The PSoC 5LP LABBOOK

1st Edition

The experiments in this lab material were designed, implemented, tested and
documented by

Ahmed BOUZID

University of Miskolc
Department of Automation and Communication Technology

THE CYPRESS

o U O AUTOMATIZALASI ES =

0 o INFOKOMMUNIKACIOS :"—i-‘_,z
: O—"—0 INTEZETI TANSZEK = CYPRESS SITY
Q) g ® II) = T rERFORM HEE

May 2018

Open Source Licence to Use and Reproduce

This LABBOOK is available in print and as an electronic book (PDF format).

Text and diagrams from this book may be reproduced in their entirety and used for non-profit
academic purposes, provided that a clear reference to the original source is made in all derivative
documents. This reference should be of the following form:

Ahmed Bouzid, The PSoC 5LP LABBOOK, First Edition, University of Miskolc, 2018.

Requests to use content from this book for other than non-profit academic purposes should be made
to qgebouzid@uni-miskolc.hu

This book may not be reproduced in its original form and sold by any unauthorized third party.

ACKNOWLEDGEMENTS

This document falls within the context of practical works for embedded systems subject
organized for students of the University of Miskole. I thank Dr. Jézsef Vasarhelyi for his
precious help to elaborate this work.

Ahmed BOUZID (qgebouzid@uni-miskolc.hu)

June 2016

PREFACE

Embedded systems were initiated through aerospace needs, especially for the Apollo
Guidance Computer. Real time processing and miniaturization are the key elements of an
embedded system since it previously was not possible to embed controllers on vehicles
because of big sizes.

In major cases, general purpose architectures are underdimensionned or overdimensionned
solutions. In order to optimize architecture according to a specific application, design via
reconfigurable systems is an alternative solution where architecture is in adequacy with
algorithm.

Nowadays, PSoCP® is a family of integrated circuits that have high presence on the market of
reconfigurable systems. PSoC (Programmable System on Chip) is a family of integrated
circuits introduced by Cypress Semiconductor in the beginning of 2000. Each PSoC IC has a
microcontroller and some configurable analog and digital blocks. These components are
programmably routed and interconnected using PSoC Designer (for PSoC1 family) or PSoC
Creator (for PSoC 3, 4, 5 and 5LP families)

The document presents lab materials and a mini-project using CYS8CKIT-050 Development

Kit and some discrete components. This kit is based on CY8C5868AXI-LP035 chip that
includes ARM Cortex-M3 microcontroller.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
PREFACE
TABLE OF CONTENTS
LAB1
PART I Blinking LED
PART II Blinking LED with PWM component
PART III Controlling LED (Hardware Design)
PART IV Controlling LED (Hardware/Software Design)
PART V Controlling a LED with an interrupt
LAB2
PART I Maximal value indicator (with comparator)
PART II Maximal value indicator (with ADC)
PART III Changing Speed and Brightness of Blinking LED
LAB3
PART I Send message via UART
PART 11 Lighting LED via UART
PARTIII Controlling LED blinking speed via UART
LAB4 Data Logger for Analog Sensor Data
PART I Built-in Potentiometer
PART II External Potentiometer (Goniometer)
LAB5 State Machine

Mini-Project

Remotely Controled DC Motor (PSOC5 Design)

LAB1

PART1 Blinking LED

I.1 Introduction
I.1.1 Overview

The purpose of this LAB is to build an application using CYS8CKIT-050 PSoC development kit for
LED blinking. It must light for 50ms and turn off for 50ms.

I.1.2 Creation of the Project

- Open PSoC Creator

- Go to file, new, project

- Choose the target device PSoC5LP CY8CKIT-050 that corresponds to the CY8C5868AXI-LP035
chip, then click next.

Create Project - CYBCSBA8AXI-LPO3S

Select project type
Choose the type of project - design, libram, or workspace.

Design project:

(O Taiget module:

® Targetdevice: PSoCSLP v Lastused\CYBCS50684XI-LP035
O Library project
(O Workspace

- Choose Empty Schematic and click next

Empty schematic
Create a full custom design by adding functionality from the component catalog.

- Workspace : create new workspace
- Location :PSoC Creator
- Project name : Blinking LED

Create Project - CYBC5888AX-LP035

Cieate Project
Choose a name and location for your design

Workspace: Create new workspace

‘Workspace name: ‘ Waorkspace(l

Location: ‘ CilsershwmatiDocuments\PSoC Creator
Project name: [B linking_LED|
1.2 Hardware configuration

1.2.1 Blocs design

-Go to component catalog right the screen, write "logic and", drag and drop the “And” component to
the TopDesign schematic. Make a zoom in by clicking “Ctrl + +”.

~ 4 b % ComponentCatalog (20f2.. v & X
~|] B a8
}'ﬁ logic and

" Cypress 4 b
i Cypress Component Catalog
=68 Digital
=8 Logic
0| And [1.0]

PR Rlawd LA m

- Look for "digital output pin", drag and drop the component and connect it to the output of the AND
component.

- Look for "Clock", drag and drop it and connect it to one of the inputs.
- Look for "Logic High", drag and drop it and connect it to the logic gate.

=
Clock_1 [% LED

10 Hz

1.2.2 Configuration of the components

- Double click on "clock", set the frequency to 10 Hz with £5% tolerance

Configure 'cy_clock'

Nome: SIS

7'."’Basic} Advanced | Built-in

Clock type: ®) New (O Existing

Source: [<Buto>

Specify: Frequency: E Hz
[Tolerance: - |5% +|5%

- At the left of the screen in workspace explorer, double click on Pins under Blinking LED.cydwr.
- At the right of the screen in Port, choose P6[3]

Workspace Explorer (1 project) - ax St Page | TopDesign.cysch Blinking_LED.cydwr AL
2.

¢ L] L] Name
&l Workspace "Workspace05® (1 Projects) ~

Port Fin lock
= 73] Project 'Blinking LED' [CYBC5B68AXI-LPO35] " SFRPEFIFREEERRO FEFFEEEEEE |D|,‘, Pe[3] - |9z vl = |
& TopDesign.cysch])
= Design Wide Resources (Blinking_LED.cydwn) :

o

I.3 Program and results

- Build the design by clicking on build or shift+F6, it will take a while.
- When finish verify warnings and errors.
- Plug the PSoC5LP on J1 mini-USB.
- Click on program or ctrl+F5
- Ared LED (LED4) will start blinking every 0.1 seconds.

PARTII Blinking LED with PWM component

The purpose of this LAB is to build an application using CYS8CKIT-050 PSoC development kit for
blinking a LED. It must light for 50ms and turn off for 950ms.

II.1 Creation of the Project

- Open PSoC Creator

- Go to file, new, project

- Choose the target device PSoC5LP CY8CKIT-050 that corresponds to the CY8C5868AXI-LP035
chip, and then click next.

- Choose Empty Schematic and click next
- Workspace: create new workspace

- Location: PSoC Creator

- Project name: Blinking LED_PWM

11.2 Hardware configuration
I1.2.1 Blocs design

-Go to component catalog right the screen, write "PWM", drag and drop the component to the
TopDesign schema.

FRIERC ol

S dbx H’mmmcaung (2 of 202 compe

=] |[Pom a2 Wiy

1@ Functions
(8] PwM [v3.30)

“lreset _interrupt]::
351 (UDB)

- Look for "pin", choose digital output pin, drag and drop it and connect it to the PWM bloc
- Look for "clock", drag and drop it and connect it to the PWM bloc.

- Look for "Logic Low", drag and drop it and connect it to the reset port of the PWM bloc.

I1.2.2 Configuration of the components

- Double click on "clock", set the frequency to 100 Hz with £5% tolerance

Configure 'cy_clock'

Name: I

7', "’ﬁ} Advanced | Built-in
Clock type: ® New O Existing
Source: [<Auto>
Specify. Frequency: Hz ~

[Tolerance: - 5% + 5%

- Double click on PWM, rename it to PWM, set the PWM mode to one output, period to 99 and
CMPvaluel to 5.

