
IMPLEMENTATION OF A RECONFIGURABLE CONTROLLER FOR AN AC DRIVE CONTROL

Mária Imecs1, P. Bikfalvi2, S. Nedevschi1, J. Vásárhelyi2

1 Technical University of Cluj, Romania, 2 University of Miskolc, Hungary

INTRODUCTION

There are several different approaches to define the
reconfigurable systems. “Reconfigurable Computing
technology is the ability to modify a computer system’s
hardware architecture in real time” as mentioned by
VCC (12). Reconfigurable computing is also often
called “Custom” or “Adaptive”. There is demonstrated
in Hauck (2), Mangione-Smith (6), Mangione-Smith
and Hutchings (7), Villasenor and Mangione-Smith
(13), and Vuillemin et all. (14) the significant potential
for the acceleration of computing for several, general-
purpose applications.
Reconfigurable systems are those computing platforms
whose architecture is modified by the software to suit
the application at hand. This means that within the
application program a software routine exists, that
downloads a digital design directly into the
reconfigurable space of the system. Most of
Reconfigurable Computing Systems are plug-in boards
made for standard computers and they act as a Co-
processor attached to the main micro-processing unit.
The computing research community defined the
reconfigurable computing as one of very popular
subjects.
Maciejowski (5) gave another definition to the
reconfigurable systems. According to his opinion, the
reconfigurable (control) systems are important when a
major failure occurs. In the event of a failure at least
three inter-related questions arise

1. Is it possible to control the plant to continue its
evolution in safety conditions?

2. Is it possible to control the plant with reducing
the original specification parameters?

3. Is it possible to cancel the process without
incurring a disaster?

These questions occur primarily in safety critical
systems/plants. Reconfiguration is also required if no
failure occurs, but the changes in system parameter
demand much more effective control law and no
adaptive control facilities are implemented.
This paper combines both approaches of reconfiguration
trying to give a solution on how to implement a
reconfigurable embedded controller for the vector
control of an AC drive. The following sections present
the background of re-configuration, what make suitable
the Triscend’s Configurable System on Chip to be used
in embedded control, then some particularities of vector
control will be presented and finally implementation of
control blocks will be outlined.

BACKGROUND

Field Programmable Gate Arrays (FPGAs) were
invented as an alternative to mask-programmable gate
arrays. Mainly, these devices are used for implementing
of high-volume digital applications, for which no
standard off-the-shelf solution exists.
Most of FPGA chips can be re-configured through the
configuration memory space. The configuration bits are
loaded from an external storage device during the
configuration process. The configuration procedure can
be part of the power-on process of the FPGA or can be
started externally by an external device (configuration
manager) at any time during the system evolution.
The FPGA and its several configurations stored in an
external memory could be used as multifunctional
hardware, with the on-chip changing functionality in
reaction to the current demands. Most of applications on
reconfigurable hardware focus on the following areas:
custom computers, reconfigurable coprocessor boards
and reconfigurable processors.
All above-mentioned boards need an external micro-
computing element to control and complete the re-
configuration. This seems to be their main disadvantage.
Considering the mentioned disadvantage, Hauck (2, 3)
outlined a Configurable System on a Chip (CSoC)
structure that contains all the elements for configurable
applications. The possible elements of a Configurable
System on a Chip are: microprocessor core, FPGA, DSP
resources, RAM, special purpose interface logic and
field programmable analogue arrays.
In 1998 Triscend announced the first registered CSoC.
This chip was made for general purposes and contains
most of embedded system’s logic. The basic elements
included within this Configurable System on a Chip are
shown in Figure 1.
They are:
• Silicon-efficient, industry-standard processor core,

that provides the processing resources.
• On-chip memory, that is capable to store both

system code and data. A small, bootstrap ROM
supports the system boot-up and re-configuration.

• Programmable logic resources, that support custom
defined peripherals, functions and implementing of
fast algorithms.

• Test and control logic that supports the system
reconfiguration (JTAG).

• Dedicated high performance internal bus to provide
flexible connections between system modules.

