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Topics
• Query processing in distributed databases

– Localization
– Distributed query operators
– Cost-based optimization
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Query Processing Steps
• Decomposition

– Given SQL query, generate one or more algebraic
query trees

• Localization
– Rewrite query trees, replacing relations by fragments

• Optimization
– Given cost model + one or more localized query

trees
– Produce minimum cost tree
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Decomposition
• Same as in a centralized DBMS
• Normalization (usually into relational algebra)

      Select A,C
      From R Natural Join S
      Where (R.B = 1 and S.D = 2) or (R.C > 3 and S.D = 2)

σ (R.B = 1 v R.C > 3) ∧ (S.D = 2)

R S

Conjunctive
normal
form
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• Redundancy elimination
      (S.A = 1) ∧ (S.A > 5)    ⇒   False
      (S.A < 10) ∧ (S.A < 5)  ⇒   S.A < 5

• Algebraic Rewriting
– Example: pushing conditions down

Decomposition

S ST T

σcond

σcond1 σcond2

σcond3
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Localization Steps
• Start with query tree
• Replace relations by fragments

• Push  ∪  up  &  π,σ down
• Simplify – eliminating unnecessary operations

Note:  To denote fragments in query trees

[R: cond]

 Relation that fragment belongs to   Condition its tuples satisfy
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Example 1

σE=3

  R

 σE=3

                    ∪

[R: E<10]     [R: E ≥ 10]

∪
σE=3            σE=3

[R: E<10]     [R: E ≥ 10]

σE=3

 [R: E<10]



8

Example 2

R        S
A

[R: A<5]    [R: 5 ≤ A ≤ 10]    [R: A>10] [S: A<5]    [S: A ≥ 5]

∪ ∪

A

R1 R2 R3 S1 S2
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R1      S1     R1       S2     R2       S1            R2      S2        R3      S1     R3    S2

∪

AA AA A A

∪

[R:A<5][S:A<5]   [R:5≤A≤10] [S:A≥5]   [R:A>10][S:A≥5]

AAA
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Rules for Horiz. Fragmentation
• σC1[R: C2]   ⇒   [R: C1 ∧ C2]
• [R: False]   ⇒   O
• [R: C1]     [S: C2]  ⇒  [R      S: C1 ∧ C2 ∧ R.A = S.A]

• In Example 1:
      σE=3[R2: E ≥ 10] ⇒  [R2: E=3 ∧ E ≥ 10]
                                 ⇒  [R2: False]  ⇒  O
• In Example 2:
       [R: A<5]     [S: A ≥ 5]
                ⇒  [R      S: R.A < 5 ∧ S.A ≥ 5 ∧ R.A = S.A]
                ⇒  [R      S: False] ⇒  O

A A

A

A

A
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Example 3 – Derived Fragmentation

R        S
KS’s fragmentation

is derived from
that of R.

[R: A<10]  [R: A ≥ 10]     [S: K=R.K ∧ R.A<10]  [S: K=R.K ∧ R.A≥10]

∪ ∪

K

R1 R2 S2S1
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∪

KK KK

R1 S1 R1 S2 S1
S2R2

R2

∪

K K

[R: A<10] [S: K=R.K ∧ R.A<10] [R: A ≥ 10] [S: K=R.K ∧ R.A ≥ 10]
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Example 4 – Vertical Fragmentation
ΠA

R

 ΠA

R1(K,A,B)       R2(K,C,D)

K

 ΠA

ΠK,A                      ΠK,A

R1(K,A,B)       R2(K,C,D)

K
ΠA

R1(K,A,B)
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Rule for Vertical Fragmentation
• Given vertical fragmentation of R(A):

                Ri = ΠAi(R),  Ai ⊆  A
• For any B ⊆  A:

ΠB (R) = ΠB [      Ri | B ∩  Ai ≠ O]
i
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Parallel/Distributed Query Operations
• Sort

– Basic sort
– Range-partitioning sort
– Parallel external sort-merge

• Join
– Partitioned join
– Asymmetric fragment and replicate join
– General fragment and replicate join
– Semi-join programs

• Aggregation and duplicate removal
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Parallel/distributed sort
• Input: relation R on

– single site/disk
– fragmented/partitioned by sort attribute
– fragmented/partitioned by some other attribute

• Output: sorted relation R
– single site/disk
– individual sorted fragments/partitions
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Basic sort
• Given R(A,… ) range partitioned on attribute A,

sort R on A

• Each fragment is sorted independently
• Results shipped elsewhere if necessary

7
3

11
17
14

27
22

10 20

3
7

11
14
17

22
27

10 20
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Range partitioning sort
• Given R(A,… .) located at one or more sites, not

fragmented on A, sort R on A
• Algorithm: range partition on A and then do basic sort