Configure PWW'

=

" Configure

Advanced Buit-in

period | #99

won ||

Iimphementation
Resolution:
PWM Mode:
Pesiod:

CMP Yalue 1
CMP Type 1

Dead Band

O Fised Function ® uoe

© 881 O 168k
One Output v

9 & Max Period = Ts

Less. ~

Disabled v

- At the left of the screen in workspace explorer, double click on Blinking LED_PWM.cydwr.
- At the right of the screen in Port, choose P6[3]

| Workspace Explorer (1 project) T AX | swtpage | TopDesgncysh) *Blhnking_. PWM.crdwe rdbx
|B e - 4 L] L Nam Port Pin Lock
I “Workspace Workspace0d' (1 Projects) - Oerssss 'E|‘ o0 s 5w amr e
- 3] *Project 'Blinking LED_PWM' [CYBCSB68AXI-LPO3S] § S JEREEEFERECERI|FEERBRREEE O/ P6[3) | - |92 4 =
ources (Blinking_LED_PWM.cydwr) A S =
n o .
tctt

pwm - —on| LED

Clock_1[JuL}—{>clock

100 Hz

reset interrupt}+
@I 8-bit (UDB)

Software configuration

I1.3

- Double click on main.c in the workspace explorer under source files
- Under the code line "CyGloballntEnable;" write the following: "PWM_Start();"

Workspace Explorer (1 project) vax Start Page | TopDesign.cysch | Blinking_LED_PWM.cydwr ~~ main.c
i L 1] #include "project.h”

] Workspace "Workspace04' (1 Projects) "
= ¥3] Project 'Blinking_ LED_PWM' [CYBC5868AXI-LPO35]
&' TopDesign.cysch
= Design Wide Resources (Blinking_LED_PWM.cydwr)

int wain(void)
ag(
CyGlobalIntEnable;
& Pins PUN_Start () :

A Analog
@ Clocks

for(::)
{

5% Interrupts
0’5 oMA

B System

11 }
)

500 | $1UsU00W0) | 334n05

1] cyapicallbacks.h
=HLD Source Files
<] mainc

synsay

II.4 Program and results

- Build the design by clicking on build or shift+F6, it will take a while.
- When finish verify warnings and errors.
- Plug the PSoC5LP on J1 mini-USB.
- Click on program or ctrl+F5
- Ared LED (LED3) will start blinking every 1 second.

PARTIII Controlling LED (Hardware Design)

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for controlling a
LED. It must light when a button is pressed.

III.1 Creation of the Project

- Open PSoC Creator

- Go to file, new, project

- Choose the target device " CY8C5868AXI-LP035 " and click next
- Choose Empty Schematic and click next

- Workspace : create new workspace

- Location : PSoC Creator

- Project name : Control_LED_HW

III.2 Hardware configuration
I11.2.1 Blocs design

- Look for “Logic And”, drag and drop it.

- Look for “Logic Not”, drag and drop it.

- Look for “Logic High” drag and drop it.

- Look for “Digital Input Pin”, drag and drop it.

- Look for “Digital Output Pin”, drag and drop it.
- Make connections

3
BUTTON <>Q - —sm| LED

II1.2.2 Configuration of the components

- Double click on the input pin, rename it to "BUTTON" and choose Resistive pull up Drive mode.

Configure 'cy_pins' ? X
Name: BUTTON]
/"Pins | Mapping | Reset | Buit-in ar
Number of pins: |1 H e s
[4) ping] |~ General | Input |~ Output
B |BUTTON_O Type Drive mode Initial drive state:
[Analog Resistive pull up % High (1) hd
Digital input Y Min. supply voltage:
Hw connection
[J Digital output [] Hot swap
D Bicdi 0 1
) i [External terminal

- At the left of the screen in workspace explorer, double click on Pins under Control LED_HW.cydwr.
- At the right of the screen in Port, choose P6[1] for BUTTON and P6[3] for LED.

Workspace Explorer (1 project) LAY] Start Page | TopDesign.cysch, Control_LED_HW.cydwr | rabx
=-1%:) MNamn, Port 2 Lock
] Workspace "Workspace05' (1 Projects) ~ i i]
= 2] Project “Control LED HW' [CYBCSB68AXI-LPO3S]) Heossessa Bl-B-0802300:srrcr O surron P6[L] - |90 v
A TopDesign.cysch H ¢ FEFFEPEFEEPECEEROEFEFEFEEER = =
g D sign Wide Resources (Control LED_HW.cyds : o, R Ol =2 =
a|n

& Pins) o |em

II1.4 Program and results

- Build the design by clicking on build or shift+F6, it will take a while.
- When finish verify warnings and errors.

- Plug the PSoC5LP on J1 mini-USB.

- Click on program or ctrl+F5

- LED4 lights by clicking on SW2 switch.

PART IV Controlling LED (Hardware/Software Design)

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for controlling a
LED using hardware and software. By clicking a button the state of a LED has to change.

V.1 Creation of the Project

- Open PSoC Creator

- Go to file, new, project
- Choose the target device "CY8C5868AXI-LP035 " and click next

- Choose Empty Schematic and click next
- Workspace: create new workspace

- Location: PSoC Creator

- Project name: Control_LED SW

IV.2 Hardware configuration
IV.2.1 Blocs design

- Look for "pin", choose digital input pin, drag and drop it.
- Look for "pin", choose digital output pin, drag and drop it.

IV.2.2 Configuration of the components

- Double click on the input pin, rename it to "BUTTON", choose Resistive pull up Drive mode and

uncheck HW connection.

Configure ‘cy_pins’ ? X
Narne:
Pins | Mapping = Reset Buit-in b
Number of pins: ‘1 B
Al pins] General | Input | Output
[ButTON_O | Type Drive mode Iritial cive state

[Analog Resistive pull up ~ High (1)
m

Digtal input Min. supply voltage
[HW connection |

[Digtal output (] Hot swap

] Bidirectional

[Extemal terminal

- Double click on the output pin, rename it to "LED", choose Strong Drive mode, uncheck HW
connection and the initial drive state must be set to Low

? X

Configure ‘cy_ping'

Name
_/ Pins | Mappng | Reset | Bulk-n ar
Nurmber of pins: 1 B+ s
(4 pins] [General | Input | Output
E LEp o Type Drive mode Initial drive state:
[0 Ansiog Stiong diive v LowlO) v
[Digitalinput = Min. supply voltage:
[Digital output [Het swap
[HW connection
[Output enable
O Bid I
[Extemal teminal

- At the left of the screen in workspace explorer, double click on Control_ LED_SW.cydwr.
- At the right of the screen in Port, choose P6[1] for BUTTON and P6[3] for LED.

BUTTON s s LED

IV.3 Software configuration

- Double click on main.c in the workspace explorer under source files
- Write the following code:

Start Page | TopDesign.cysch | Control_LED_SW.cydwr » main.c[

1: #include "project.h"

3. int main(void)

49 {

5 CyGloballntEnable;

&

7 int a=0 ;

=] fori;;)

9 {

10 if (BUTTON Read() == 0]
11 {

12 if (a == 0)

13 {

14 LED_Write(l):
15 a = 1;

16

17 }

18 else

19 {

20 LED_Wrice(0):
21 a = 0;

13 }

54 3

25 }

264-}

IV4 Program and results

- Build, check warnings and errors, plug the target and program it.

- By clicking on SW2 switch in the board, you will notice that sometimes the LED doesn't light well.
This is due to the bouncing effect of the mechanical switch.

- It can be solve by adding the component "debouncer" to the design, or simply adding a "delay" to the
main program as following:

Start Page | TopDesign.cysch ControI_LED_SW.cydwr,»"' main.c[

1: #include "project.h™

3 int mainivoid)

40 {

5 CyslobalIntEnable;

6

7 int a=0 ;

8 for(::)

9 {

10 if (BUTTON Read() == 0)
11 {

12 if (a == 0)

13 {

14 LED_Write(l):
15 CyDelayiz00};
16 a = 1;

17 H

18 else

19 {

20 LED_Write(0);
21 CyDelay(200);
22 a = 0;

23 }

24 }

25 H

264L}

PART YV Controlling a LED with an interrupt

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for controlling a
LED using an interrupt. By clicking a button the LED must blink for 0.9s every second, and then
by clicking another button the LED stops blinking.

