) at the time (t), performing the action (a) and following the policy, where

the state-value function vπ (s) is the expected reward starting from state at the time

(t) and following the policy. It is worth mentioning that qπ is also referred to as the Q-

function and its output is called the Q-value (the quality of taking an action). In terms

of optimality, the main goal of the RL algorithm is to select the optimal policy that will

yield the highest expected reward for each state. The optimal policy is associated with an

optimal state-value function (v∗) and an optimal action-value function (q∗) or optimal Q-

function, which are represented in equations 6.5 and 6.6, respectively. The fundamental

property that the optimal Q-function (q∗) must satisfy is the Bellman equation (see

equation 6.7), where Rt+1 is the expected reward that the agent obtains by taking the

action at state, whereas γmax q∗(s
′
, a

′
) is the maximum expected discounted reward that

can be received from any next state-action pair [How60], [SB99]. Reinforcement learning

is a category of machine learning that studies the behavior of an agent and focuses on

how this agent might interact with its environment. The main goal of the agent is to

maximize the cumulative given rewards it receives over time in order to optimize its

behavior in such an environment [FLVH+18]. Based on the fact that the agent is able

to learn the value function estimates or/and the policies directly, RL methods can be

categorized into three main methods: value-based methods, policy-based methods, and

actor-critical methods [Li17]. All of the methods share the same strategy of determining

the actions and evaluating the agent behavior, but the essential difference is where the

optimality resides.

qπ(s, a) = Eπ(Σ
∞
k=1γ

k
Rt+k+1 | St = s,At = a) (6.3)
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vπ(s) = Eπ(Σ
∞
k=1γ

k
Rt+k+1 | St = s) (6.4)

v∗(s) = max
π

vπ(s) (6.5)

q∗(s, a) = max
π

qπ(s) (6.6)

q∗(s, a) = Eπ(Rt+1 + γmax
a′

q∗(s
′
, a

′
)) (6.7)

Figure 6.1: Markov Decision Processes.

Value-Based Algorithm
Value-based methods aim to get the optimal cumulative reward and determine the opti-

mal policy that follows the recommendations. One of the most commonly used reinforce-

ment learning value-based algorithms is the Q-learning method [ADBB17]. The objective

of Q-learning is to find the optimal policy by learning how to find the optimal Q-value

for the (s, a) pair, where the Q-values are stored in a Q-table. The Q-learning algorithm

uses what is called the value iteration approach to converge the Q-function to the opti-

mal Q-function by iteratively updating the Q-value for each (s, a) pair using the Bellman

equation. In reinforcement learning, the agent may exploit its knowledge by selecting an

action that is known to provide a positive reward in order to maximize the total reward.

On the other hand, the agent may take the risk of exploring unknown–actions that may

lead to a lower reward or discover actions that provide a higher reward compared to the

current best-valued action. Managing the exploration-exploitation trade-off is considered

a critical challenge in the RL algorithm and ε- greedy policy is one of the most commonly

used strategies to overcome this challenge. In this strategy, the exploration rate ε refers

to the probability of exploring the environment rather than exploiting it. Meaning that

the agent either will choose an action randomly with probability (ε) or will be greedy by

selecting the highest valued action with probability (1- ε). Since the agent at the begin-

ning know nothing about the environment, the exploration rate (ε) usually is initialized

to be 1, so the agent starts with exploring the environment. With the training progress,

the agent learns more about the environment and should conduct more exploitation,

which can be achieved by gradually decreasing the probability of exploration (ε) by a

specific rate at the beginning of every new episode. After taking the action, the agent

observes the next state, obtains the gained reward, and updates the Q-value (Q-table in
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general) based on the Bellman equation. The objective is to converge the Q-value to the

optimal Q-value (q∗) by driving this value to be as close as possible to the right-hand

side of the Bellman equation. Another factor is used to update the Q-value and it is

called learning rate (α) which determines how fast the agent will adopt the new Q-value

and it is in the range [0-1]. In other words, by using the learning rate, the old Q-value

is not completely overwritten, but it is updated by taking into consideration how much

information should be kept from the old computed Q-value. A higher learning rate will

drive the agent to adopt the new Q-value faster as equation 6.8 shows.

qnew(s, a) = (1− α)q(s, a) + α(Rt+1 + γmax
a′

q∗(s
′
, a

′
)) (6.8)

where qnew(s, a) is the new value, α is the learning rate, (1-α)q(s, a) is weighted old

value and Rt+1 + γmax
a′

q∗(s
′
, a

′
) is the learned value.

With the increase in environment complexity, the state space size increases, and the

performance of the Q-learning method will drop off because of the value iteration strategy

that is used to update the Q-values (Q-table). The problem with large MDPs is that

there are too many states and/or actions to be stored in the memory, and it is too slow

to calculate the value for every individual state [LHP+15]. To overcome this problem, a

function approximation is used to estimate the values instead of using the value iteration.

The deep neural network is used as a function approximation and combined with the

Q-learning method. This method is called Deep Q-learning, where the Deep Q-Network

approximates the Optimal-Q value [MKS+15]. The DQN model accepts the state as an

input and outputs the estimated Q-value for every possible action that can be taken at

that given state. Since the optimal-Q value should satisfy the Bellman equation as it

is mentioned earlier, Deep -Q learning uses the Bellman equation to find the optimal

Q-value by minimizing the loss between the approximated Q-value (output from DQN)

and the target (optimal) Q-value (the right-hand side of Bellman equation) for the same

action. After calculating the loss, the weights within the neural network are updated by

stochastic gradient descent (SGD) just like another neural network. In the Q-learning

experience, the replay technique is utilized to train the agent, where the experience of

the agent at each time step is stored in the data set called replay memory (D) as a tuple

et = <st, at, rt+1, st+1> where st is the current state, at is the action that taken at the

state st, rt+1 is the reward that the agent gained at (t+1) by taking the action at the

previous (st,at) pair. Replay memory usually is initialized to have (N) capacity of tuples

(experiences). During the learning process, the agent is trained using a random batch of

experiences taken from the replay memory. The samples of experience the agent gains

and that accrue sequentially in the environment are highly correlated, and that may

lead to inefficient learning. The importance of using the “experience replay” technique
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and training the agent using random samples is to break the correlation between the

successive samples of experience. Previously, to calculate the target Q-value, the term

max
a
′
q∗(s

′
, a

′
) in the right-hand side of the Bellman equation which represents the best Q-

value in the next time step is obtained from the Q-table. In the case of Deep Q-learning,

this term can be calculated by passing the next state (s′) to the DQN network as an

input which in turn will output the Q-value for every possible action taken from the state

(s′) and the max value (max
a′

q∗(s
′
, a

′
)) can be obtained afterword and plugged to the

Bellman equation. Using the same DQN network to calculate the Q-value and the target

Q-value will raise a potential training issue since both of them will be calculated based

on the same weights, meaning that, every time the Q-value is updated to move closer

to the target value, the target value will be updated and moving in the same direction.

To overcome this issue a second network is used to calculate the target Q-value and it is

called the target network which is a clone of the first DQN. To increase the stability, the

weights of the target policy are fixed with the weights of the original network and they

are updated to the new weights at every specific number of time steps.

