

physical storage New York physical storage London An Example of Data Replication

JNO	JNAME	BUDGET	LOCATION
1	Instrumentation	1 500 000	London
2	CAD/CAM	1 650 000	New York
3	Development	2 000 000	Cleveland
4	Maintenance	950 000	Paris

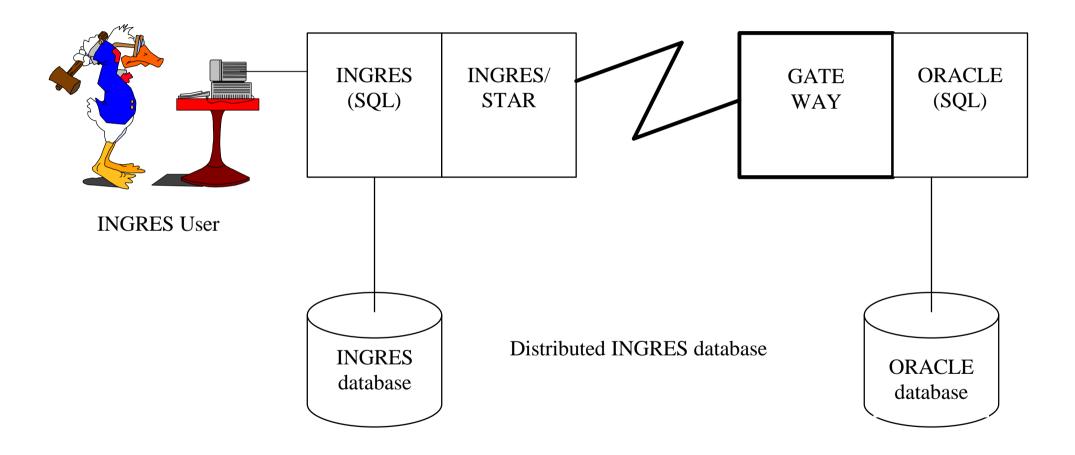
User perception

New York fragment

London fragment

JNO	JNAME	BUDGET	LOCATION
2	CAD/CAM	1 650 000	New York
3	Development	2 000 000	Cleveland

Replica of London fragment


JNO	JNAME	BUDGET	LOCATI
1	Instrumentation	1 500 000	London
4	Maintenance	950 000	Paris

JNOJNAMEBUDGETLOCATI1Instrumentation1 500 000London4Maintenance950 000Paris

Replica of New York fragment

JNO	JNAME	BUDGET	LOCATIO
2	CAD/CAM	1 650 000	New York
3	Development	2 000 000	Cleveland

DBMS independence – II

History of distributed DB

• Concepts behind distributed DBMS were pioneered during the late 1970's in the IBM research project R*Star.

IBM's subsequent delivery of distributed DBMS products has been part of a 10 year evolving technology known as DRDA (distributed relational data architecture).

- DRDA at this time is largely an approach for integrating data sets across the different versions of DB2 and was the breakthrough of distributed DB technology.
- The first well-publicised distributed DBMS product was INGRES/Star, announced in 1987. Oracle also announced distributed DBMS capabilities in 1987, but largely as a marketing ploy. The first Oracle product to reasonably support distributed database processing is Oracle 7, which has been in the market since 1993.

 \Rightarrow Constantly growing interests and use of distributed DBMS.

1st decade: Breakthrough

- Fail of database machines (Boral and DeWitt 1983) DB machines : An idea whose time has passed.
- From the 90th : Technological chances.

Mainframe based servers achieved lesser performances than developed parallel machines (mainly by Teradata and Tandem). Shared nothing machine by Teradata built since 1978!

• Domination of the relational model in the 90th.

From the appearance in the marketplace in 1983 to the domination. Relational queries are ideally suited to parallel execution.

⇒ Breakthrough of parallel database technology. Not so much older than its distributed brother.

2nd decade: Enthusiasm Highly parallel database systems

- MPP machines Intel, NCP, nCube machines up-to 100 processors based on conventional processors, memories and disks at low price.
- At least five running industrial products (Teradata, Tandem, Super Database, Persist by IBM, NCR).
- Success in OLTP against a very large database (near linear speed-up and scale-up in the Teradata and Tandem system).
- \Rightarrow Success and viability of highly parallel machines.

3rd decade: Problems

• Fail of Parallel Machines

Too many parallel machine provider and fail of many machines (e.g. KSR, Transputers). Single processing components too less powerful.

• Parallel programming problems

Difficulty of programming a parallel machines.

 \rightarrow Shared virtual memories.

 \rightarrow Performance problems.

Lack of parallel debuggers and monitoring tools.

• Performance problems

Missing speed-up and scale-up for massive parallel machines. No efficient techniques for mixing complex batch and OLTP processing(multi-user databases).

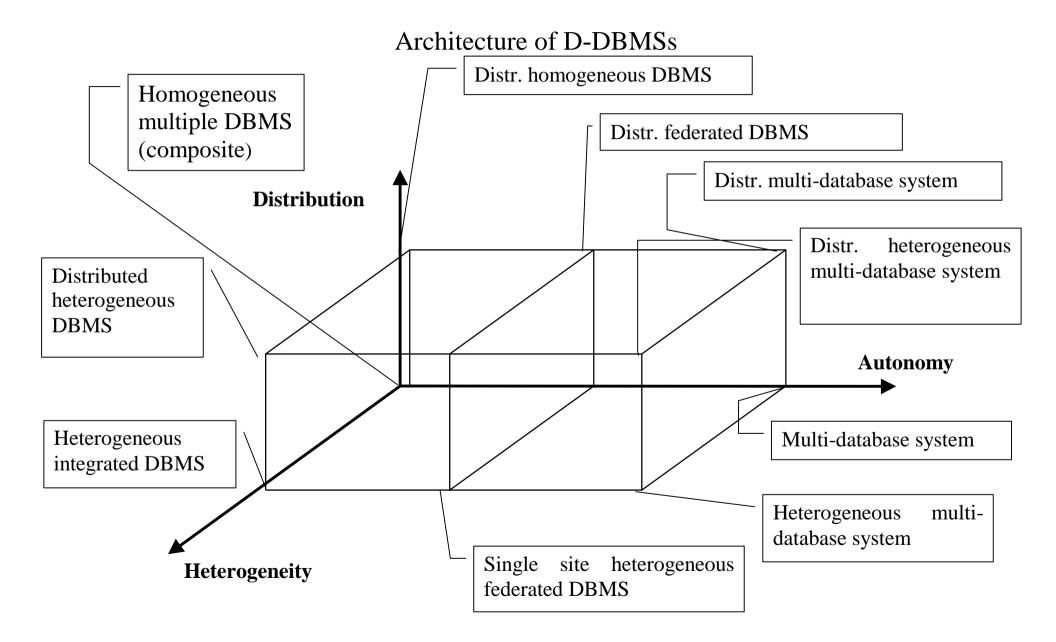
 \Rightarrow Break down of enthusiasm.

4th decade: Consolidation

• Technology chances:

New (virtual) parallel machines like cluster of workstations, PC's. Pile of PC's let reconsider the MPP aim.

• At least ten running industrial products (see before). Dominant in market-niches (e.g. great database server ALTAVISTA, OLTP processing insurance security, military ...), immense financial transactions.


• Programming advances:

PVM, MPI, Linda and friends, RMI's.

• Application push: Data warehouse etc.

 \Rightarrow Consolidation and dominance in special applications.

Architecture of PDDBMS