\Al Creation of the Project

- Open PSoC Creator

- Go to file, new, project
- Choose the target device "CY8C5868AXI-LP035" and click next

- Choose Empty Schematic and click next
- Workspace: create new workspace

- Location: PSoC Creator

- Project name: Interrupt_LED

V.2 Hardware configuration
V.2.1 Blocs design

- Look for the following components, drag and drop them to the schema:
PWM, clock, Logic Low, Digital Input Pin (twice), Interrupt (twice), Digital Output Pin.

V.2.2 Configuration of the components

- Double click on the input pin, rename it to "SW2", choose Resistive pull up Drive mode and
uncheck HW connection. Under Input tab, set Falling edge for Interrupt.

?

Configure ‘cy_pins'
Configure 'cy_pins' ? X
Hame:
) Name: ‘SWZ
/" Pins | Mapping | Reset | Buit-in q4p)
T /"Pins | Mapping | Reset | Buil-in 4
Number of pins: |1 [z
Murber of pins: 1 H o+ 3
[pins] General | Input =~ Output - —_—
— Type Drive mode Intial diive state: el pire] General” Tnput | Cutput
& isw20 Thieshold: | CMOS Wl

[Analog Resistive pull up | High(1) v
Digital input Yo

[[] Hw connection
[] Diaital output

Min. supply voltage:
Interrupt: Falling edge ~

[Hetswap Syne mode: | Transparent v
Input buffer enabled

[m]

[] Extemal teminal

|

- Double click on the input pin, rename it to "SW3", choose Resistive pull up Drive mode and
uncheck HW connection. Under Input tab, set Falling edge for Interrupt.

- Double click on the output pin, rename it to "LED", choose Strong Drive mode and the initial drive
state must be set to High.

- Double click on "clock", set the frequency to 100 Hz with £5% tolerance

- Double click on PWM, rename it to PWM, set the PWM mode to one output, period to 99 and

CMPvaluel to 90
- At the left of the screen in workspace explorer, double click on Pins under Interrupt_ LED.cydwr.

- At the right of the screen in Port, choose P6[1] for SW2, P15[5] for SW3 and P6[3] for LED
- Change the names of the interrupt components to "SW2_Int" and "SW3_Int"
- Make connections between the components as following:

PWM

SW2 PWM
Pins
6(1) tc
" LZsw2 int P
Psir:"‘sm Clock_1 [Tt} {>clock
100Hz - treset interrupt|-

hsis|

8-bit (UDB)

irg | |
"L swa int [0}

V.3

Software configuration

w LED

- Double click on main.c in the workspace explorer under source files
- Write the following code:

Start Page | TopDesign.cysch [nterrupt_LED.wdwr,/’ main.c

1

=
T I =T R - S, I

-
)

14

V.4

#include<project.h>

CY_ISR(SWZ_Handler)

{
8W2_ClearInterrupt|();
PWM_Start():

)

CY_ISR(SW3_Handler)

{
8W3_ClearInterrupt():;
PUM_Stop():

H

int maini)
{
CyGloballntEnable;

SW2_Int_StartEx(SWZ_Handler);
SW3_Int_StartEx(SW3_Handler):

for(:;:)

{
i

Program and results

- Build, check warnings and errors, plug the target and program it.

- The LED light by clicking on SW2 and switch of by clicking on SW3.

10

LAB2

PART 1 Maximal value indicator (with comparator)

I.1 Introduction
I.1.1 Overview

The purpose is to build an application using CY8CKIT-050 PSoC development kit for Lighting a
LED using a potentiometer. The LED must light when the potentiometer is at the maximum
position.

I.1.2 Creation of the Project

- Open PSoC Creator

- Go to file, new, project

- Choose the target device " CY8C5868AXI-LP035 " and click next
- Choose Empty Schematic and click next

- Workspace: create new workspace

- Location: PSoC Creator

- Project name: Comp_LED

I.1.3 Required Instrumentation

- CY8CKIT-050 is a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-LP035 chip.
- 2x16 LCD Character Display.

1.2 Hardware configuration
I.2.1 Blocs design

- Look for the following components, drag and drop them to the schema:
Comparator, Analog Pin, Digital Output Pin, VRef.

1.2.2 Configuration of the components

- Double click on the input pin, rename it to "Potar", choose High impedance analog Drive mode,
set initial drive state to Low.

- Double click on the output pin, rename it to "LED", choose Strong Drive mode.

Configure 'cy_pins' ? X

Name: ‘LED\

/" Pins | Mapping | Reset | Built-in q4b

Number of pins: ’17 H+ 3
[4l pins] |~ General | _Input | Output
[Fn_20 Type Drive mode Initial drive state:
[Analog Stiong diive v Low (0) v
[] Digital input m Min. supply voltage:
Digital output [Hotswap
HW connection
[] Output enable
[eidi
O~ KA [Estemal teminal

11

- Double click on the comparator, rename it to Comp, disable Hysteresis, set the speed to fast and
sync must be bypassed.

Configure 'Comp’

Name:

" Configure | Buit-in

Hysteresis
(O Enable

Spesd
(O Ulra Low Power

O Slow

PoweiDownOveride
O Enable

Polarity
® Norlnverting

Sync
(O Normal

Vdda

® Disable

@ Fast

® Disable

O Inverting

@) Bypass

- Double click to VRef and set the value to Vdda.

Configure 'cy_vref'

Narme: \'Her 1

4 “Basic | Advanced | Built-in

VRef Name: Vdda

Potar s

Comp
Comp

¥

VVdda|Vref

sa LED

- At the left of the screen in workspace explorer, double click on Pins under Comp_LED.cydwr.

- At the right of the screen in Port, choose P6[3] for LED and P6[5] for Potar.

Workspace Explorer (1 project)
Sl

1 Workspace WorkspaceOT (1 Projects)

=i F3] Project “Comp_LED’ [CYBC5B68AXI-LPO3S]

H TopDesign.cysch

=4 Design Wide Resources (Comp_LED.cydwr)

«[Im

AN Analog
@ Clocks
£ Interrupts

-ax Start Pags | *TopDesign.cysch,” *Comp_LED.cydwr ~db X
2 § : Name Port Pin Lock
Qevesssnfiless QEAMs souanercs
SERREEIERERREROEEFEEREEREE O Jrsisil - [s2 - [

Ol rorar frsisiy - 2 - L)

SWRUOONTD | 334n05

1131443 +

1.3 Software configuration

- Double click on main.c in the workspace explorer under source files
- Enable the comparator by putting the command Comp_Start();

IRERRE)

ERCCIE]

12

I4 Program and results

- Build the design by clicking on build or shift+F6, it will take a while.

- When finish verify warnings and errors.

- Plug the PSoC5LP on J1 mini-USB.

- Click on program or ctrl+F5

- The LED light when the potentiometer is turned to the maximum position.

1.5 Exercise

The LED must light when the potentiometer is at the middle position.

PART II Maximal value indicator (with ADC)

I1.1 Introduction
II.1.1 Overview

The purpose is to build an application using CY8CKIT-050 PSoC development kit for Lighting a
LED using a potentiometer. The LED must light when the potentiometer is at the maximum
position using ADC without comparator. The state of the LED must be displayed on an LCD.

I1.1.2 Creation of the Project

- Open PSoC Creator

- Go to file, new, project

- Choose the target device " CY8C5868AXI-LP035 " and click next
- Choose Empty Schematic and click next

- Workspace : create new workspace

- Location :PSoC Creator

- Project name :ADC_LED

11.2 Hardware configuration
I1.2.1 Blocs design

- Look for the following components, drag and drop them to the schema:
SAR ADC, Analog Pin, Digital Output Pin, LCD.

I1.2.2 Configuration of the components

- Double click on the input pin, rename it to "Potar", choose High Impedance analog Drive mode.

- Double click on the output pin, rename it to "LED", choose Strong Drive mode, uncheck HW
connection and the initial drive state must be set to Low.

13

Configure ‘cy_pins'

Nore
/" Pins | Mapping = Reset Built-in 4p
Numhzrnfpins:D‘ xR+ &‘ i B ‘
Al pins) General | Input | Output
bz} Type Drive made Initial diive state:
[Analog | Stiong diive v Llow@ v
[Digital input = Min. supply voltage:
HW connection
[Digital output [Hot swap
[HW connection i
[] Oulput enable (0 =
(] Bidvects
m [External teminal

- Double click on the ADC, rename it to ADC, set the resolution to 8 bits, the conversion rate to
100000, the input range must be set to Vssa to Vdda (single Ended) and choose internal Vref as
reference source.