Policy-Based Algorithm
Like the value-based method,the policy-based method selects one possible action and

evaluates the agent’s behavior thereafter in order to achieve optimization. The essential

difference between the two methods is a matter of how to achieve optimality. While the

value-based method selects the optimal policy based on the optimal cumulative reward,

the policy-based method directly optimizes the policy itself. The policy is parameterizes

πΦ (s,a) and the optimization problem turns out to be finding Φ, which maximizes

the policy’s objective function J(Φ) [ADBB17]. In other words, policy-based methods

learn how these parameters should change the probabilities by which different actions

can be taken in different states in order to maximize the expected reward. The main

advantage of policy-based methods is their effectiveness for continuous action or the

high dimensional space, where the parameters of the ‘parameterized policy’ are adjusted

instead of solving a complicated maximization in every step. The policy gradients (PG)

algorithm is widely used to solve the problems of the continuous action space. The policy

is represented by a parametric probability distribution (see equation 6.9). In the PG

algorithm, the action at state is selected stochastically based on a vector of parameters

(Φ), and by adjusting these parameters, the policy is driven in the direction of increasing

the cumulative reward [LHP+15]. Policy gradient is the derivatives (vector of derivatives)

of the policy’s objective function J(Φ) with respect to the parameters (Φ) as shown in

equation 6.10 [SMSM99]. The problem can be formalized as shown in equation 6.11,

considering (τ) is the agent’s trajectory, R(τ) is the corresponding reward, (πΦ) is the

parameterized policy and P(τ | Φ) is the probability of the trajectory (τ) under the policy

(πΦ). The policy gradients algorithm searches for the local maximum by ascending the
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gradient of the policy with respects to the parameters (Φ). It seeks to increase the

probabilities of the trajectories that give the best return, as shown in equation 6.12. By

reformulating the probability of the trajectory P(τ | Φ) and decomposing the trajectory

into (states – actions), the policy gradients equation can be reformulated as shown in

equation 6.13. Instead of integrating over the spaces of both state and action as in the

case of stochastic policy gradients, deterministic policy gradients (DPG) integrates only

over the state space, which in turns leads to a reduced number of samples, especially in the

case of applications with large action states [ADBB17]. DPG is used in the deterministic

environment (no uncertainty) where it accepts a state as input and outputs a single

action πΦ (s)=a. On the other hand, the stochastic policy is always needed to explore

the complete state-action space. Based on that and for sufficient exploration for the

DPG algorithm, the actions are chosen according to stochastic policy behavior, while

learning a deterministic target policy. The policy that the agent uses to determine its

actions at a given state is called behavior policy, while the policy that the agent uses to

update the Q-value is called target policy. Learning the policy can be achieved in two

different algorithms, on-policy or off-policy [SLH+14]. In the case of on-policy learning,

the behavior policy is the same as the target policy, while they are different in the case

of the off-policy learning algorithm.

BπΦ = P [a | s,Φ] (6.9)

∇ΦJ(Φ) =


∂J(Φ)
∂Φ1

.

.
∂J(Φ)
∂Φn

 (6.10)

Φ∗ = argmax
Φ

J(Φ) = max
Φ

ΣτP (τ | Φ)R(τ) (6.11)

∇ΦJ(Φ) = Eτ (∇Φ logP (τ | Φ)R(τ)) (6.12)

∇ΦJ(Φ) = Eτ (∇Φ log πΦP (s | t)) (6.13)
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Actor-Critic Algorithm
Actor–critic algorithms combine the benefits of both value-based and policy-based al-

gorithms. The essential idea is that a value function approximator (critic) is used to

explicitly estimate the action-value function instead of using the return. These algo-

rithms deal with two different sets of parameters using two different approximators, the

critic and the actor. The critic updates the action-value function parameters, while the

actor updates the policy parameters based on the direction that is suggested by the critic

[JBCG19]. Actor-critic algorithms use an approximate policy gradient as described in

equation 6.14, where the QW (s, a) is the estimated cation-value function. Deep Deter-

ministic Policy Gradient is a model-free, off-policy, actor-critic reinforcement learning

algorithm that searches for the optimal policy that maximizes the cumulative long-term

return for the continuous action environment. DDPG uses deep neural network-based

approximators [How60]. In the DDPG algorithm, the actor is used to approximate the

optimal policy deterministically, which is unlike the stochastic policy, where the policy

learns the probability distribution rather than actions. In another words, the output of

the actor in DDPG is the best believed action for the given state. After the action is

taken by the actor, the critic evaluates that action in order to determine whether the

new state is better or worse than the expectation. That can be achieved by maintaining

the Q-values of the taken actions towards the target Q-values. Meaning that, the critic

learns to evaluate the optimal Q- value based on the output of the actor (best believed

action). Like DQN, DDPG algorithm uses the replay memory strategy in order to break

the correlation between the data. Generally speaking, DDPG model includes four neural

networks-based approximators, actor µ(s), target actor µ′ (s), critic Q(s,a) and target

critic Q′ (s,a). Figure 6.2 presents an overview of DDPG algorithm. RL has been applied

to a variety of autonomous driving tasks, [WCdLF18], [HXXTS17], [CKK+17]. The ac-

tor accepts a state (s) as an input, and outputs the corresponding action which maximize

the reward, while the target actor has the same structure of the actor. The target actor

is updated by the agent every specific number of time step based on the latest values

of the actor parameters. The critic accepts state-action pair as input and outputs the

expected Q-value, while the target critic has the same structure of the critic. The target

critic is updated periodically based on the latest values of the critic parameters. Both

target actor and target critic are used to improve the optimization stability

∇ΦJ(Φ) = EπΦ(∇Φ log πΦ(s | a)Qw(s, a)) (6.14)
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Figure 6.2: Overview of DDPG algorithm.

6.2.2 Supervised Learning Compared to Reinforcement Learning

Unlike RL methods where the agent learns by interacting with the environment without

any supervision data, in supervised learning, the agent learns using labeled data sets.

This means that the expert is explicitly guiding the model on how to act based on the

labeled data. In deep neural networks, for example, and during training, the network

approximates the future outputs for the observations and then compares them with

the labeled ones in order to reduce the error. Supervised learning is mainly dedicated to

dealing with two main categories of tasks, classification and regression, whereas RL deals

with Markov’s decision processes, policy learning, and value learning. The simplicity

and the speed of the convergence during the training are the advantages of supervised

learning compared to reinforcement, where convergence to the optimal policy can be

slow so it requires intensive time. On the other hand, the efficiency of the supervised

model is greatly affected by the comprehensiveness of the training data-set. In the case

of nonlinear and complex systems such as driving system tasks, sufficient training data

must be ensured in order to provide an efficient and generalizable model in all complex

driving environments. The use of deep learning in a variety of fields has increased recently

due to new powerful processing technologies that reduce the training time and improve

performance. The deep neural network algorithm is a self-optimization algorithm and

it has the ability to adopt a new scenario, which enables the developers to generalize

the desired models. These features make deep learning suitable for control applications

within dynamic and complex environments. For a better understanding of the importance

of successful implementations of the learning-based methods compared to classical ones,
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it is important to point out some key differences. classical controllers are a model-

based control strategies that benefit from the accurate dynamics of the plant, where

the model must be explicitly formulated in the control problem. In contrast, learning-

based methods have sufficient theoretical assurance, and the efficiency of the model

depends on how well the agent is trained. The high computing demands of classical

control prompt financial concerns, while offline-trained models require relatively minimal

computing time during deployment. Learning-based methods are more efficient in dealing

with complex environments with observations obtained, for instance, from photos and

videos, which are regarded as more complex for the classical controllers, which deal with

signal measurements. Following the standard recommendations during the design process

can reduce the computational loads.

