
Parallel Query Processing

Contents

Concepts and goals of parallel query processing

Multiprocessor architectures

Parallel relational operators

Parallel query processing

Parallel database systems
Brief list of existing machines and prototype systems

Concepts and goals

Main problem: I/O bottleneck

transferring the data from disk to main memory

Solution

increase the I/O bandwidth through parallelism

CPU

DISK

CPU

DISK

CPU

DISK

CPU

DISK

Ideal advantages of parallel systems

High performance

short response time or total time

good load balancing among processors

High availability

handling failures of hardware elements

redundancy and consistency

Extensibility

more processing and storage power can be added

Speedup and scaleup

Speedup Scaleup

twice as much hardware results in
half elapsed time

twice as much hardware can
perform twice as large a task in the
same elapsed time

Bottlenecks

Start-up many processors ⇒ long start-up time

Interference more processors ⇒ more communications

Data skew it makes data distribution difficult

Multiprocessor architectures

Shared-memory architectures

Shared-disk architectures

Shared-nothing architectures

Hybrid architectures

Shared-memory architectures

More processors - one memory

Proc. 1

Memory

Interconnection Network

Proc. 2 Proc. n...

Characteristics

any CPU has access to any memory module or
disk unit

Advantages Disadvantages
simplicity cost
load balancing little extensibility

low availability

Shared-disk architectures

More processors and memory units

Proc. 1

MemoryMemoryMemory

Interconnection Network

Proc. 2 Proc. n...

Characteristics

any CPU has access to any disk unit but
exclusive access to its main memory

Advantages Disadvantages
cost higher complexity
extensibility potential performance
load balancing problems
availability
easy migration

Shared-nothing architectures

Exclusive access to memory and disk

Proc. 1

MemoryMemoryMemory

Interconnection Network

Proc. 2 Proc. n...

Characteristics

any CPU has only exclusive access to its main
memory and disk

Advantages Disadvantages
cost higher complexity
extensibility load balancing
availability

Hybrid architectures

Goals:

combine the advantages of different
architectures

use different processing elements in the system

The system is basically a shared-nothing
architecture where each node can be a
multicomputer of any architecture.

Proc

Proc

Proc

Proc

Memory

Interconnection Network

...

Proc

Proc

Proc

Proc

Memory

Parallel relational operators

Data partitioning

Parallelisation of relational operators

Join

Parallelisation of join

Pipelined hash-join

Data partitioning

Partitioning = distributing the tuples of a relation over
several disks

Goal: allowing parallel databases to exploit the I/O
bandwidth of multiple disks by reading and writing
them in parallel

Relations are declustered (partitioned horizontally) based on
a function:

round-robin

range index

hash function

Round-robin partitioning

It maps the i’th tuple to disk i mod n

...
disk 1 disk 2 disk m

Processors and memories with interconnection network

1 2 ... m 1 2 ... m

...

...

Range index partitioning

It clusters tuples with similar attributes together in the same partition

...
disk 1 disk 2 disk m

Processors and memories with interconnection network

...a - c d - g w - z

Hash partitioning

It maps each tuple to a location based on a hash function. Hashing
tends to randomise data rather than cluster it.

...
disk 1 disk 2 disk m

Processors and memories with interconnection network

Advantages of the partitioning strategies

Round-robin

Sequential scan of all tuples in each query

Range index

Sequential scan of all tuples in each query

Associative search for data

Clustering data

Hash

Sequential scan of all tuples in each query

Associative search for data

Problems with data partitioning

data skew A query may work mainly on one partition because of the
actual data placement ⇒
unbalanced load on the processors

Dynamic reorganisation of relations

With a given partitioning the criteria used for data placement can
change to the extent that load balancing degrades significantly ⇒
the relation should be reorganised. This should be done

on-line

efficiently

transparently to the users and compiled queries

Parallel relational operators

Relational algebra allows parallel processing due to its
properties

set-oriented processing

simple operations

limited number of operations

simple improvements have substantial effect
(large volume of data)

relatively independent of hardware architecture

Parallel relational operators

Basic idea

use parallel data streams instead of writing new parallel operators ⇒
use existing sequential relational operators in parallel

Solution

each relational operator has a set of input ports on which input tuples
arrive and an output port to which the operator’s output stream is sent

The parallel dataflow works by partitioning and merging data streams
into these sequential ports

From sequential to parallel execution

insert into C
select *
from A, B
where A.x = B.y;

Scan A

Insert C
C0

Insert C
C1

Scan B

Join
R-Z

A0
A1 B0

A2 B1

Scan A
Scan A Scan B

Join
I-Q Join

A-H
Insert

Join

C

Scan

BA

Scan

Extending relational algebra for
parallel query processing

Relational operations
(select, project, cp, join, union, diff, inters)

Splitting of results over multiple output streams

Operands consisting of multiple input streams

Explicit allocation of processes to processors

Parallelisation of join

Splitting is consistent if

Ri Sj = ∅ if i ≠ j

RnR2R1

split

R

...

... SnS2S1

split

S

...