Configure "ADC_SAR'

W ame: IADC
_ Contre 3t |
Modes Sample mode
Resolution (bits} E (® Free running

Conversion rate (SPS}:
Actual conv. rate (SPS)
Clock frequency (kHz)

Input

(O Software trigger

Reference: Intemnal Vref

[] Enable EOS output

Potar [ss}—

100000 2
o () Hardware trigger
UNKNOWN BATE
Clock source
® Intermal
O Estemal
Inputrange: Vssa to Vdda [Single Ended) ~
Vokage reference: 25000 2| Volts [Vddas2)
ADC
ADC_SAR : - LCD -
Character LCD
vref_out
=
eoc 5 LED-
8-bit

- At the left of the screen in workspace explorer, double click on Pins under ADC_LED.cydwr.
- At the right of the screen in Port, choose P6[3] for LED, P6[5] for Potar and P2[6:0] for LCD.

|Workspace Explorer
B

-3 x Start Page

G “Workspace "WorkspaceO7' (1 Projects)
&
&' TopDesign.cysch

(5 Design Wide Resources (ADC_LED.cydwr)

- Pins
A\ Analog
@ Clocks
Interrupts

—l
"

|

joq_| sueuoduwo)

*TopDesign.cysch ~ *ADC_LED.cydwr | main.c

~dbx

L

‘El!il;;l!‘;;llf

RaBasRERER

FEPEEREEERF

O

Name Port Pin Lock

14

I1.3 Software configuration
- Double click on main.c in the workspace explorer under source files
- Write the following code:

1: #include<project.h>

2

37 int maini)

439 (

5 ADC_Start():

6 LCD_Start(}):

7

8 intlec Potar_wval:

9

103| for(::)

11 {

1z ADC_StartConvert():

13 ADC_IsEndConversion(ADC_WAIT FOR_RESULT);
14 Potar_val = ADC_GetResultlé():
15

16 if (Potar_wval> 254)

17 {

i8

19 LED_Write(1):
20 LCD_Position(Ou, Ou);
21 LCD_FrintString ("LED ON ")
22 }
23 else
24¢] {
25
26 LED_Write(0):
27 LCD_Position(0Ou, Ou):
28 LCD_PrintString{"LED OFF"):
29 }

30 H

314by

II.4 Program and results

- Build the design by clicking on build or shift-F6, it will take a while.

- When finish verify warnings and errors.

- Plug the LCD on the board according to pins numbers (!!!otherwise the LCD deteriorates !!!)
- Plug the PSoC5LP on J1 mini-USB.

- Click on program or ctrl+F5

- The LED light when the potentiometer is turned to the maximum position and the LCD displays the
state of the LED.

wow GEE BR p e
R
(e

‘Wl reavez

NN

T AN

15

PART III Changing Speed and Brightness of Blinking LED

ITII.1 Introduction

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for controlling
the speed and the brightness of LED Blinking using a potentiometer and display the values
on LCD.

III.2 Hardware configuration
II1.2.1 Blocs design

- Look for the following components, drag and drop them to the schema:
PWM, , SAR ADC, LCD, clock, Logic Low, Digital Input Pin (3 times), Analog Pin, Digital Output
Pin, Interrupt (twice).

II1.2.2 Configuration of the components

- Double click on the analog input pin, rename it to "Potar", choose High Impedance analog Drive
mode.

Configure 'cy_pins' ? X
Name: [Fotar
/Pins | Mapping | Reset | Buitin b
Mumber of pins: |1 o+
[4ll pins] /" General | Input | Output
[Potar 0 Tupe Drive mode Initial drive state:
Analog High impedance analo Low [0) i
[] Digital input Min. supply voltage:
[Digital output
::_ e
0 i
iy - [Estemal teminal

- Double click on a Digital input pin, rename it to "SpeedSW2" and choose Resistive Pull up Drive
mode. Uncheck HW connexion. Under Input tab, select Falling Edge Interrupt

Configure ‘cy_pins’ X
Name: SpeedSW2
Pins | Mapping | Reset | Buitin 4b
Number of pins: [1 B+ 4
[prs] | General | trput | outpur
[SpeedSW2_0 Tipe Diive mode ritial drive state
[Analog Resistivepulup v High(l] v
4 Digital input 0 Min. supply voltage
[Hw connection
[Digital output [Hot swap
[Bidrectional
[Extemal terminal

Configure ‘cy_pins'
Name: [Speedsw2

Pins | Mapping | Reset | Buit-in

Number of pins: |1 B+ 4
[40 pins] General -~ Input Jutput
(] SpeedSW2 0 Thieshold CMOS v

Interupt Falling edge ~

16

- Double click on another Digital input pin, rename it to "BrightSW3" and choose Resistive Pull up

Drive mode. Uncheck HW connexion. Under Input tab, select Falling Edge Interrupt

- Double click on the remaining Digital input pin, rename it to “Reset” and choose Pull up Drive

mode. Uncheck HW connexion.

- Double click on the output pin, rename it to "LED", choose Strong Drive mode, the initial drive

state must be set to Low.

Configure ‘cy_pins’ ? X
Name: LED]
. Pins | Mapping | Resst | Buitin ar
Nurnber of pins: |1 R+ s
(4l pins] General | Input | Output
® LEbo Type Diive mode Initial drive state:
[Analog Stiong diive v [Low(v
[Digial input = Min. supply volage:
B4 Digital output O Hot swap
HW connection
[] Output enable
[[] Bidirectional
pu [Extemal terminal

- Double click on the ADC, rename it to ADC, set the resolution to 8 bits, the conversion rate to

100000, the input range must be set to Vssa to Vdda (single Ended) and choose internal Vref as

reference source.

Configure "ADC_SAR'

N ame: |ADE
,,"”m] Built-in
Modes Sample mode
Resolution (bits} 8 o ® Fiee fummrfg
Conversion rate (SPS} 100000 = © Software tigger

() Hardware tiigger
Actual conv. rate (SPS) UNKNOWN BATE

Clock source
Clack frequency (kHz): 1200 ® Intemal
) Extemal
Input
Input range: Vssa to Vdda (Single Ended) v
Reference: Internal Vref >
Voltage reference: |2.5000 = Volts (Vddas2)

] Enable EOS output

- Double click on PWM, rename it to “PWM” then set PWM mode to one output.

Configure 'PYW"

Name: ‘F'WM

_/ Configure | Advanced | Buik-in

period | 0

o |

Implementation: () Fixed Function @ UDB
Resolution: (@) 8-Bit O 16Bit
P/ Mode: One Output N
Peiiod: 255 + Max | Period = 27.333us
CMPValue 1: :
CMP TypeT: | Less =

DeadBand: Disabled v 2

17

- At the left of the screen in workspace explorer, double click on Pins under Full_LED.cydwr.
- At the right of the screen in Port, set ports as following:

& Start Page | TopDesign.cysch ” Full_LED.cydwr | main.c |
)
@ Workspace Workspace0T (1 Prajects) ~ 5 5 g 5 ! i
3 E] i 3

= 2] Project “Full LED" [CYBCSB68AXI-LPO35]
~ {0 TopDesign.cysch g
=P Design Wide Resources (Full_LED.cydwr) 33 0ds s8R RER

ERPEFREERER

L) 3 2
TEHBHE

3 Interrupts

-85 oma
B System

& Directives
(@) Flash Security
2 EEPROM

03 Header Files
1] cyapicallbacks.h

A\ Anslog [
@ Clocks e
-

BOCEEEEL
ToBe

I
[
%
s
S
[swsey |

A
v
e
CYBCS868AXI-LP03S
100-TQFP

#4 ADC "
#E) ADCIRQ "
) ADC_theACLK
#H Bright_int
HC Brightsw3
6 Clark 1

iiiii3i§§ihiaidgjaii
BiBrsssssfiifiissazgal

1P
TES

- Change the names of the interrupt components to "Speed_Int" and "Bright_Int"
- Make connections between the components as following:

ADC
: | ADC_SAR . - LCD -
Potar] ? Character LCD
: : vref_out :
‘ . ‘ . eoc|t] ‘ . i BESEt .
SpeedS.WZ Bri htS_,W3 o1 PWM
Pins Pins WM
]