6.3 Design of the Controllers

In this section, the designing process of the MPC, the DNN controllers are briefly de-

scribed where the full details can be overviews in chapter 4 and chapter 5 respectively.

On the other hand, the designing process of the reinforcement DQN and the new hybrid

models will be descriped in details. DQN and Hybrid models were trained until the

determined criteria are achieved (desired reward, number of episodes, ... etc.)

6.3.1 Design of the MPC Controller

Since the MPC is a model-based controller, the first step in the design process is to

design the vehicle model. Figure 6.3 shows the global position of the vehicle. Figure

6.4 shows the MPC model, while the input-output signals, the parameters, and the

constraints of the MPC are presented in table 6.1. During the designing process, the

parameters of the MPC are initiated based on standard recommendations and were

tuned during the testing until a stable behavior is achieved. A detailed explanation of

the MPC optimization problem, Performance specifications, control law, and parameter

calculations can be found in chapter 4.

6.3.2 Design of the DNN model Using Imitation Learning

To achieve imitation learning, the DNN model was designed and structured based on the

MPC model, where six observations are determined as inputs (Φ, vy, d, ω, ρ, δ̂) and one

control action (δ) was determined as an output, where ( δ̂) is the previous control action.

The detailed structure is shown in figure 6.5. In regards to the training options, Adaptive
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Figure 6.3: Global position of the vehicle

Figure 6.4: MPC controller design

Table 6.1: Design parameters and system constraints of the MPC controller

Internal model
( vehicle)

Input signals Steering angle (δ)
Disturbance (ρvx)

Output signals

Lateral deviation (d)
Yaw angle (Φ)

Lateral velocity (vy)
Yaw rate (ω)

Parameters of
MPC model

Sample time (Ts) 0.1 seconds
Prediction horizon (P ) 2 seconds
Control horizon (M) 2 seconds

Constraints Steering angle [-1.04, 1.04] rad
Changing rate [-0.26, 0.26] rad

Moment Estimation (ADMA) is used as an optimizer, the maximum number of Epoch

is set to be 40, the mini-batch for each iteration is set to be 420, and the initial learning

rate is set to be 0.01. Data preparation and training process of the MPC controller is

presented in chapter 5.
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Figure 6.5: The DNN model structure

6.3.3 Design of the Reinforcement Deep Q-Learning Model

The desired DQN model is designed taking into consideration the same dynamics of the

vehicle, the constraints, and the environment conditions that were used previously. The

designing processes went through several steps, preparing the environment, creating and

training the agent, and finally testing and evaluating the performance. The environment

is created using the six observations and the control action space was determined as a

discrete space in the range of [-1.04, 1.04] rad, meaning that the agent can apply 121

possible actions at each state. Based on that, the deep Q-network is designed to accept

the state from the environment as an input (vector with 6 observations) and outputs

the estimated Q-values of each possible discrete action that can be taken at that state

(vector of n=121 Q values). The detailed structure of the DQN model is shown in figure

6.6. The target DQN which is used to calculate the target Q-values is a clone of the

DQN with the same structure and parameterization.

Training DQN Model
After determining the structure of the DQN model, the training environment is created

with corresponding observations, and the training options are determined as follows:

ADMA was used as an optimizer, the critical learning rate was set to be 0.001, the total

size of the reply memory is set to be 100,000 and the batch size is set to be 64. The

sample time and duration for simulation are determined as follows: Ts = 0.1 s and T =

15 s. The training is performed in such a way that each episode lasts at most (T/Ts) time

steps. The training is terminated after 40,000 episodes regardless of any other criteria,

and it stops when the average of the obtained reward in the current episode is equal to

or higher than -1. The agent will be saved during the training if the current reward is

equal to or higher than -1.5. By the end of the training, the saved agent is tested and
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Figure 6.6: The reinforcement DQN structure

validated by running several simulations in different scenarios within its environment.

The training steps can be summarized as follows:

1. Initialize the capacity of the replay memory.

2. Initialize the DQN weights randomly.

3. Create the target DQN network (Clone of the DQN network).

4. For each episode and as long as the termination criteria is not reached:

(a) Determine the initial state.

(b) For each time step:

i. Select and execute an action.

ii. Obtain the gained reword.

iii. Observe the next state and store the experience in the memory.

iv. Sample a batch of agent’s experience randomly.

v. Pass the states to the DQN.

vi. Pass the next state to the target network.

vii. Calculate the loss between the outputs (Q-values, target Q-values).

viii. Update the weights of the DQN to minimize the loss.

ix. Update the weights of the target network every specific number of time

steps.
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6.3.4 Design of the Hybrid (Supervised–RL) Model

The same vehicle’s dynamics, constraints, environment conditions and state space are

used to design and test the new combined model. The continuous actions space is

determined to be in the range of [-1.04, 1.04] rad. To create the agent, besides having

the trained DNN model as an actor, the critic is created based on the actions-observations

specifications, where the neural network is structured to accept two inputs (state-action)

and one output (the corresponding expected long-term reward Q(s, a | ΦQ)), and 3

hidden layers. Figure 6.7 shows the detailed structure of the combined model.

Figure 6.7: The structure of the actor-critic networks – combined model

Training the Hybrid (Supervised–RL) model
After determining the structure of the suggested mode and creating its environment,

the training options were determined (maximum steps, maximum episodes, stop training

criteria, etc.) in order to perform the training. The training steps can be summarized

as follows:

1. Initialize the critic network’s weights and target critic network’s weights with the

same random values.

2. Initialize the actor network’s weights and target actor network’s weights with the

same random values.

3. For each episode and as long as the termination criteria is not reached, do the

following at each time step:

(a) The actor selects an action for the current state.

(b) Add exploration noise to the selected action to encourage the exploration.
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(c) Observe the reward and the next state.

(d) Store the experience in the reply memory.

(e) Sample a batch of agent’s experience randomly.

(f) Pass the next state to the actor and determine the next action.

(g) Pass the next action to the target critic.

(h) Calculate the target Q-value (sum of current return and discounted future

reward).

(i) Update the weights of the critic network to minimize the loss between the

expected Q-value and the target Q-value.

(j) Update the weights of the actor network to maximize the expected discounted

return.

6.4 Results and Discussion

The implementations of the designed models were performed using the same vehicle

model and subjected to the same constraints, environmental conditions, and initial state.

