
1

Distributed Databases
Concurrency Control



2

Topics
•Concurrency Control

–Schedules and Serializability
–Locking
–Timestamp control



3

     T1              T2

1 a ←  X    5  c ←  X

2 X ←  a+100              6  X ←  2c

3 b ←  Y    7  d ←  Y

4 Y ←  b+100              8  Y ←  2d

Example
X Y

Node 1 Node 2

constraint: X=Y



4

(node X) (node Y)
1 (T1)    a ←  X
2 (T1)   X ←  a+100
5 (T2)   c ←  X  3  (T1)    b ←  Y
6 (T2)   X ←  2c  4  (T1)    Y ←  b+100

 7  (T2)    d ←  Y
   8  (T2)    Y ←  2d

If X=Y=0 initially, X=Y=200 at end

Possible Schedule

Precedence: intra-transaction
inter-transaction



5

Let T= {T1, T2,…, TN} be a set of transactions.
A schedule S over T is a partial order with
ordering relation <S where:
• S = ∪  Ti

• <S ⊇   ∪  <i
• for any two conflicting operations p,q ∈S, either

p <S q or q <S p

Note: In centralized systems, we assumed S was a
         total order and so condition (3) was
         unnecessary.

Definition of a Schedule



6

Example
(T1) r1[X] →  w1[X]

(T2) r2[X] →  w2[Y] →  w2[X]

(T3) r3[X] →  w3[X] →  w3[Y] →  w3[Z]

    r2[X] →  w2[Y] →  w2[X]

S: r3[Y] →  w3[X] →  w3[Y] →  w3[Z]

r1[X] →  w1[X]



7

Precedence Graph
• Precedence graph P(S) for schedule S is a directed

graph where
–Nodes = {Ti | Ti occurs in S}
–Edges = {Ti →  Tj | ∃ p ∈  Ti, q ∈  Tj such that
                              p, q conflict and p <S q}

r3[X] →  w3[X]

S:     r1[X] →  w1[X] →  w1[Y]

r2[X] →  w2[Y]

P(S):   T2 →  T1 →  T3



8

Serializability
Theorem:  A schedule S is serializable iff P(S) is
                acyclic.

Enforcing Serializability
• Locking
• Timestamp control



9

Distributed Locking
• Each lock manager maintains locks for local

database elements.
• A transaction interacts with multiple lock

managers.

D1

locks
for
D1

scheduler 1

node 1

DN

locks
for
DN

scheduler N

node N

… ..

T
access &
lock data

access &
lock data



10

Locking Rules
• Well-formed/consistent transactions

– Each transaction gets and releases locks appropriately

• Legal schedulers
– Schedulers enforce lock semantics

• Two-phase locking
– In every transaction, all lock requests precede all

unlock requests.

These rules guarantee serializable schedules



11

Locking replicated elements
• Example:

– Element X replicated as X1 and X2 on sites 1 and 2
– T obtains read lock on X1; U obtains write lock on X2

– Possible for X1 and X2 values to diverge
– Possible that schedule may be unserializable

• How do we get global lock on logical element X
from local locks on one or more copies of X?



12

Primary-Copy Locking
• For each element X, designate specific copy Xi as

primary copy
• Local-lock(Xi) ⇒  Global-lock(X)

Synthesizing Global Locks
• Element X with n copies X1 …. Xn

• Choose “s” and “x” such that
§2x > n
§s + x > n

§Shared-lock(s copies) ⇒  Global-shared-lock(X)
§Exclusive-lock(x copies) ⇒  Global-exclusive-lock(X)



13

Special cases
Read-Lock-One; Write-Locks-All (s = 1, x = n)
• Global shared locks inexpensive
• Global exclusive locks very expensive
• Useful when most transactions are read-only

Majority Locking (s = x = (n+1)/2)
• Many messages for both kinds of locks
• Acceptable for broadcast environments
• Partial operation under disconnected network

possible



14

Timestamp Ordering Schedulers
Basic idea:  Assign timestamp ts(T) to transaction T.
If ts(T1) < ts(T2) … < ts(Tn), then scheduler
produces schedule equivalent to serial schedule
T1 T2 T3 ….Tn.

TO Rule: If  pi[X] and qj[X] are conflicting operations,
then pi[X] <S qj[X]  iff  ts(Ti) < ts(Tj).

Theorem: If S is a schedule that satisfies TO rule, P(S)
is acyclic (hence S is serializable).

Supply proof.