© i © i : : . tchl |
pwm|—s=| LED
Speed_in Bright_int CIOCkJ,; wiz Ly clock

[0 |{reset interruptf-
8-bit (UDB)

II1.3 Software configuration

- Double click on main.c in the workspace explorer under source files
- Write the following code:

ocl
{1
=
=
=
=
=

18

L e I e

F N B I e = (= VI = = e O e e O I O O I o I O Y O I T T L T I I O
WM EDOWO-do 0N 0W00-]a»WMNKHOWOD-Jo0bONKHOIWDD-T00:@NEOWE--IOObWGNEEODWDD-]00dWNREO

|

=

|

]

#include<project.h>

unsigned char speedval = 250;
unsigned char brightval = 250;

CY_ISR (Speed3WZ_Handler)

{
Speed3W2_ClearInterrupt():
CyDelay(200) ;

while (Speed3W2_Read() == 1)

ADC_StartConvert():
ADC IsEndConversion(ADC_WAIT FOR_RESULT):
speedval = ADC_GetResult8();

LCD _ClearDisplay():
LCD_Position(0u, Ou);
LCD_PrintString("Blinking Speed”):
LCD_Position(1lu, Ou):

LCD PrintHumber (speedval) ;
CyDelay(10):

B

CY_ISE(Bright3W3_Handler)

{
BrightSW3_ClearInterrupt ():
CyDelay(200) ;

while (Bright3W3_Read() == 1)

{
ADC StartConvert():
ADC_IsEndConversion(ADC_WAIT _FOR_RESULT) :
brightval = ADC_GetResultS(]:

LCD_ClearDisplay():
LCD_Position(Ou, Ouj:

LCD Print3tring("Brightness"):
LCD_Position(lu, Ou):
LCD_PrintNumber {(brightval):
CyDelay(10) ;

H
int mwain()
{
CyGlobalIntEnable;

Speed_int_StartEx (SpeedSUZ_Handler);
Bright_int_StartEx (BrightSW3_Handler |:

ADC_Starti();
LCD_Start()

for(:;;)
{

PUM_Starc():

PUN_WritePeriod(255):

PUN UriteCompare (brightval):

LCD Position(Ou, 0Ou):;
LCD_PrintString("sSWz:Speed change”):
LCD Position{lu, Ou):

LCD PrintString("SW3:Brightness");
CyDelay(speedval) :

PUM_Stopi):

CyDelay (speedval) ;

19

II1.4 Program and results

- 11! Before powering the board connect carefully the LCD screen !!!

- Build, check warnings and errors, plug the target and program it.

- The LED is blinking. The LCD displays a menu. By clicking on SW2 the speed can be set using the
potentiometer, it will take effect after clicking back SW2. The SW3 is for allowing Brightness setup,
it will take effect after clicking back SW 3.

20

Send message via UART

PART1
I.1 Introduction
I.1.1 Overview

LAB3

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for Sending a
message from PSoC to PC via UART. The message must be sent by clicking to a button.

I.1.2

Required Instrumentation

- CY8CKIT-050 is a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-LP035 chip.
- UART-USB cable or RS232-USB cable

- 3 wire jumpers male-male.

1.2 Hardware configuration
UART
SW2 UART
Pins Rx_1 e x| Tx_1
_ _
irq .
tx_interrupt}-)
rx_interrupt}-
tx_enf
[Hreset
isr_SW2 5600 bps
Configure 'cy_pins’ ? X Configure ‘cy_pins’ 7 x
Name: ‘SWZ ‘ Mame: @
_/"Pins | Mapping | Reset | Buit-in ab " Pins | Mapping | Reset | Buitin 4b
Number of pins: |1 ‘|>‘ R+ 1] Number of pins: |1 [x B+ +|% ¥
WAlpins] General Output (Al pins] General | Input | Output
B SEE nmm .;:::t - ml @ swasl Type Drive mode ritiel hive stae
m O Anslog Resiivepulup ~| Hihill v
e EA Digital input [} Min. supply voltage:
Intenupt Faling edge V] /] Dedcated internuy O HW comection
Sync mode: Transparent v [Digital output [Hot swep
[4 Input bufer enabled f
Os
[] Extemal tesminal
Configure 'UART' ? X
Name
_/ Configure | Advanced = Buik-in 4
Mode
® Full UART [TX + RX) O RXony
O Half duplex O TXory
Bits per second: 9600 o
Data bits: 8 ~
Parity type: None ~
(] AP conirolenabled [] - | v
Stop bits: 1 b . = n n
Flow contit | None v [] n n Iv|

21

I.3 Software configuration

1: #include<project.h>

CY_ISR(SW2_Handler)

4394
51 SWz_ClearInterrupt();
61 UART PutString("azul !");

71y

9¢ int maini)
1049 ¢
11} CyGlobalIntEnable;

131 isr SW2 StartEx(SWZ_Handler):

1 ’ UART_Start():
17 ; for(;;)
. {
20})
219-)
1.4 Hardware connections:

1. Connect PO_0 (Tx of PSOC) pin to Rx pin of the USB-UART cable adapter.
2. Connect VSSD pin of PSOC to GND pin of the USB-UART cable adapter.

1.5 Installation of a Serial Terminal

You will need to install RealTerm (a serial terminal) from the link
https://sourceforge.net/projects/realterm/files/

1.6 Configuration of RealTerm and test
1. Go to Port
2. Set the Baud to 9600
3. Set and open the appropriate COM port
W RealTerm: Serial Capture Program 20.0.70 - 0 X

Display Port | Captse | Pins Send | EchoPort | 12C | 12C-2 | 12CMisc | Misc m Clear| Freeze i
: Status

Blaud |9600 jEmt 10 j Open Spy W Change |V Disconnect
Softwate Flow Corntrol RD 2)
Parity Data Btz Stop Bits ™ Receive Xon Char |17 ™03
* MNone * 8 bits * 1hbit 2 bits CTS (8]
T Efn 7 bits T Tranemit off Char: (19 oCo (1)
et Bbis| | @ None (RTS/TS DSA [E)
S Skits || " DTR/DSR (" AS485s y Ring (3]
= BREAK

Error
Char Count:12 CPE:0 Port: 10 9600 BM1 None
I.8 Exercisel

When a message is sent a LED must light in the board during 1s.

22

PART II Lighting LED via UART (Electronics of Things application example)

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for Controlling a
LED on PC. The LED must light by sending '1' to the PSoC via UART and turn off by sending '0'.
The PSoC must send back the state of the LED to the PC.

II.1 Hardware configuration
_UART
UART

@ LED Rx_1 fmo—{rx tx}——foo] Tx_1

tx_interrupt|- |

rx_interrupt RX_int

tx_en|-]

9600 bps
Configure cy_pins’ ? X
Name: LED
/"Pins | Mapping | Reset | Buil-in b
Numberofpinsi [1 || % B8 ¢ |5 |
(441 pins] General | Inpur | Output |
= IESH Type Drive mode Initial drive stale:
[Analog Stiong diive v Low (0) ~
[J Digital input o Min. supply voltage:
HW connectio
[Digital output [Hot swap
Configure ‘st ? * [Hw connection
-] [Output enable
" Basic | Bultin A y w)
_ [] Estemal terminal
InterruptType | RISNG EDGE ~ | ft9 -

* FFFREFFIEREPEIOFRERERRREEE

22

=
e
3 e
s
=

TEREL

23

I1.2

J o (0 b

0 o

0

[,
[m]

Software configuration

#include<project.h>
char data;

CY_ISR(isSrRX)
{
data = UART GetChar():
}

int main()

{

CyGlobalIntEnable;
UART Start():
RZ int_ StartEx(isrRX):

fori:;:)

if (data == '1')
{
LED Write(1):
UART_PutString(" The LED is ON "):

data = 0;
}

if (data == '0")

{
LED Write(0);
UART_Put3tring (" The LED is OFF "):
data = 0;

Hardware connections and test

1.
2.
3.
4.