The efficiency is discussed based on different indicators: the ability of the controllers to

drive the vehicle along the desired trajectory in the first place, the time needed to reach

a stable state, and the smoothness of the driving system. In chapter 5, we successfully

built a DNN model that imitates the behavior of the classical MPC controller, where the

trained DNN and the MPC controller behave similarly with very small output deviation,

and the maximum difference is approximately 0.0094 rad (0.53 degrees). Both controllers

were able to follow the desired trajectory by driving the lateral deviation and yaw angle

to be very close to zero. Additionally, and taking into consideration the control system

characteristics, the results clearly show that both controllers were able to reach the stable

state at almost the same time with the same amount of overshooting as the figures 6.8,

6.9, and 6.10 show. Based on that, the performances of the suggested hybrid (RL-

supervised) model and the reinforcement DQN model are compared to the DNN model

in order to evaluate the improvement that is provided by our new hybrid model compared

to the other machine-learning-based models ( reinforcement DQN and supervised DNN).

Figure 6.11 shows that the three models responded differently to the same initial state.

Despite these differences, figures 6.12 and 6.13 show that the reinforcement DQN and

the combined models were able to track the desired trajectory with different control

system characteristics (steady state time and overshooting). The detailed results showed

that the combined model responded in a way that improved the smoothness of the

driving system by reducing the overshooting (with hardly any overshooting in the case
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of lateral deviation) and drove the lateral deviation to be very close to zero (0.003 m)

in a reasonable time, compared to the DNN model which achieved 0.0009 m as a final

value of the lateral deviation at almost the same time but with higher overshooting and

thus higher lateral deviations. The DQN model was not as efficient as the other models;

its behavior led to higher overshooting and drove the lateral deviation to a final value

of 0.01 m. As a result, and taking all the performance indicators into consideration, one

can state that the combined model provided the best result and achieved the expected

optimization by demonstrating accurate control actions (steering angles) that steer the

vehicle along the desired trajectory efficiently in a reasonable time and improve the

robustness of the driving system, while the DQN model, which is completely based on

an RL algorithm, was not as efficient as the other two models (the supervised DNN or the

combined model). The promising results that are provided by the reinforcement learning

methods emphasize the importance of devoting more efforts to transferring them into

practice as an efficient alternative to classical control methods.

Figure 6.8: Comparison of estimated steering angles of MPC and the DNN models

Figure 6.9: Vehicle response to the control actions of the MPC and the DNN models
– lateral deviation

Based on the results and discussions, thesis III can be defined:
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Figure 6.10: Vehicle response to the control actions of the MPC and the DNN models
– yaw angle

Figure 6.11: Comparison of the estimated steering angles of the DNN, DQN, and
combined models

Figure 6.12: Vehicle response to the control actions of the DNN, DQN–lateral devi-
ation
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Figure 6.13: Vehicle response to the control actions of the DNN, DQN – yaw angle

Thesis III

I proposed machine learning-based control strategy that combines supervised learning

(DNN model) and reinforcement learning (RL-model) algorithms in one controller, aim-

ing to achieve the optimization by leveraging the advantages of these algorithms in a way

that the RL controller optimizes the actions that are taken by the supervised DNN con-

troller. I evaluated the efficiency of the hybrid model compared to the supervised DNN

and reinforcement DQN models which are developed for the same task. The combined

model provided the best result and achieved the expected optimization by outputting ac-

curate control actions which reduced the overshooting behaviour, resulting a significant

improvement in terms of the smoothness of the driving system.

Related Publications: [ch623], [KRVB20b], [RBV21]

6.5 Chapter Conclusions and Summary

In this work, three different machine learning-based models were designed to perform an

automated path-tracking task: a DNN model to imitate the behavior of the traditional

MPC controller, a reinforcement learning DQN model, and a hybrid model. The hybrid

model was designed to optimize the performance by combining the trained DNN model

with the reinforcement learning model, where the DNN network was used as a decision-

maker along with the critic network that evaluates the actions taken. The results showed

that all three models were able to drive the vehicle along the desired path. The combined

model was able to provide the desired optimization by driving the vehicle to the refer-

ence speed more smoothly and within a reasonable time. This work shows the efficiency

of combining supervised and reinforcement learning to leverage the advantages of both

algorithms, where supervised learning speeds up the learning process and reinforcement
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learning improves self-adaptation to new states that the model was not faced with in the

training process, which increases efficiency in the complex driving environment.



Chapter 7

Contribution to Automated Driving

Safety Using Reinforcement

Learning and FPGA Deployments

This chapter concerns the necessity of developing an alternative control approach for

safe automated driving that has the capability to deal efficiently with the complexity,

non-linearity and uncertainty of vehicle dynamics. Even with the successful implemen-

tations of the reinforcement learning in real world for different applications, it is still not

commonly used compared to the supervised and unsupervised learning. In this work,

a reinforcement learning-based framework is suggested as an alternative solution to the

classical control for the application of maintaining a safe distance in autonomous driving

system. The efficiency and stability of the suggested model is evaluated compared to

the very well known model-based control (MPC) which was developed and implemented

for the same task and under the same conditions and constraints. Additionally, in order

to verify the efficiency of the suggested model in practice, the trained RL model was

deployed and tested on low end FPGA-in-the-loop.

7.1 Introduction

Human perception error comes at the top of the significant factors that cause road ac-

cidents. Recently, one of the automotive industry’s top priorities has been to provide

passengers with the highest level of safety by partially or entirely relieving the driver’s

responsibilities [MA17]. Over the past decade, control engineers in the automotive in-

dustry have devoted major efforts to improving road transportation by developing and

applying advanced control strategies. The advancement of sensing, communication, and

75
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processing technologies has resulted in a rapid expansion in the development of Advanced

Driver Assistance Systems (ADAS) [ZCGC17]. These systems are designed mainly to

assist drivers by either offering warnings to lessen risk exposure or automating some con-

trol functions to relieve a driver of human control [IWC07]. After being tested in highly

structured environments and under full supervision, the autonomous vehicle has been

transitioned to the real world alongside human-driven vehicles. It is anticipated that in

the near future, fully autonomous vehicles would replace humans in the role of drivers.

This progress has raised many critical concerns which need to be addressed. Safety-

related challenges are at the top of these concerns, since it is crucial to ensure that the

autonomous vehicle is capable of interacting with other vehicles safely. One promising

ADAS technology is the Adaptive Cruise Control (ACC), which uses data from sensors

such as radar to maintain the speed of the vehicle in order to keep a safe distance from

other vehicles on the road. Studies have demonstrated that the safety systems that have

been already implemented in the automotive industry such as electronic stability con-

trol, ACC and lane following have reduced the traffic accident rate, and consequently

increased the safety level [RSB+05].