R1s

R2s

R3s

a0

Local sort

Local sort

Local sort

Ra
R1

R2

R3

Rb Result
a1
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Selecting a partitioning vector
• Possible centralized approach using a “coordinator”

– Each site sends statistics about its fragment to coordinator
– Coordinator decides # of sites to use for local sort
– Coordinator computes and distributes partitioning vector

• For example,
– Statistics could be (min sort key, max sort key, # of tuples)
– Coordinator tries to choose vector that equally partitions

relation
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Example
• Coordinator receives:

– From site 1:  Min 5, Max 10, 10 tuples
– From site 2:  Min 10, Max 17, 10 tuples

• Assume sort keys distributed uniformly within
[min,max] in each fragment

• Partition R into two fragments

 5               10                15              20
k0

What is k0?
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Variations
• Different kinds of statistics

– Local partitioning vector
– Histogram

• Multiple rounds between coordinator and sites
– Sites send statistics
– Coordinator computes and distributes initial vector V
– Sites tell coordinator the number of tuples that fall in

each range of V
– Coordinator computes final partitioning vector Vf

5    6      8       10
3 4 3

local vector
# of tuples

Site 1
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Parallel external sort-merge
• Local sort
• Compute partition vector
• Merge sorted streams at final sites

Ra

Rb

Local sort

Local sort

Ras

Rbs

R1

R2

R3

a0

a1

In order

Result



23

Parallel/distributed join

Input: Relations R, S
 May or may not be partitioned

Output: R   S
Result at one or more sites
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Partitioned Join
Local join

Result f(A)

Ra

Rb

R1

f(A)

R2

R3

S1

S2

S3

Sa

Sb

Note: Works only for equi-joins

Join attribute A
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Partitioned Join
• Same partition function (f) for both relations
• f can be range or hash partitioning
• Any type of local join (nested-loop, hash, merge, etc.)

can be used
• Several possible scheduling options. Example:

– partition R; partition S; join
– partition R; build local hash table for R; partition S and join

• Good partition function important
– Distribute join load evenly among sites
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Asymmetric fragment + replicate join
Local join

Result

Ra

Rb

R1

f

R2

R3

S Sa

Sb

Join attribute A

Partition function
union

• Any partition function f can be used (even round-robin)

• Can be used for any kind of join, not just equi-joins

S

S
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General fragment + replicate join

Ra

Rb

R1

R2

RnPartition

R1

R2

Rn

Replicate
m copies

Sa

Sb

S1

S2

SmPartition

S1

S2

Sm

Replicate
n copies
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All n x m pairings of
R,S fragments

R1 S1

R2 S1

Rn S1

R1 Sm

R2 Sm

Rn Sm

Result

•Asymmetric F+R join is a special case of general F+R.

•Asymmetric F+R is useful when S is small.
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• Used to reduce communication traffic during join
processing

• R       S  =   (R     S)       S

                 =   R        (S     R)

                 =   (R      S)        (S      R)

Semi-join programs
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Example

ΠA(S) = [2,10,25,30]

b
a2

10
c
d

25
30

y
x3

10
z
w

15
25
32 x

A B A C

S R

R     S =

w
y10

25

Compute

S      (R       S)

• Using semi-join, communication cost = 4 A + 2 (A + C)  + result

• Directly joining R and S, communication cost = 4 (A + B) + result
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Comparing communication costs
• Say R is the smaller of the two relations R and S
• (R     S)      S  is cheaper than  R     S if
        size (ΠAS) + size (R     S) < size (R)
• Similar comparisons for other types of semi-joins
• Common implementation trick:

– Encode ΠAS (or ΠAR) as a bit vector
– 1 bit per domain of attribute A

0 0 1 1 0 1 0 0 0 0 1 0 1 0 0
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n-way joins
• To compute  R      S        T

– Semi-join program 1:  R’       S’       T
                    where R’ = R      S  & S’ = S       T
– Semi-join program 2:  R’’       S’       T
                    where R’’ = R      S’  & S’ = S      T
– Several other options

• In general, number of options is exponential in
the number of relations
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Other operations
• Duplicate elimination

– Sort first (in parallel), then eliminate duplicates in
the result

– Partition tuples (range or hash) and eliminate
duplicates locally

• Aggregates
– Partition by grouping attributes; compute

aggregates locally at each site
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Example