The LED is ON

Connect PO_0 (Tx of PSOC) pin to Rx pin of the USB-UART cable adapter.
Connect PO_1 (Rx of PSOC) pin to Tx pin of the USB-UART cable adapter.
Connect VSSD pin of PSOC to GND pin of the USB-UART cable adapter.
On RealTerm go to send, write 1 and Send ASCII.

‘Display | Port | Captwe| Pins Send |EchoPort] 120 | 1202 | 12CHisc |

i

| Send Numbers| Send ASCII |

24

PARTIII Controlling LED blinking speed via UART

The purpose is to build an application using CY8CKIT-050 PSoC development kit for Controlling
the speed of LED blinking on PC.

III.1 Hardware configuration

_UART
UART
Rx_1 [ofs———{rx txf———o0] Tx_1
tx_interrupt|-
rx_interrupt RX int
reset
9600 bps
PWM
PWM
tclo

Clock_1[fn}———[>clock
12

pwm——ss| LED

[0} {reset interruptjr

8-bit (UDB)

Configure "UART"

2

Name: [UART

e (nnﬁgllre|’ Mvancedf Built4n

2|

Name: PWM

— Mode
& Full UART (TX + RX) RXonly g
™ Half duplex i TXonly
Eit second: 9600 hd
=l I J Implemertation: " Foed Function ' UDB.
Databis: |8 | Resolion: ¥ BBt 168t
PWM Mode: [One Output [~
Parity type: INana ﬂ (o O =
r Period: [255 H_ Max | Period = 21.333s
AP control enabled CUP Vaive 1 lﬂ
Stop bits: |1 j CMP Type 1: |Less -
Flow cortral: [None | Dead Band: [Disabd R =

|44

|44
R

25

III.2 Software configuration

1 #include<project.h>
char speedval;
CY_ISR(1iSrRX)
{
speedval = UART GetChar():
¥

10: int main()

allntEnable;

14 UART_Start () ;

15 RX_int_StartEx (isrRX):

16

17 UART_PutString(”™ Set the speed of the LED Blinking "):
18

19

20 for(::)

PUN_Start();
24 PUM_WritePeriod (255):
PUN_WriteCompare (200) ;
CyDelay (speedvall ;

PUM_Stop();
CyDelay (speedval) ;

II1.3 Test
Set the desired speed of the LED blinking (from O to 255) and click Send Numbers

Set the speed of the LED Blinking

.Displayl Port I Capture | Pins Send IEcho F'oltl 12C I 12

[
||25B ~l|send ﬂumberd

1114 Exercise2

Set the blinking Speed and the Brightness of a LED by Electronics of Things

26

LAB4
Data Logger for Analog Sensor Data

PART1 Built-in Potentiometer

I.1 Introduction
I.1.1 Overview

The purpose is to build an application using CY8CKIT-050 PSoC development kit for displaying the
built-in Potentiometer values. The values must be displayed on a Terminal Emulator and LCD

I.1.2 Required Instrumentation

- CY8CKIT-050 is a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-LP035 chip.
- 2x16 LCD Character Display.

- UART-USB cable or RS232-USB cable

- 2 wire jumpers male-male.

1.2 Hardware configuration
I.2.1 Components Configuration

We need the following components: Analog Pin, SAR ADC, UART and Character LCD.

LCD UART
Character LCD UART
Rx_1 [w——rx tx oo TX_1
tx_interrupt=
ADC rx_interrupt{+
ADC_SAR tx_en}:]
. [Hreset
Pin_ 1 fes}— + SAR
- 9600 bps
vref_out
eoc|t]
12-bit
Name: [UART Name: [ADC
" Configure | _Advanced | Buitn | ar /" Configure | Buit-n 4k
" Mods Modes Sample mode
= Full LART (TX + RY) RXonly Resalution bits): |12 - @ Fzre
" Software trigger
™ Half duplext THorly — iag
on Conversion rate (SPS) [1pooo0 3 ¢ Handwars tigger
Btspersecond: [3600 = e Clock source
Clock frequency fcHz): [1800 ' Intemal
Databis: [3 i | ’7(‘ Exdemal
Parity type: N - r~ Input
|'_””:PI — = Input range: [Vssato Vdda (Single Ended) =l
control enal
Refersncs: [intemal Vref, bypassed =l
Stop bits: |1 j _
Voltage reference: m Volts (Vdda/2)
Flow contral: INnna j
™ Enable EOS output

Datashest oK I “pmly | Cancel | Datasheet | oK | Apply Cancel

27

I1.2.2 Pins Assignment

. startPage | *TopDesign.cysch | main.c /" Design0L.cydwr | v d4bx
EEEEE / Port Pin Lock
g88 33

35558§§ 3
EICHENENENEN - | - | - IEERENENE
T s E s cesEEEEE
gfzezezifjzzzzaz

E=—ﬁ
—
CYBC5868AXI-LPO35
100-TQFP
z =2z 3 B
EFFfI:s88:2228F
ERENES 2

Mg
@
w
“

. Pins | W\ Andog | (D Clocks |- 2% Interrupts | g DMA | % System |- &) Drectives |- (] Flash Security | E2 EEFROM

I.2.3 System Configuration

The power supply voltages should be set to 3.3 V
The Heap Size has to be set to 0x1000 bytes

Design01.cydwr |

~dapx

b
im& iw l%

Option

Configuration

Value

Device ConfigurationMode

Compressed -

Enable Error Correcting Code (ECC)

Store Configuration Datain ECC Memory

Instruction Cache Enabled

Enable Fast IMO During Startup

i

Unused Bonded 10

Stack Size (bytes)

Allow but warn -

0x0800

Include CMSIS Core Peripheral Library Files

12

Programming\Debugging

SWD +S5WV (serial wire debug and viewer) ¥

Temperature Range

‘The number of bytes to reserve for the Heap.

Debug Select

Enable Device Protection r
Embedded Trace (ETM) r
Use Optional XRES r

Operating Conditions

VDDA (V) 3.3

VDDD (V) 3.3

VDDIOO (V) 3.3

VDDIOL (V) 3.3

VDDIO2 (V) 3.3

VDDIO3 (V) 3.3

Variable VDDA [m]

-40C - 85/125C M

" Pins | I\ Analog | () Cloks |, #% Intemupts | g DMA), B System [E Directives | (] Flash Seaurity | E2 EEPROM

28

1.3

-]

B W R e

=1

0 oW -1

[H o
G b W N O

e
O o o -d

i

NN RN

M b W R e

| SV SR S N
0@ -1 @

b WM e O

=

]

oL W oW W W W W WM

1.4
I.4.1

RS

Software configuration

#include <project.h>
#iinclude <stdio.h>

#if defined (_ GNUC_)

asm (".global _prlntf_f].ﬂat,"].‘
flendif
int maini)

i
intlé resultl = 0;
float resl = 0:
chars resultStrl[16];
LCD_Start():
LCD_ClearDisplay():
ADC_Srtart();
ADC_SctartConverti);
UART_Start():

Tor(;;

{
ADC_IsEndConversion (ADC_WAIT_FOR_RESULT):
resultl = ADC GetResulclé();

resl = ADC_CountsTo_Volts(resultl);

CyDelay(25);
LCD_ClearDisplay();
LCD_Position(Ou,0uj;

sprintf((char *)result3trl,"s1.1£f", resl):;

LCD_PrintString(result3tri):
UART_PutChar (13] ;

ULRT PutChar (10);

UART PutString({resultStril);
CyDelay(100) ;

Hardware connections
using RS232-USB cable

232-USB cable

29

I.4.2 wusing UST-USB Adapter

1.5 Hardware Connexions and Results

- Before powering the board connect correctly the LCD.

- Connect the board from J1 to PC via USB, and the RS232-USB cable to PC.

- Identify which COM port has been assigned to the previously plugged cable, if the driver have not
been previously installed you should wait until it is automatically done by Windows.

- Connect P0O_0 (Tx of PSOC) pin to Rx pin of the USB-UART cable adapter.

- Connect VSSD pin of PSOC to GND pin of the USB-UART cable adapter.

- Launch any Serial Terminal software. Configure it as 9600 baud, 8 data bits, 1 stop bit and no
parity. Then connect to previously identified COM port.

- By turning the potentiometer you can vary the voltage from 0 to 3.3V.

- The result is displayed in the Terminal and LCD at the same time.