Generally speaking, any control problem can be described as an optimal control problem

and several classical control approaches have been used to address the safety problem of

autonomous vehicles. In[NHC+14], Linear Temporal Logic (LTL) is used to describe the

system specifications for adaptive cruise control, where a discrete abstraction of the sys-

tem serves as the foundation for the controller. However, this solution is computationally

expensive as the complexity of the controller synthesis is exponential with the dimen-

sion of the system (LTL formula). In [AGT14], the safety constraints are maintained

as control barrier functions (CBFs), which penalize the violation of the determined con-

straints, while the control objective (desired speed) is formulated as control Lyapunov

functions. These two sets of functions are structured in quadratic problem form. De-

spite the promising performance, the computational loads and the resource requirement

are still very high, and finding the control barrier functions is not an easy task. Model

Predictive Control is very well-known control strategy that is used to solve control prob-

lems, where it represents the state of art in real time optimal control [AB09]. Due to its

capabilities to deal with Multi-Inputs-Multi-Outputs systems and handle multiple (soft

and hard) constraints using future prediction strategy. An MPC framework is used to

tackle ACC system safety problems, and its efficiency in many other autonomous control

applications has already been proven [SdR13]. Bageshwar et al. [BGR04], provided an

MPC -based control strategy for transitional maneuvers application. The results show

that the efficiency of the MPC controller in achieving a safe and comfortable driving

system depends on the explicit incorporation of collision avoidance and acceleration lim-

its into the formulation of the control problem. Using MPC control strategy, multiple
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control objectives, such as tracking and driver comfort, can be balanced with the cost

function by solving the optimal control problem over a finite horizon in a receding fashion

[WZZ+18]. However, model-based classical controls such as MPC have a lot of parame-

ters and it takes long time to fine tune as stated in [KAE+12]. In addition, a thorough

system dynamics model with high fidelity is required in order to effectively anticipate

system states. Solving the optimization problem of high dimensional and nonlinear state

spaces causes a significant increase in computational loads, which in turns affects and

impedes the real-time implementations, especially with short sample time control. How-

ever, linearization is not the best solution to deal with these systems. As a result, the

implementations of the classical controllers may become invisible solutions with limited

resources computing platforms such as Field Programmable Gate Array and System on

Chip. Thus, the necessity of developing an alternative control approach that has the

capability to deal efficiently with the non-linearity and uncertainty of vehicle dynamics

becomes more urgent.

7.1.1 Background

7.1.2 General Optimization Problem

Optimization is considered an essential aspect in a variety of applications in different ar-

eas such as engineering, science and business. The goal of the optimization process differs

from one application to another based on the nature of the task itself. Generally, opti-

mization provides improvements in different aspects with the aim of minimizing power

consumption and cost or maximizing performance, outputs and profits. The value and

necessity of the optimization process mainly come from the complexity of the real-world

problems and their limitations in regards of resources, time and computational capabil-

ities. This means that finding solutions to optimally manage and use these resources is

an essential topic in the research area. As a result, it is not an overstatement to say that

optimization is needed in each and every real-world application.

Mathematically speaking, any optimization problem consists of an objective function,

decision variables and constraints. The objective function needs to be minimized or

maximized and must be subjected to constraints, which can be soft and/or hard con-

straints. The standard mathematical form of most of the optimization problems can be

described as

minimizefi(x), (i = 1, 2, ....N),

gj(x) ≤ 0, (j = 01, 2, ....J),

gl(x) = 0, (l = 0, 1, 2, ....L)

(7.1)
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where fi(x) is the objective function, gj(x) is inequality constraints, gl(x) is equality

constraints, N is number of objective functions, J is number of inequality constraints

and L is number of equality constraints. The objective function can be linear or nonlinear,

and similarly, the constraints can be linear, nonlinear or even mixed. The components

of the vector x = (x1, x2, . . . xn)
T are called decision variables and can be discrete or

continuous variables. The inequality constraints can be written also in the form of (≥ 0)

and the cost function can be formulated as a maximization problem

maximizefi(x), (i = 1, 2, ....N),

gj(x) ≥ 0, (j = 0, 1, 2, ....J),

gl(x) = 0, (l = 0, 1, 2, ....L)

(7.2)

The optimization problem can be classified based on the two factors, the number of

objective functions and the number of constraints. In terms of the number of objective

functions, it can be divided into single objective where N=1 and multi objective where

N ≥ 1. On the other hand, and in terms of number constraints, the optimization

problem is divided into unconstrained (j=l=0), inequality constrained (l= 0 and j ≥ 1)

and equality constrained (j= 0 and l ≥ 1) optimization problems. It is worth pointing

out that if both the objective function and constraints are linear then the optimization

problem is called a linear programming problem. In the case that both the objective

function and constraints are nonlinear, the problem becomes a nonlinear optimization

problem. The problem is called quadratic programming (QP) when the objective is a

linear–quadratic function and the constraints are affine (linear combinations). In some

certain objective functions, we could have a local minimum or global minimum. The

point is called the local minimum if the value of the function at this point is equal or

smaller than its values at nearby points. When the value of the function at this point

is equal or smaller than its values at the feasible points, the point is called the global

minimum. Figure 7.1 shows three local minimum points and one global minimum point.

Global optimization problems are usually more complex and challenging [Ven10].

7.1.3 Adaptive Cruise Control System

Recently, a cooperative adaptive cruise control (CACC) system was introduced. The

main idea of the approach is the inter-vehicle communication, where all the vehicles

within the “cooperative team” know the trajectory of each other. However, a collision

can happen when an unexpected maneuver occurs due to a communication problem
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Figure 7.1: Local and global minimum points.

[DYW+15]. Corona et al. [CLSH06], successfully implemented a hybrid MPC frame-

work in order to enhance the safety by achieving an optimal tracking of a time-varying

trajectory. The results confirmed the efficiency of the MPC controller in industry with

computation restrictions.

7.1.4 Machine Learning Algorithms for Automated Driving

Machine learning algorithms have shown outstanding performance in a wide range of

applications in different fields. Machine learning has been used for many autonomous

vehicles’ applications including perception and motion planning [PSN+17], traffic routing

[LYS18], object detection, semantic segmentation [GDDM14a] and others. Pomerleau’s

autonomous land vehicle was one of the earliest research projects to implement machine

learning (neural network) for autonomous vehicle control [Arb60]. Generally, machine

learning is divided into three main categories: supervised learning, unsupervised learn-

ing, and reinforcement learning. Unlike supervised learning and unsupervised learning,

the implementations of the reinforcement learning algorithms are still a very much open

challenge [EGCW18]. We presented the RL algorithms in details in chapter 6. An actor-

critic reinforcement learning algorithm is suggested in [HXXTS17] for addressing the lon-

gitudinal velocity tracking control of autonomous land vehicles. The value function and

the optimal policy were approximated based on parameterized features that are learned

from collected samples so that the actor and critic share the same linear features. The

results show the superiority of the used approach over the classical proportional-integral

(PI) control. In [LZLS15], an RL-based model with energy management is suggested

to increase fuel consumption efficiency, where the Q-learning algorithm is implemented

to obtain the near-optimal policy. In [DCD11], an RL-based controller was suggested

to ensure the longitudinal following of a front vehicle, where a combination between

gradient-descent algorithm and function approximation is employed to optimize the per-

formance of the control policy. This study concluded that, although performance was
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good, more steps must be taken to address the control policy’s oscillating nature utilizing

continuous actions. In [IRC+18], a deep reinforcement learning algorithm is proposed to

study the efficiency of RL in handling the problem of navigation within occluded inter-

sections. The solutions discovered by the proposed model highlight various drawbacks

of the present rule-based methods and highlighted many areas for more investigation in

the future. A multi-objective deep reinforcement learning (DQN) [LC19], is suggested

for automotive driving, where the agent is trained to drive on multi-lane ways and in in-

tersections. The results show that the learned policy was able to be transferred to a ring

road environment smoothly and without compromising performance. The contribution

of this work comes in the orientation of enriching the studies that have been conducted

on reinforcement learning method in the frame of safety automated driving in order val-

idate its efficiency and stability compared to the used classical control approaches which

in turn, bring it closer to the real world applications. In this work, two different control

models were developed for the application of maintaining safety distance between two

vehicles, an MPC-based control system and a reinforcement learning-based control sys-

tem. The performance and the efficiency of the developed RL-based model is evaluated

comparing to the behavior of the classical MPC-based model. The two controllers were

implemented and tested using the same environment and subjected to the same condi-

tions and constraints. Additionally, the trained RL model is implemented on low end

FPGA-in-the-loop in order to verify its performance in practice.