# dept sal
1 toy 10
2 toy 20
3 sales 15

# dept sal
4 sales 5
5 toy 20
6 mgmt 15
7 sales 10
8 mgmt 30

 sum(sal)  group by dept

# dept sal
1 toy 10
2 toy 20
5 toy 20
6 mgmt 15
8 mgmt 30

# dept sal
3 sales 15
4 sales 5
7 sales 10

dept sum
toy 50

mgmt 45

dept sum
sales 30

sum

sum

Ra

Rb
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Example
# dept sal
1 toy 10
2 toy 20
3 sales 15

# dept sal
4 sales 5
5 toy 20
6 mgmt 15
7 sales 10
8 mgmt 30

dept sum
toy 50

mgmt 45

dept sum
sales 30

sum

sum

dept sum
toy 30
toy 20

mgmt 45

dept sum
sales 15
sales 15

sum

sum

Ra

Rb

Aggregate during partitioning to reduce communication cost

Does this work for all
kinds of aggregates?
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Query Optimization
• Generate query execution plans (QEPs)
• Estimate cost of each QEP ($,time,… )
• Choose minimum cost QEP

• What’s different for distributed DB?
– New strategies for some operations (semi-join,

range-partitioning sort,… )
– Many ways to assign and schedule processors
– Some factors besides number of IO’s in the cost

model
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Cost estimation
• In centralized systems - estimate sizes of

intermediate relations
• For distributed systems

– Transmission cost/time may dominate

– Account for parallelism

– Data distribution and result re-assembly cost/time

Work
at site

Work
at site

T1 T2 answer

100 IOs

50 IOs
70 IOs
20 IOs

Plan A
Plan B
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Optimization in distributed DBs
• Two levels of optimization
• Global optimization

– Given localized query and cost function
– Output optimized (min. cost) QEP that includes

relational and communication operations on
fragments

• Local optimization
– At each site involved in query execution
– Portion of the QEP at a given site optimized using

techniques from centralized DB systems
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Search strategies
• Exhaustive (with pruning)
• Hill climbing (greedy)
• Query separation
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• A fixed set of techniques for each relational
operator

• Search space = “all” possible QEPs with this set
of techniques

• Prune search space using heuristics
• Choose minimum cost QEP from rest of search

space

Exhaustive with Pruning
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R S T

R     S       R×T        S      R      S       T             T      S     T×R

      (S      R)      T                   (T       S)       R

|R|>|S|>|T| R S T
A B

2 1 2 1

2

Prune because cross-product not necessary
Prune because larger relation first

1

Ship S
to R

Semi-join Ship
T to S

Semi-join

Example
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Hill Climbing

• Begin with initial feasible QEP
• At each step, generate a set S of new QEPs by applying

‘transformations’ to current QEP
• Evaluate cost of each QEP in S
• Stop if no improvement is possible
• Otherwise, replace current QEP by the minimum cost

QEP from S and iterate

x
Initial plan

1

2
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R S T V
A B C

Example

R    S     T     V

R       1  10
S       2  20
T       3  30
V      4  40

Rel.   Site  # of tuples

• Goal: minimize communication
cost

• Initial plan: send all relations to
one site

      To site 1: cost=20+30+40= 90
      To site 2: cost=10+30+40= 80
      To site 3: cost=10+20+40= 70
      To site 4: cost=10+20+30= 60

• Transformation: send a relation
to its neighbor
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• Initial feasible plan
         P0:   R (1 →  4);  S (2 →  4);   T (3 →  4)
                 Compute join at site 4

• Assume following sizes:  R      S ⇒  20
                                             S   T ⇒  5
                                             T   V ⇒  1

Local search
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4

1 2SR
10 20

cost = 30

4

1 2

R   S 

R
10

20 cost = 30

4

1 2

S   R 

S
20

20

cost = 40

No change

Worse
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4

2 3
TS

3020

cost = 50
T

4

2 3
T   S 

30
5 cost = 35

4

2 3

S   T 

S
20

5

cost = 25

Improvement

Improvement
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• P1:  S (2 →  3);   R (1 →  4);   α (3 →  4)
           where α = S     T
           Compute answer at site 4
• Now apply same transformation to R and α

Next iteration

4

1 3

R α

4

1 3α
α    R

4

1 3R

R     α
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Resources
• Özsu and Valduriez. “Principles of Distributed

Database Systems” – Chapters 7, 8, and 9.
• CS347 course material of Stanford University

– http://www.stanford.edu/class/cs347