30

&8 RealTerm: Serial Capture Program 2.0.0.70 - O X

Display Port | Captue | Pins | Send | EchoPort| 12C | 1202 | 120Misc | Misc An| Clear| Freeze| ?|
Status

Baud [SEDU ZIED“ [10 ZI Open Spy _| Connected

RD (2)
. : . Software Flow Control =
Pgrlty Data Bits | | Stop Bits Fliienee ;<on Char: 17 XD (3]
@ None | @ Zhits | & 1bi " 2bits] ' CTS (8]
r E?gn " Thits | ~Hardware Flow Conrol I Transmit Xoff Char: |19 DCD (1)
C Mark " Bhbits | |+ None " RTS/CTS winzock ia DSR (6]
" Space | © Sbits || " DTR/DSA{ RS485ts ' Ring (9]
0 BREAK
Error
Char Count:99102 CPS:100 Port: 10 9600 8N1 None

PARTII External Potentiometer (Goniometer)

I1.1 Introduction
II.1.1 Overview

The purpose is to build an application using CYS8CKIT-050 PSoC development kit for displaying
and storing the built-in Potentiometer Positions. The position must be displayed on a Terminal
Emulator, LCD and the stored data must be plotted on MATLAB.

I1.1.2 Required Instrumentation

- CY8CKIT-050 is a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-1.P035 chip.
- 2x16 LCD Character Display.

- UART-USB cable or RS232-USB cable.

- 2 wire jumpers male-male.

- Trimmer Potentiometer.

11.2 Hardware configuration
11.2.1 Components Configuration

We need these components: Analog Pin, SAR ADC, UART and Character LCD.
We need also Off-Chip components: Potentiometer, Ground, Power.

31

Vdd
3.3V

LCD
Character LCD

UART

UART

Rx_ 1 joun——{rx tx

ADC

ADC_SAR

+

SAR

vref out

[Hreset

tx_interrupt
rx_interrupt
tx_en

oo Tx_ 1

9600 bps

Vss
12-bit
Name: [Fin_1 Name: [ADC
Pins |” Mapping |* Reset /" Buitin 40 /m}/m qp
Number of pins: |1 ‘X Bt + ‘ o= | —Modes — Sample mode ——
[Ai”vms} General | Input | Oumrﬂ Resoktion (s [12 = ¥ Free running
Type — | [~ Drive mode Initial drive state: . " Software trigger
' Anaiog [Figh mpedance andloy =] | [Low@ =] Conversion rate (SPS): [100000 =]
I Digitalinput CoCi LB ¢ Hardware trigger
s By voage: Actugl conv. rate (SPS). 102564
I¥ | W connection " Clock source ———
I Digital output IS] ot Clock frequency kHz): [1800 & Intemal
F B connection © Edemdl
™| Gupurt enzble £ o [~ Input
I™ Bidroctional — nput range: [Vssa to Vdda (Single Ended) =
¥ Bdemalteming Reference: [Intemal Vief, bypassed |
EI—E 1] Votage reference: [16500 =] Vols (Vddar2)
™ Enable EOS output
Datashest OK I Apply Cancel Datasheet | 0K I Apply Cancel
Configure 'CharLCD" llll
Name: [LCD
e Generﬂl)’ Built-in q bk
[~ Parameters r—Custom Character Edtor ——————
LCD Custom Character Set
 Nons i
£ Vertical Bargraph EI IEI
" Horizontal Bargraph
@ User Defined EI IEI
ol Include ASCII to Number EI |I|
Conversion Routines Custom 0
Datasheet | 0K I Al | Cancel |

32

I1.2.2 Pins Assignment

PIEICICIE]

fggze
R
g9 9 493
©3838% 3 :
aaaasmﬂ“mmﬁmaslwpm
¢ LEEFFFEEEEEEzjgEfEIEiEfE‘:
- VDDIOO
Pz
PO
vl
o
vl
=40
-
s
s
e
== -
I Ve
CY8C5868AXI-LPO35 -
100-TQFP -
e
"
"
- .
=m -
= s
z ey sy
R #i
2 | P Ll
5 | P P38
8
H
: : :

} pins [\ Andlog [(5) Clodks | 3% Interrupts

I1.2.3 System Configuration

7 DMA |5 System | %] Directives |] Fiash Security | E2 EEPROM

The power supply voltages should be set to 3.3 V

The Head Size has to be set to 0x1000 bytes

Name 13 Fort Pin Lock

[] wzoc-Bypasst

<< T

:3

~dapx

Option

Configuration

Value

-~ Device ConfigurationMode

Compressed

Enable Error Correcting Code (ECC)

Store Configuration Data in ECC Memory

Instruction Cache Enabled

Enable Fast IMO During Startup

q@|=|T

Unused Bonded 10

- Stack Size (bytes)

Allow but warn

0x0800

Include CMSIS Core Peripheral Library Files

12

Programming\Debugging

Debug Select

SWD +SWV (serial wire debug and viewer)

Enable Device Protection

=

Embedded Trace (ETM)

=

Use Optional XRES

=

OperatingConditions

VDDA (V)

VDDD (V)

VDDIOO (V)

VDDIOL (V)

VDDIO2 (V)

VDDIO3 (V)

Variable VDDA

Temperature Range

‘The number of bytes to reserve for the Heap.

-40C - 85/125C

" Pns | IV\ Analog | (D) Clodks |, #% Intemupts | g OMA), B system [Z Grectives || (] Flash Seaurity | E2 EEPROM

sl

33

I1.3 Software configuration

17 #include <project.h>

2. #include <stdio.h>

3 #if defined { GNUC)

4 asm (".global printf float"):

Silffendif

6

71 int maini()

EESRY

=] intlé resultl = 0;

10 float resl = 0;

11 chars resultStri[16]»

23 LCD_Starti):

13 LCD_LoadCustomFonts (LCD_customFonts)

14 LCD_ClearDisplay():

15 ADC_Starci):

16 ADC_StartConvert();

17 UART 3tarti):

19 for(;;
20 1
21 ADC_IsEndConversion{ADC WAIT FOR_RESULT) ;
22 resultl = ADC GetResultlé();
23 resl = ADC_CountsTo WVolts(resultl):
24 resl = resl * 220 / 3.3;
25 CyDelay(25):
26 LCD ClearDisplay():
27 LCD_Position(Ou,0u);

sprintf|(char *)resultitrl,”s.1f",resl);
LCD_PrintString(resultitrl)

LCD Position(0Ou, 5u):

LCD PutChar (LCD CUSTOM 0) ;
UART PutString(result3cri):;
UART_FutChar (13) ;
UART_PutChar (10)
CyDelay(100) ;

Hardware connections

I1.5 Results

- Before powering the board connect correctly the LCD.

- Connect the board from J1 to PC via USB, and the RS232-USB cable to PC.

- Identify which COM port has been assigned to the previously plugged cable, if the driver have not
been previously installed you should wait until it is automatically done by Windows.

- Connect the two wire jumpers in order to link PO[0] to TX and PO[1] to RX.

- Launch Realterm software. Configure it as 9600 baud, 8 data bits, 1 stop bit and no parity. Open
COM port. Go to Capture tab, Change file destination, Click on "Start".

- By turning the potentiometer you can vary the position from 0 to 220 °.

- The result is displayed in the Terminal and LCD at the same time.

- When you finish the measurement, click on "Stop Capture" then the log file is ready as txt in the
destination folder.

2w RealTerm: Serial Capture Program 2.0.0.70 - O X

Display | Poit {Capluie | Pins | Send | EchoPart| 126 | 1202 | 12CMisc | Misc An| Clear| Freeze| ?|
LCaphure End After Diagnostic Files Status
Start: Overwiite Start: Append " Bytes (000000 - [Log [hex _ | Disconnect
File : | | | " Sees [~ Trace| hex _IRXD (2)
r |E.\U sershmulifD esktophcapture. tat j | e o XD [3)
Clear | Dump
.) CTS(8)
[~ Capture as Hex TimeStamp—— Delimiter DCD (1)
f+ MNone O Matlab (+ comma File
[Unix 7 YMDHS | - J DSR (B)
" UnisHex I space realtermlog Ring (9)
BREAK
Errar
You can use ActiveX automation to control me! Char Count:50748 CPS:90 Port: 10 9600 BN1 None

11.6 Data Plot

- Use any online free graph maker (ex: https:/plot.ly/create/)
- Open the previously created log file
- Copy the data and past in a column (or click import data on the interface).