7.2 Design of the Controllers Models

The two controllers are designed to respond to environmental changes using two control

modes, speed and maintain modes. In the case where the relative distance (drel) between

the two vehicles (ego vehicle and leading vehicle) is greater than the reference safety

distance (dsaf ), the controller applies the speed mode that makes the ego vehicle drive

at the reference velocity. In the case where the relative distance is less than the safety

distance, the controller switches to the maintain mode, and the vehicle drives at the

speed of the leading vehicle to keep a safe distance (figure 7.2).

7.2.1 Design of the MPC Controller

As the MPC controller is a model-based control strategy and it depends on the feedback

coming from its internal plant, the first step in the design process is to design the model

that describes the relation between the longitudinal velocity and the acceleration of the

vehicle. This relation is subjected to the dynamics that describe the relation between

the engine throttle system and the resistance of the vehicle to the change in direction or



Design and implementation of reinforcement learning for automated driving compared
to classical MPC control 81

Figure 7.2: The schema of applying the control modes.

velocity (vehicle inertia). The throttle system regulates how much air and fuel mixture

reaches the engine cylinders using a control valve. By increasing the opening angle

of the control valve, more fuel mixture enters the engine, which in turn increases the

vehicle speed. Equation 7.3 describes this relation, where TF is the transfer system

that approximates the dynamics between the throttle system and the vehicle inertia.

Figure 7.3 shows the subsystem block in MATLAB Simulink, which describes the transfer

function in connection with the velocity, acceleration, and position of the vehicle. After

designing the plant model, the next step is to determine the input/output signals and

the design parameters of the control system (figure 7.4 and table 7.2). The measured

outputs are used for state estimation, while the manipulated variables are the optimal

control actions. The MPC design parameters and the control constraint are presented

in table 7.1. Figure 7.5 shows the overall workflow of the MPC-based control system.

TF =
1

S(0.5S + 1))
(7.3)

Table 7.1: MPC design parameters.

MPC controller parameters
Sample time (Ts) 0.1 s

Prediction horizon (P) 30
Control horizon (M) 3

Control action constraints
Acceleration [ -3, 3] m2/s
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Figure 7.3: MATLAB simulink subsystem -vehicle model actual position and velocity.

Figure 7.4: MPC plant model- Inputs/outputs.

Figure 7.5: Overall diagram of the control system-MPC model.

7.2.2 Designing and training the RL-Based Controller

In this study, the Deep Deterministic Policy Gradient algorithm is used to design the

reinforcement leaning controller. As mentioned earlier, this algorithm uses two different

deep learning-based approximators, the actor and the critic. The design process went

through several steps, starting from preparing the environment, designing the neural

networks of the actor and critic, creating and training the agent, and finally running,
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Table 7.2: Inputs/Outputs signals of MPC controller.

Signal type Parameter unit Description

Measured outputs
(MO)

vego m/s Longitudinal velocity
of the ego vehicle

dref m The relative distance between the
proceeding and the ego vehicles

Measured disturbance
(MD) vprcd m/s Longitudinal velocity of the

proceeding vehicle
Manipulated variable

(MV) accego m/s2 acceleration\deceleration

References vre m/s Reference velocity in speed
mode

dsaf m The reference safety distance

testing and validating the model. The observations of the environment are determined to

be the vehicle velocity (vego), the velocity error (ver) and the integral velocity error (per).

Velocity error represents the difference between the reference and the vehicle velocity.

The acceleration constraint is determined to be in the same range as that of the MPC

controller, [-3, 3] m2/s. Figure 7.6 shows the neural network structure of the actor-critic

approximators. In detail, The Critic network consists of 2 input layers, 4 hidden layers

and 1 output layer. The first input layer is structured with three neurons to receive

the three observations from the environment, while the second input layer is structured

with 1 node to receive the action from actor network. Each hidden layer consists of 50

neurons and ReLU is used as an activation function between the layers. The output layer

consists of one neuron to output the estimated Q-value. The actor network consists of

1 input layer with three neurons to receive the observations, 5 hidden layers, each one

is structured with 50 neurons, and ReLU activation function between the layers. Figure

7.7 shows the overall workflow of the RL-based control system.
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Figure 7.6: RL model: actor – critic neural network structure.

Figure 7.7: Overall diagram of the control system-RL model.

Training Algorithm

The goal of the training is finding the optimal policy which achieves the highest cumu-

lative rewards. During the training, the parameters of the policy is updated based on

the following algorithm: taking action, getting the reward, and update the policy. This

cycle continues until the trained agent learns to take the best action that achieves the

highest long-term reward at each state. The training options were determined such as

the maximum number of episodes, the number of steps per episode and the stop train-

ing criteria. Considering S, A represent the state and the action respectively, training

algorithms can be summaries as the figure 7.8 shows.
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Figure 7.8: The overall diagram of running RL model on FPGA.
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7.2.3 SOC Implementations and Verification of RL model

Due to the fact that the reinforcement learning algorithm depends on trial and error, it

is safer to test the design using the MATLAB Simulink first, before the implementation

on the real SOC. For this purpose, multiple simulations were performed and the final

trained policy that meets the requirements is taken to the next step to be deployed on

the target FPGA. The suggested RL-based control model is deployed on a low-end SOC

(ZedBoard). The deployment process went through several steps (see figure 7.9). In the

first step, the trained policy is extracted from the trained agent (the Simulink model) and

represented in C code generated using MATLAB Embedded Coder. The generated code

accepts the environment observations as inputs, and outputs the optimal action for the

current state based on the trained policy. In the next step, the hardware configurations

were prepared in order to perform the communication between SOC and MATLAB

Simulink. The deployment is performed by downloading and running the generated code

on the target SOC. Running the model on Zedboard goes through the following cycle:

SOC receives the signals from MATLAB Simulink through the communication channel,

executes the algorithm, outputs a control action (acceleration or deceleration), and then

sends it to the Simulink model to update the state of the driving environment.

Figure 7.9: RL raining algorithm.
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7.3 Results and Discussion

In the first part of this section, the performance of the RL model is evaluated and

compared to the performance of the MPC model. In the second section, the deployment

of the RL-based model on SOC is discussed and evaluated compared to the Simulink

results. The efficiency of the models is determined based on different metrics: the ability

to follow the environment changes, the response time, and the overshooting, and the

ability of the controller to switch between the two control modes (speed and maintain

modes) in a way that the vehicle either keep the safety distance by following the preceding

vehicle or follow the reference speed based on the current state of the environment.

7.3.1 MATLAB Simulink

Figures 7.10 and 7.13 show the behavior of the MPC and RL-based controllers, respec-

tively, and their response to different driving scenarios. Figures 7.11 and 7.14 show the

relative distance between the two vehicles compared to the reference safety distance.