Pipelined hash-join

Hash-join Pipelined hash-join

Goal: produce output tuples as early
as possible

Matching

Hash-table Hash-table

Probe hash-table
for matching tuples

Build hash-table
on join attribute

Parallel query processing

=

automatic translation of a query into
an efficient execution plan

+

its parallel execution

The translation must be correct

the execution of the plan produces the expected result

The execution plan must be optimal

in that it minimises a cost function that captures resource
consumption

Parallel query processing

JOQR: Join Ordering and Query Rewrite

Parallel query processing

1. translation

of the relational algebra expression to a query tree

2. optimisation

reordering of join operations in the query tree and choose among
different join algorithms to minimise the cost of the execution

3. parallelisation

transforming the query tree to a physical operator tree and
loading the plan to the processors

4. execution

running the concurrent transactions

Translation to query tree

Relational query ⇒ (rewrite) ⇒ query tree

SELECT P.name
FROM P, R, S

WHERE S.thema LIKE ‘Computing’
AND S.class = R.class
AND R.id = P.id

Query Tree 3 5 6

VHO�6�WKHPD

SURM�3�QDPH

Optimisation

Reordering of the join operations and choosing an evaluation
algorithm for each join operation

3

6 5 FOXVWHUHG
LQGH[�VFDQ

LQGH[�VFDQ

K\EULG�KDVK
5�FODVV� �6�FODVV

VHO�6�WKHPD

LQGH[�VFDQ

VLPSOH�KDVK
3�LG� �ULJKW�LG

SURM�3�QDPH

3 5 6

VHO�6�WKHPD

SURM�3�QDPH

Parallelisation of the query

1. Extract parallelism by macro-expansion of the annotated
query tree to an operator tree

The operator tree identifies

atomic code pieces (operators)

timing constraints between the operators

2. Schedule the operator tree on the parallel machine

Goal: allocate machine resources so as to exploit the available
parallelism while respecting timing and data placement constraints.

Parallelisation of the query

V��SM�

36 5

V� VHO�6�WKHPD

SM� SURM�6�FODVV
SM� SURM�3�LG��3�QDPH
SM� SURM�5�LG
SM� SURM�3�QDPH

E���E��
EXLOG�KDVK�WDEOH

S���S��
SUREH�KDVK�WDEOH

SM�
E� S�

SM�

E� S�

SM�

Physical operator tree

Constraints on available parallelism

Precedence constraint

timing constraints between operators
e.g. hash table must be built completely before probing

Parallel constraint

piping the output of an operator to the input of another one ⇒
eliminating the need of buffering intermediate results

Data placement constraint

in shared-nothing systems the scan operations must be localised to
specific processors that can access the relation

Parallel execution control strategies

Control flow

a single control node controls all processes related to a query

it starts all processes and synchronise them

scheduling is performed by the control node

Data flow

no centralised control

processes on different nodes trigger each other with data messages

data driven execution: if enough input is available the process starts
automatically

Parallel execution control strategies

Control flow is the traditional approach

Advantages of data flow control

reduces the control messages transferred trough the network

reduces the workload of a particular node (the control node)

provides pipelining naturally

Disadvantages of data flow control

it means more asynchronous activity

more competition for a processor

higher protocol complexity

providing data allocation information to all nodes is difficult

Parallel Database Systems

Research systems and projects

Gamma Bubba Prisma/DB

HC16-186 XPRS project Volcano project

Commercial systems

Oracle Parallel Server Sybase MPP

Informix Online XPS IBM DB2 Parallel Edition

NCR Teradata DBS Tandem NonStop SQL

Gamma

University of Wisconsin
(David DeWitt)

hypercube, 32 nodes

horizontal partition

hash-based parallel algorithms for
operations

data flow query execution
(no pipelining)

hybrid hash-join

ported to an Intel iPSC/2
hypercube with 32 nodes

Bubba

MCC, Austin

never completely implemented

OLTP and DSS load

horizontal data partition over all
disks

compiled PFAD, a parallel, set-
oriented execution model

data flow query execution
(no pipelining)

operations take place
where data is

PRISMA/DB

University of Twente
(Peter M.G. Apers)

main-memory parallel
database system

shared-nothing architecture

data flow query execution
(with pipelining)

simple, grace and hybrid
hash-join

HC16-186

Trondheim, Norway

hypercube intrerconnect,
16 nodes

not a fullfledge DBMS

horizontal partition of the data
over all disks

redistribution of data

XPRS

M. Stonebraker

Shared-memory system

Based on the Postgres
next-generation DBMS

intra- and inter-operator
parallelism

high performance and availability

Volcano project

Götz Graefe

Extensible and parallel query
evaluation system

supports shared-memory, shared-
nothing and hybrid architectures

provides a rich environment for
research and education

data flow query execution

Commercial parallel database
systems (brief)

Architecture

SMP, Symmetric Multiprocessing (shared memory)

Clustered SMP

MPP, Massively Parallel Processors (shared nothing)

Oracle Parallel Server

shared-disk

parallel cache management

Sybase MPP

shared-nothing (MPP)

partitioned database

Commercial parallel database
systems (brief)

Informix Online XPS

combination of shared-memory
and shared-nothing
architecture

partitioned database

Tandem NonStop SQL

primarily designed for OLTP
transactions

shared-nothing architecture

NCR Teradata DBS

first commercial system

shared-nothing architecture

installed on systems with more
than 100 processors

IBM DB2 Parallel Edition

shared-nothing architecture