Figure 1: Basic structure of the Triscend’s CSoC

The Configurable System on a Chip solution with its
flexible structure can be used to implement the desired
reconfigurable controller described by Maciejowski (5),
under the following conditions:
1. External memory is needed to store the several

configurations (Configuration Store).
2. Either software or hardware has to be capable to

start a reconfiguration on need.
3. The evolution of the system must be predictable in

order to pre-compute the possible configurations.
4. The system control states have to be quantified and

finite. This condition is due to the finite capacity of
the available external memory.

5. The existence of ’high-fidelity’ models and of very
effective approximation-identification algorithms for
multivariable systems.

Considering the application of the reconfigurable
control theory for the vector control, one has to analyse
if the CSoC corresponds to these demands.

IMPLEMENTATION ISSUES FOR THE VECTOR
CONTROL

There are known several dedicated DSP processors for
digital motor control. Some successful implementations
of vector control are referred in Beierke (1). A DSP
implementation of speed-sensor-less induction motor
drive using artificial intelligence is presented in Vas et
all. (11). Unfortunately, all these implementations and
especially their hardware structures do not correspond
to the reconfigurable system paradigm.
An example of a vector control scheme for an AC drive
is presented in Figure 2 (after Kelemen and Imecs (4)).
This paper does not intend to compare the performances
of different possible implementations. It concentrates
only on the possibility of the reconfigurable vector
control implementation issue.
For this purpose, there are taken under consideration the
FPGA chips that are already used in reconfigurable
systems and the presented CSoC chip, which is suited
for embedded control.
The paper analyses the conditions under which the
FPGA and the CSoC chips are able to implement a
vector control, pointing out possible disadvantages.
The main problem of a vector control implementation is
that of the real time computation. For this reason,
usually, DSP chips are involved. Fixed point DSP chips
are preferred for two reasons: firstly, because they cost
much less than the floating point ones, and secondly,
because in most of applications it suffices a dynamic
range of 16 bits. Of course, the dynamic range can be
increased when using a fixed-point processor by doing
software floating-point calculations. Texas Instruments
(8) related about a dedicated DSP implementation for
vector control, where the control-loop presents a
sampling period of 35 µs.

Figure 2. Example of vector control for an AC drive.

Industry
Standard

Microprocess
or Core

Internal
Memory

System, Test
and Control
Functions

Configurable System Logic

System Bus

imrd

imrq

Integrator

Ψr

z

[i s]
*

Two-Level
Current Tracking

θ-
r

sinλr

ω

ωr

Ψ-
r

Position
Controller

i-
sdλr

i-sdλr

Speed
Controller cosλr

Orientation-field
Computation

Coordinate
Transformation

[σ(λr)]

isd

isq

i-
sd

i-
sq

[i s]
*

CF

VSI

Rectifier

Current
Sensors

Induction
machine

Three-Phase
AC Quantities

TA
[D(-λr)]

System
Transformations

TS
[A] -

1

TS
[A]AF C1Imr

Lm

Flux
Controller

imr

θr

Field Oriented DC
Quantities

Two Phase AC
Quantities

The real-time computation problem is often a problem
of competition between the computational speed and the
method of how the algorithm is implemented.
The main reason why the CSoC chip was preferred
against the FPGA chips is its ability to reconfigure
itself. This ability means that there is no need for
external configuration supervisor when the need for
reconfiguration appears. A second reason was that the
CSoC chip has a very flexible internal structure.
The Triscend Starter Kit’s TE520S40 CSoC chip has the
working frequency of 40 MHz, which allows a 10 MHz
instruction rate. Considering for start the estimated
sampling period of 35 µs, the control algorithm must
have less then 350 instructions. So, for the real-time
implementation of a vector control for AC drives, there
is a need for efficient algorithms in computing of the
sine and cosine functions, of the vector transform
formulas, and of the matrix multiplication, just to only
mention some critical parts of the vector control.
One way to cope with these problems is to implement
parallel algorithms in the Configurable System Logic
(CSL) blocks of the CSoC. The architecture of the CSL
blocks is similar to that of Field Programmable Gate
Arrays and these latter already proved their usefulness
in implementing several DSP algorithms. It is preferable
also to implement parallel algorithms with short time
response, i.e. which last one or two machine cycles.
The CSoC chip structure depends directly on the
processor core that is implemented inside. Nowadays,
the worst performance for speed is obtained for the
8051 micro-controller core. However, this performance
can be improved by changing the chip to another with
different (better) core.
Some implementation aspects are also to be taken into
account. First, the time consuming parts of the control
software are analysed and then it is presented a way of
their hardware implementation in the CSL.
One critical part of the control structure refers to the
calculation of the sine and the cosine functions. These
functions can be implemented in two ways. One way is
to form a look-up table with their pre-computed values.
Another way is to calculate them at the beginning of the
initialisation phase using Taylor series expansion, and to
store the results in the on chip RAM memory in a same
form of a look-up table. Then, this table can be accessed
very fast from the CSL by using the DMA technique.
The algorithm for computing the value of)sin(α is:

IF (α>=0.0)

0013.0*)9826.0

)0544.0)2338.0*0372.0((()sin(

++
++−=

α
αααα

ELSE (1)

0013.0*)9826.0

)0544.0)2338.0*0372.0((()sin(

+−
−++=

α
αααα

where the angle α is considered in radians.
The values of the sine and the cosine functions are
calculated as an unsigned 16 bit data corresponding to
the allocation given in the Table 1.

TABLE 1. Unsigned 16 bit data representation for sine
and cosine functions

Angle
(radians)

Assigned value
(Hexadecimal)

0 0000
π/2 4000
π 8000

3π/2 C000

Another critical part in the real-time implementation is
related to the co-ordinate system transformations. The
direct transformation equations are given by:

∗

−

−−

=

c

b

a

q

d

g

g

g

g

g

g

2

1

2

1

2

1
2

3

2

3
0

2

1

2

1
1

3

2

0

 (2)

The reverse transformation equations are:

∗

−−

−=

0
1

2

3

2

1

1
2

3

2

1

101

g

g

g

g

g

g

q

d

c

b

a

 (3)

ga, gb, gc are the three phase system variables (currents
or voltages), gd, gq are the two-phase system variables
and g0 is the zero component of the three-phase system
reflected in the two-phase co-ordinate system. It is
given by the equation:

30
cba ggg

g
++

= (4)

One can obtain the further co-ordinate transformations
for the transformed quantities with the relations:

∗

−

=

q

d

sq

sd

g

g

g

g

)cos()sin(

)sin()cos(

λλ
λλ

 (5)

� represents the instantaneous value of the phase shift
between the considered and the real reference frames.
All these equations can be implemented more or less
easily in the CSL space of the CSoC.

RECONFIGURATION ASPECTS

In the present case study, the process to be controlled is
a voltage-source inverter fed AC motor drive. The
CSoC is the hardware support for the controller. The
necessity of reconfiguration is based upon the practical
observation that the performance of a vector control
drive depends on the flux identification method, on the
load characteristics (dynamic and/or static) and on the
range of the speed. Concerning these aspects, there have
been developed several versions for vector control. One
may find these control schemes in the corresponding
literature (Vas (10), Kelemen and Imecs (4)).

The rotor-flux oriented vector control is apparently
simpler to implement and related by Vas (9) as widely
used. One drawback of this method is the low efficiency
at lower ranges of speed. Another problem is related to
the need for adaptation of the control algorithm to the
rotor resistance change during operation due to the
heating. For lower speed range, the stator-flux oriented
vector control is preferred. The above-mentioned
control schemes have different structures, but in
principle, each of them can be implemented in a CSoC.
This paper intends to introduce in one more idea. This
consists of the application of the reconfigurable
controller concept for implementing different control
structures for the AC drives. In fact, the CSoC that
implements at one moment one controller structure, can
be used not only to implement, but also to switch to
another control scheme. In this way, the disadvantage of
using adaptive control can be avoided.
Each control structure can be seen as a distinct state of a
state machine. In fact, each state represents a different
hardware configuration of the CSoC.
Figure 3 presents a possible implementation for two
controller structures into two different configuration
states (S1, S2) of the CSoC. The transition from one
state to the other can be determined by the state
variables of the controlled system. If a transition
condition occurs (i.e. the motor speed reference transits
a limit value) the need for reconfiguration is fulfilled.
The controller will start automatically a reconfiguration
process and will change its configuration.
As example, the state machine switches between two
control schemes. These could be: the rotor-flux oriented
vector control allocated to state 1 and the stator-flux
oriented vector control allocated to state 2. In principle,
the state machine can be extended to implement other
states, respectively other control schemes, as well.