15

(Node X) (Node Y)

(T1)   a ←   X    (T2)   d ←   Y

(T1)   X ←   a+100       (T2)   Y ←   2d

(T2)   c ←   X       (T1)   b ←   Y

(T2)   X ←   2c       (T1)   Y ←  b+100

abort T2

abort T1

abort T2

Example
ts(T1) < ts(T2)

reject!
abort T1



16

• Problem: Transaction reads “dirty data”. Causes
                 cascading rollbacks.
• Solution: Enforce “strict” schedules in addition to
                 T.O rule

Strict T.O

Lock written items until it is certain that the writing
transaction has committed.

Use a commit bit C(X) for each element X. C(X) = 1
iff last transaction that last wrote X committed. If
C(X) = 0, delay reads of X until C(X) becomes 1.



17

(Node X) (Node Y)

(T1)   a ←   X    (T2)   d ←   Y

(T1)   X ←   a+100       (T2)   Y ←   2d

(T2)   c ←   X       (T1)   b ←   Y

ts(T1) < ts(T2)

reject!
abort T1

delay

abort T1

(T2)   c ←   X

(T2)   X ←   2c

Revisit example under strict T.O



18

Enforcing T.O
For each element X:
     MAX_R[X] →  maximum timestamp of a
                         transaction that read X
     MAX_W[X] →  maximum timestamp of a
                         transaction that wrote X
             rL[X] →  number of transactions currently
                         reading X (0,1,2,…)
            wL[X] →  number of transactions currently
                          writing X (0 or 1)
       queue[X] →  queue of transactions waiting on X



19

T.O. Scheduler
ri [X] arrives:

• If  (ts(Ti) < MAX_W[X]) abort Ti
• If  (ts(Ti) > MAX_R[X])  then MAX_R[X] = ts(Ti)
• If  (queue[X] is empty and wL[X] = 0)

•rL[X] = rL[X]+1
•begin ri[X]

• Else add (r,Ti) to queue[X]

Note: If a transaction is aborted, it must be restarted
with a larger timestamp. Starvation is possible.



20

wi[X] arrives:

• If (ts(Ti) < MAX_W[X] or  ts(Ti) < MAX_R[X])
   abort Ti

• MAX_W[X] =  ts(Ti)
• If (queue[X] is empty and wL[X]=0 AND rL[X]=0)

– wL[X]  = 1
– begin wi[X]
– wait for Ti to complete

• Else add (w, Ti) to queue

T.O. Scheduler

Work out the steps to be
executed when ri[X] or
wi[X] completes.



21

Thomas Write Rule
MAX_R[X] MAX_W[X]

ts(Ti)
Ti wants to write X

wi[X] arrives:

• If (ts(Ti) < MAX_R[X]) abort Ti

• If (ts(Ti) < MAX_W[X]) ignore this write.

• Rest as before…..



22

Optimization
• Update MAX_R and MAX_W when operation is

executed, not when enqueued. Example:

• Multi-version timestamps

W, ts=9
W, ts=8
W, ts=7

queue[X] MAX_W[X] = 7
instead of 9

active write

Value written with ts=9

...
Value written with ts=7

X: ri[x]  ts(Ti)=8



23

2PL ≠ T.O

T.O. schedules

2PL schedules

T1: w1[Y]

T2: r2[X] r2[Y] w2[Z]       ts(T1)<ts(T2)<ts(T3)

T3: w3[X]

Schedule S: r2[X] w3[X] w1[Y] r2[Y] w2[Z]

Think of
examples for
these cases.



24

Timestamp management

... ...

MAX_R MAX_W
X1

X2

Xn

....

• Too much space

• Additional IOs



25

Timestamp Cache

• If a transaction reads or writes X, make entry in cache for X
(add row if required).

• Choose tsMIN ≈ current time – d

• Periodically purge all items X with MAX_R[X] < tsMIN  &
MAX_W[X] < tsMIN and store tsMIN.

• If X has cache entry, use those MAX_R and MAX_W values.
Otherwise assume MAX_R[X] = MAX_W[X] = tsMIN .

X
Y

Z

...

MAX_R MAX_WItem

tsMIN



26

Distributed T.O Scheduler

D1

D1
ts

cache

scheduler 1

node 1

DN

DN
ts

cache

scheduler N

node 2

… ..

T

• Each scheduler is “independent”
• At end of transaction, signal all schedulers involved,
  indicating commit/abort  of transaction.



27

Resources
• Bernstein, Hardzilacos, and Goodman,

“Concurrency Control and Recovery”
– Available at

http://research.microsoft.com/pubs/ccontrol/

• For timestamp control:
Garcia-Molina, Ullman, and Widom,
“Database System Implementation”, chapter 9.
Prentice-Hall, 2000

• CS347 course material of Stanford University
–http://www.stanford.edu/class/cs347