35

https://plot.ly/create/

Collapse Al
ihl

¥ Graph
Chart Type

| Create i Scatter plot o
Filter
Group

Ageregate

» Style

Analysis

JSON

111 Exercise

62.9
625
62.9
629
628
62.9
63.0
63.0

Potentiometer Positions (° in degrees)

140

120

e

10

Instead of external potentiometer, use internal one.

40

sampled time

esstE, uessnssessssnsssnsns

ik

36

LAB5
State Machine

1 Introduction
1.1 Overview

The purpose is to build an application using CY8CKIT-050 PSoC development kit for creating a
manual LED chase using a state machine. Two buttons have to be assigned for controlling the
direction of the LED chase.

1.2 Required Instrumentation

- CY8CKIT-050 is a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-LP035 chip.
- 4 LEDs.
- 4 wire jumpers male-male.

2 Library Creation
- Go to File-new-project-library project

Select project type
Choose the type of project - design, library, or workspace

Deesign project
" Target hardware

€ Target device
& Library project

" Workspace

Create Project - Library

Select Library Project Processors
Select the processors to build this Library project for.

[] ppaost
[Cortextvio
[CortextOp

[] Cortextvid
[] Cortex7

- Name the project: StateMachineLib

Create Project - Library

Create Project
Choose a name and location for pour design

Create new workspace
‘Workspace name: .Wulkspaceﬂ
Location: CAUsers\mult\Documents\PSaC Creator

Progect name: IS?ale—MachleL\bl

Go to Workspace explorer-Components tab

37

Mifork e Explorer 23X

P

[

a3unos

al

w00 |

snsay

- Right click on Project “StateMachinelib”, add component item, UDB document

Add Component [tem ? x
= Symbol G
©| Empty Symbol Creates a blank symbol.
©| Symbol Wizard Creates a symbal using a wizard,
= Implementation
|#] Schematic Crestes a blank schematic,
|2 Schematic Macro Creates a blank Schematic Macro

[Target generic device Component name: Hale_man:hine

F amily PSoC 5LP v Itern name: state_machine. cyudb

Configuration: Both [Debug/Release]

Device: Destination: StateMachielib

==

- Drag and drop SM component (4 times).

State_0

<unknown=
1'b0

.

T Srate 1
State_1

<unknown=>
1'b1

—

=TT
State_2

=unknown=>
2'b10

—

State 3

<unknown=
2'b11

S —

- Wire a connection from the bottom of each component to the top of the next one.

<unknown=
1'b0

Configure Transition
BExpression: RIGHT

Name Expression

<unknown=>
1'b1

¥* O Enter name Enter expressio

<unknown=
2'h10

<unknown>
2'b11

- Wire a connection from the top of each component to the top of the next one.

State_U

<unknown>
1'b0

State_1

Configure Transition

BExpression: LEFT

<unknown>
b1

Name Expression

* 0 Entername Enter expressiol

. LEFT

State_2

<unknown=>
2'p10

e
<unknown=
2'b11

- Double click on the components for variable assignments and to set the first component as start
state.

-

[State_0

StateMachine_1
1'b0

Configure State 'State_0' in Machine 'StateMachine_1" 2=

State settings v | start state

LE Name: State 0 Machine name: | StateMachine_1 |
T
Encadrs: Reetcardtion: [110 |

Wariable assignments: lUsed to define variables intemal to a state machine that are updated using the given expression when the

State_1 LED1=0 stateisentersd.
StateMachine_1 LED2=1 Qutbound transitions: Define the priority order of transitions out of this state. If more than one outbound transition expression is
' LED3=0 true, then the higher priorty transition will be prefemed

LED4=0
Wariable assignmerts: ¥ Display on sheet. Outbound transition priority order:
LERT Name Expression - Transition Expr. State
i LED1 1 RIGHT State_1
LED2 0 LEFT State_3
Le03 U
L LED1=0
- LED4 0
StateMachine_1 LED2=0 - — e — =
2610 LED3=1 g ntar avnraceine
LED4=0 -:,'nl x tl ;l tl -

OK I Cancel

LED1=0

i LED2=0
Slatel';'!gr]::nne 1 LED3=0
LED4=1

- Set a Name to each the input. Set a Name and Expression to each output.

x ||Properties < 4
IR ||

Inputs

B~ dock

=~ RIGHT

=- LEFT

Name

Qutputs

LED1_out LED1
LED2_out LED2
LED3_out LED3
LED4_out LED4

Name

3 Hardware Configuration
3.1 Project Creation

- Close the current PSOC Creator project window.
- Open a new PSOC Creator window then create a new project.

Create Project - CYBC5868AX -LP03S

Create Project
Choose a name and location for your design.

Workspace: Create new workspace

Workspace name; IWUrk.space1

Location: | C:AUsershmulti\Documents\PSoC Creator
Project name: | STATE_MACHINE|

- On Workspace Explorer under source tab right click on project “STATE_MACHINE” choose
Dependencies then click on New Entry.
- Localize your library previously created on a .cylib folder then add it.

Dependencies ? X
Projects STATE_MACHINE ¥

System Dependencies

Project Components Code

& &
CyComponentLibraryUpdates %G| %]
CyComponentlLibrary %G| %]
CyPrimitives M %)
User Dependencies X |4+
Project Compaonents Code

[]
Cy&nnotationLibrary %] O

- Go to Component Catalog, under Default tab drag and drop to your schematic the state_machine

component already created.

Search for...

Cypress .~ Default |” Of 4 #
[=Hed Components
i..[¢] state_machine [v0.0]

[(squauodmo: £0z) bajejED quauodmca

41

3.2 Components Configuration

- We need the following components: state_machine, Clock, 2 Debouncers, 2 Digital Input Pins and 4
Digital Output Pins.

Clock_1[m}

12 MHz

Debouncer 1
Debouncer state_machine 1
tate_machin
al= state_machine
pos|c Dclock LED_ 1}« Pin_1
neg RIGHT LED 2{——| Pin 2
eitherf- —LEFT LED_3}|——« Pin_3
>clock LED_4|——«| Pin_4
Debouncer_2
Debouncer
Pin_6 ss—-—d qf=!
POS|-]
neg
either}-!
.............. >C|.Dck
i E
Mame: IPin_5
Pins |* Mapping |* Reset [* Built-in 4Pk
Numberofpins:ll |>(H o+ + | 4 = |
[}.f‘ll pins] General]’ Input |’ Output]
L[EnEE rType — | [Divemede — | Initial drive state:
[T Analog IResisti\re pull up j IHiQh) j
v Digital input Vig Min. supply voltage:
¥ HW connection
r Digital output ™ Het swap
[¥ | HW cornection
7| Output enzble Ez Pin
™ Bidirectional
™ EBxtemal terminal

42

Mame / Port Pin Lock

4 Exercise

Instead of built-in LEDs use externals connected on breadboard.

43

Mini-Project

Remotely Controled DC Motor (PSOC5 Design)

1 Overview

The mini-project consists of designing and implementing a remotely controled DC motor using
CY8CKIT-050 PSoC development kit and some discret components. An implemented GUI (Graphical
User Interface) on PC is used to for sending commands via RF modules to PSOC in order to control
the speed and the direction of the DC motor. Two buttons and a potentiometer have the same
purpose. The LCD is used as HMI (Human-Machine Interface) to display the purpose of each button
and the speed of the motor (in RPM).

2 Required Instrumentation

- CY8CKIT-050 1s a PSoC 5LP development kit from CYPRESS based on CY8C5868-AXI-L.P035 chip.

- DC motor
- Motor Driver

- 2x16 LCD Character Display.
- RF Emitter and RF Receiver modules
- USB-UART adapter

- Wrres

< ADC

H-Bridge —

: - DC Motor
Potentiometer A/D converter Motor Driver
SW1 ISR1
o —_— LCD |
SW2 — ISR2
[Aterrupt Service Display
Buttons ‘
: _____
' |RF RF T IMATLAB
| Receiver Emitter | 1 GUI
|
: |
S | PC

Remotely Controled DC Motor (PSOC5 Design)

44