Figure 3. The state transition graph of the
reconfigurable controller

The first attempt of realisation showed that the
implementations of the two vector control strategies are
hard resource consuming. Therefore this problem needs
further research. As example, the matrix multiplication
of general form presented in Equation (3) consumes
33% of the CSL resources from the TE520S40 Triscend
CSoC. Figure 4 presents this result.
Figure 5 presents the situation, when supplementary to
the matrix multiplication, the co-ordinate transformation
of Equation (5) and the sine/cosine functions are
included. It shows a consumption of 75% of resources.

CONCLUSIONS

The paper presented a possible implementation of the
vector control for an AC drive using the Triscend CSoC.
The idea of possible reconfiguration for control was also
introduced in a form of a suitable configured and
implemented state machine that can realise this task.
Sharing of the available resources represents a problem
of further investigation.
The changes in the control law by reconfiguration may
improve the performance of the controlled system and
can avoid the more sophisticated adaptive control.
Further research work needs to investigate the effects of
the reconfiguration transition process, too. The main
problem that seems to appear consists of how can be
managed the drive during the reconfiguration process.
Even if this event needs very little time, the problem of
loosing the control may appear.

ACKNOWLEDGEMENT

The authors would like to thank Chris Balough and
Triscend Inc. for their support and help. Triscend
supported our work with the FastChip Starterkit and the
FastChip 1999 software.

REFERENCES

1. Beierke, S., 1994, EPE Symp. on El. Drive Design
and Appl., 361-365.

2. Hauck, S., 1998, Proc. of the IEEE, 86, 4, 615-639
3. Hauck, S., 1998, 5th Canadian Conf. on FPD
4. Kelemen, A., Imecs M., 1991, "Vector control of

AC Drives", OMIKK Publisher, Budapest, HU
5. Maciejowski, J.M., 1997, ECC97, 107-130.
6. Mangione-Smith, V.B., Hutchings, L., 1997,

Workshop on Reconfigurable Architectures, 81-96
7. Mangione-Smith, V.B., Hutchings, L., Andrews,

D., DeHon, A., Ebeling, C., Hartenstein, R.,
Mencer, O., Morris, J., Palem, K., Prasanna, V.K.,
Spaanenburg, H.A.E., 1997, Computer, 30, 12,
38-43

8. Texas Instruments, 1999, TMS320C24X DSP Sol.
CD-ROM

9. Vas, P., 1990, "Vector Control of AC Machines",
Oxford University Press, UK

10. Vas, P., 1996, "Electrical Machines and Drives. A
Space Theory Approach", Oxford University, UK

11. Vas, P., Stronach, A.F., Rashed, M., Neuroth, M.,
1999, Proc. Intelligent Motion, 113-117

12. VCC Inc., 1997, http://www.vcc.com
13. Villasenor, J., Mangione-Smith, V.H., 1997,

Scientific American, 66-71
14. Vuillemin, J., Bertin, P., Roncin, D., Shand, M.,

Touati, H., Boucard, P., 1996, IEEE Trans. on
VLSI Systems, 4, 1, 56-69

STATE 1
dx/dt=A1x+B1u
y=C1x

Power-on
init

STATE 2
dx/dt=A2x+B2u
y=C2x

Figure 4. Resources used when implementing matrix multiplication

Figure 5. Resources used when implementing matrix multiplication, sine/cosine functions, coordinate transformation

	CONTENTS
	Author Index
	Corporate Index
	Session Index