Figures 7.12 and 7.15 show the change of the preceding vehicle’s velocity, the reference

velocity and the response of the ego vehicle to the outputs of the controllers.

7.3.1.1 MPC Controller

Figure 7.11 shows that, in the first 10 seconds, the relative distance between the two

vehicles is greater than the safety distance, and the MPC controller response is based on

the speed control mode, where it successfully drives the ego vehicle to follow the reference

velocity (figure 7.12). Between 12 to 28 seconds, the relative distance is less than the

safety distance, the MPC controller switches to “maintain” control mode, and the ego

vehicle changes its speed in order to follow the minimum speed of the preceding vehicle.

The detailed behavior of the MPC during this period of time (0 to 28 seconds), shows

that in the first three seconds, the MPC controller outputs a near maximum acceleration

(figure 7.10) since the relative distance is much higher than the safety distance and the ego

vehicle followed the reference speed. On the other hand, with the continuous decrease in

the velocity of the preceding vehicle and consequently the relative distance, MPC begins

to gradually reduce the acceleration. At the second 10 the relative distance became

very close to the safety distance, and the MPC controller switches to the “maintain”

control mode, and responds in a way that drives the vehicle in the direction of following

the speed of the preceding vehicle. At second 28 the MPC controller switches back to

“speed” mode and the ego vehicle follows the reference speed until second 58 regardless
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of the (maximum or minimum) speed of the preceding vehicle, since the relative distance

is greater than the safety distance.

7.3.1.2 Reinforcement Learning Control Model

Figures 7.13, 7.14, and 7.15 show that the RL-based controller was able to switch between

“speed” and “maintain” control modes efficiently. The controller drives the ego vehicle to

follow the reference speed between 0 to 10 seconds, since the relative distance is greater

than the safety distance. Then it successfully switches to “maintain” control mode when

the relative distance becomes very close or less than the safety distance between 10 to

28 seconds. From 31 to 56 seconds the relative distance is greater than the safety, and

the RL controller switches back to “speed” control mode, where the ego vehicle follows

the reference speed.

7.3.1.3 Performance Comparison

The results show that both controllers responded efficiently to the environment’s changes

based on the control modes and the design specifications. In detail, at the beginning the

RL controller drove the vehicle from the initial state to the reference velocity in approx-

imately 4.5 s, while it took around 6.2 s in the case of MPC controller. The results

also show that the RL controller was able to follow and respond to the environment

changes faster than the MPC controller: it took approximately 4.6 s to reach the pre-

ceding vehicle speed after changing to “maintain” mode with the RL controller, while it

took approximately 6.4 seconds in case of MPC controller. Similarly, the results showed

a stable behaviour of the RL model which responded faster to the other environment

changes, where it drove the vehicle at the reference speed at second 26 s after switching

back to the speed control mode, while the MPC controller reached the reference speed

at second 28.5 s. RL-based model improved the response time with 1.75 s in average.

On the other hand, the behavior of the RL controller shows higher overshooting in terms

of following the reference speed compared to the MPC behavior, especially against the

initial state, where the maximum overshooting was approximately 1.3 m/s. As a conclu-

sion, the results demonstrate the advantage of the reinforcement learning model in term

of the ability to predict and follow the changes in the environment state faster than the

MPC controller. This result is compatible with the fact that solving the optimization

problem using a trained neural network is faster than solving an online quadratic prob-

lem at each time step (MPC controller). On the other hand, the results demonstrate

the advantage of the MPC control in term of providing less overshooting behaviour in

all switching points.



Design and implementation of reinforcement learning for automated driving compared
to classical MPC control 89

Figure 7.10: MPC-based controller’s response – MATLAB Simulink.

Figure 7.11: Relative distance compared to safety distance – MPC controller.

Figure 7.12: Velocity of ego and proceeding vehicle compared to reference velocity –
MPC controller.

Figure 7.13: RL-based controller’s response – MATLAB Simulink.
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Figure 7.14: Relative distance compared to safety distance – RL controller.

Figure 7.15: Velocity of ego and proceeding vehicle compared to reference velocity –
RL controller.

7.3.2 RL-model on SOC

The performance of the RL controller after being implemented on SOC is evaluated

compared to its performance on MATLAB Simulink. The compression is analyzed in

term of tolerance error, which is determined to be 0.2 m2/s maximum. The results

in figure 7.16 shows that the response of the RL controller is within the determined

tolerance range, and figure 7.17 represents the detailed deviations where the maximum

was (4.9e−06m2/s) . These results demonstrate the success of the deployment of the

proposed RL controller on SOC, which also in turn indicates the effectiveness of the

approach employed to extract the optimal policy that is trained and validated using

MATLAB Simulink.
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Figure 7.16: FPGA – Simulink comparison - RL-based controllers’ response within
the tolerance range.

Figure 7.17: FPGA – Simulink comparison – RL-based controller’s response devia-
tions.

Thesis IV

I proposed reinforcement learning-based control strategy for the task of maintaining a safe

distance in the frame of automated driving system. I also proposed a method to deploy

the developed model on low-end FPGA. The method extracts the policy of the trained

RL-agent and converts it to a C code that is downloaded and run of the target SoC

(FPGA). Compared to the traditional MPC controller, the results show the superiority of

the reinforcement learning - based model in term of the ability to predict and follow the

changes in the environment state and improvement in response time ( 1,75 s in average).

This work contributed to enriching the research on RL algorithms and paving the way to

bring it closer to real-world.

Related Publications: [RV23]

7.4 Chapter Conclusions and Summary

In contrast to the classical control strategies, whose efficiency strictly depends on the de-

sign parameters, the reinforcement learning algorithm provides an efficient generalizable

model and higher stable control using a very well-trained agent that is exposed to all
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possible scenarios within the environment. In this work, a reinforcement learning-based

control strategy was suggested for the task of maintaining a safe distance in an automated

driving system as an alternative solution to the classical model-based control. The per-

formance of the suggested model is evaluated compared to the performance of an MPC

controller that is designed for the same task. Additionally, the RL model is deployed on

a low-end FPGA/SOC after being verified in MATLAB Simulink. The obtained results

show the superiority of the reinforcement learning algorithm over the MPC in terms

of the ability to predict, follow and respond faster to environment changes. RL model

provided a stable behaviour against the environment changes, where it improved the re-

sponse time with 1,75 s in average. On the other hand, the MPC controller outperformed

the RL-based controller performing with less overshooting (approximately 1.3 m/s less)

which demonstrate the advantage of the MPC control in term of overshooting behavior.

After verifying the reinforcement learning model, the trained policy is extracted and

successfully deployed on FPGA.The obtained results showed a stable behaviour of RL

model after being implemented on FPGA compared to the Simulink behaviour, where

its response was within the tolerance range (0.2 m2/s) and the maximum deviation was

(4.9e−06m2/s). In conclusion, developing a reinforcement learning-based control strategy

for highly complex environments can be considered as a promising and efficient solution

to address the disadvantages of classical control approaches.



Chapter 8

Summary

8.1 Contributions

Given the great importance of the autonomous vehicles in reducing the traffic risks and

accidents on the roads resulting from human errors, engineers in the automobile sec-

tor have worked extremely hard over the past decade to develop and implement control

strategies in an effort to improve road transportation and reach a fully autonomous and

safe vehicles. Without a doubt, the next few years will witness a significant increase in

fully autonomous vehicles on the roads. The main motivation of my doctoral work is to

contribute to this efforts by making use of the advanced technologies and algorithms to

achieve the desired optimization. This contributions can be summarised into four main

parts. It is known that the efficiency of the classical control strategies drop off in highly

complex environments due to their weakness in handling the dynamically changing sys-

tems and high processing demands especially when it comes to the limited resources

of embedded computing platforms such as system-on-chip and field-programmable gate

array. In the first part, I addressed these problems for model predictive control as on

of the most traditional control strategies that is used for automated steering task. The

aim was to optimize the implementations of MPC controller. To deal with dynamic

changes systems, the adaptivity concept was used, where the optimization problem re-

mains the same (same number of states and constraints) but a new linear model is used

at each time step to obtain an accurate prediction based on the new conditions, and

that is what we called adaptive model predictive control. The obtained results showed

that adaptive MPC was able handle the chaining dynamics and yields a good perfor-

mance in terms of tracking the reference trajectory. In the second section of this work,

I applied functional on-target rapid prototyping using embedded coder and HDL coder

(hardware/software co-design) for the implementation of embedded systems dedicated
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for digital signal processing considering performance, execution time and resources con-

sumption. The suggested implementation method is based on taking the optimization

problem of the control method through MATLAB Simulink, Fixed-Point Designer, Em-

bedded Coder and HDL coder, which allows the authors to focus on the verification,

the validation and the test of the embedded system rather than programming, which

in turn gives the ability to refine the design. Different strategies were implemented to

achieve the resource optimization, where the implementations involve Logical optimiza-

tion, placement of logic cells, and routing the connections between cells. In the second

part, we worked on developing DNN-based controller as alternative to the classical MPC

in the frame of automated driving task, suggesting that the use of a deep neural net-

work can significantly increase efficiency and inevitably result in reduce the time and the

complexity of implementations. The suggested DNN model, was designed and trained

to imitate the behaviour of the traditional MPC.Considering the crucial function that

deep neural network hardware implementations play, a new automatic IP generator has

been developed in order to deploy and optimize the implementations of the DNN based

models on Field Programmable Gate Array. The performance of the suggested DNN

controller after being deployed on low end FPGA was evaluated, and the obtained re-

sults show that it is successfully imitated the behaviour of the classical MPC, provided a

good performance, and improved the execution time ( up to 4 times faster). In the third

part, we suggested a new hybrid machine-learning model that combines two controllers

(DNN-based controller and RL-based controller) in one model. The idea behind the

hybrid model is to leverage the advantages of the supervised learning and reinforcement

learning algorithms in one control model in a way that the RL controller optimizes the

actions that are taken by the supervised DNN controller that is developed in chapter 5.

The efficiency of the hybrid model was evaluated compared to the supervised DNN and

reinforcement DQN models. The obtained results show that the combined model was

able to provide the desired optimization by driving the vehicle to the reference speed

more smoothly and within a reasonable time. These results proved that the suggested

hybrid mode has better generalization capability within the complex driving environ-

ment where the supervised learning speeds up the learning process and reinforcement

learning improves self-adaptation to new states that the model was not faced with in

the training process. Although the promising results achieved by the implementations

of reinforcement learning algorithms in different field, RL still an emergent field and the

real-world applications are still very much an open challenge and has not yet been applied

to practice as successfully as supervised and unsupervised learning. In this context, in

the fourth part of this work, a reinforcement learning-based framework is suggested as an

alternative solution to the classical control for the application of maintaining a safe dis-

tance in autonomous driving system which enriching the research on RL algorithms and

paving the way to bring RL closer to real-world implementations. Additionally, the RL
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model was deployed on a low-end FPGA/SOC after being verified in MATLAB Simulink.

In order to perform the deployment, first we extracted the policy from the agent after

being trained and we represent it as a C code which was downloaded and tested on

the generated SOC. The obtained results showed that the RL model was able to handle

the environment changes more efficient compared to MPC controller and improved the

response time with 1.75 s in average. Additionally, the method that we used to perform

the deployment is evaluated, and the results showed the efficiency of this method where

the RL model provided a stable behaviour after being implemented on FPGA compared

to the Simulink behaviour.

Thesis I

I gave a methodology for adaptive MPC development for the changing dynamics system,

which yields good performance in terms of tracking the reference (lateral position and

yaw angle). To perform embedded system’s deployment, I applied and analyzed differ-

ent implementations of the proposed method from source utilization point of view. The

implementations included logical optimization, placement of logic cells, and routing the

connections between cells.

Related Publications: [RBV20], [RV20], [BRV20]

Thesis II

I proposed deep neural network-based control strategy as an alternative solution to the

classical MPC controller for automated driving task aiming to reduce the complexity of

solving the online-optimization problem, therefore the execution time. The suggested

DNN-based controller is designed and trained to imitate the behaviour of the MPC con-

troller. I also proposed a new automatic intellectual property generator tool, which is

developed not only to perform but also to optimize the deployments of deep neural net-

works on low-end Field Programmable Gate Array.

Related Publications: [RBV21], [KRVB20a], [ch5]

Thesis III

I proposed machine learning-based control strategy that combines supervised learning

(DNN-based model) and reinforcement learning (RL-based model) algorithms in one con-

troller, aiming to achieve the desired optimization by leveraging the advantages of these

algorithms in a way that the RL controller optimizes the actions that are taken by the

supervised DNN controller. The efficiency of the hybrid model was evaluated compared

to the supervised DNN and reinforcement DQN models which are developed for the same

task under the same conditions and constraints.

Related Publications: [ch623], [KRVB20b], [RBV21]

Thesis IV

I proposed reinforcement learning-based control strategy for the task of maintaining a safe
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distance in the frame of automated driving system. I also proposed a method to deploy

the developed model on low-end FPGA. The method extracts the policy of the trained RL-

agent and converts it to a C code that is downloaded and run of the target SoC (FPGA).

This work aiming to enriching the research on RL algorithms and paving the way to bring

it closer to real-world.

Related Publications: [RV23]
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Appendix A: List of Publications
1. Design and implementation of reinforcement learning for automated driving compared to

classical MPC control [RV23].

2. Model Predictive Control for Autonomous Quadrotor Trajectory Tracking [BRV20].

3. Mély neurális háló modul generator [VRBD22].

4. Deep Learning-Based Automated Vehicle Steering [RBV21].

5. Survey on five nature-inspired optimization algorithms [RZ21].

6. Model-Based Control Strategy for Autonomous Vehicle Path Tracking Task [RV20].

7. A Survey about Intelligent Solutions for Autonomous Vehicles based on FPGA [KRVB20b].

8. FPGA-based Intelligent Solutions for Autonomous Vehicles: A Short Survey [KRVB20a].

9. Model Predictive Control for Automated Vehicle Steering [RBV20].

10. Toward an embedded system for gesture recognition based on artificial neural network
using reconfigurable target (case study and review) [RABV20].

11. A Hybrid Machine Learning-Based Control Strategy for Autonomous Driving Optimiza-
tion [ch623].

12. Model Predictive-Based DNN Control Model for Automated Steering Deployed on FPGA
Using an Automatic IP Generator Tool [ch5].
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