
WEB DATABASE
PUBLISHING

1. Basic concepts of WEB database
publishing (WEBDBP)
2. WEBDBP structures
3. CGI – concepts
4. Cold Fusion
5. API - concepts
6. Structure of Oracle Application
Server
7. Listeners
8. ORB - WRB
9. Cartridges
10. DAD
11. PL-SQL cartridge

Basic concepts of WEB
database publishing

Merging of two current technologies:
internet/intranet publishing + database management

some benefits of internet/intranet publishing:
- no special investment required for clients
- universal interface
- wide area access
- platform independence

some benefits of database management
- large amount of data
- integrity checking
- flexibility

some drawbacks:
- not the fastest solution
- not every data types can be managed
- security difficulties

key words:
WEB HTML HTTP CGI API
SQL ODBC JDBC Java CGI
API Transaction Middleware Internet
Intranet Corba

WEBDBP structures
It is based on the client-server technology

request

service

This basic structure is called 2-tier structure

The main basic communication modes:
- RPC, remote procedure call
- Message-based

Logical functional components:

- Presentation Services
- Presentation Logic
- Business Logic
- Distribution Services
- Database Logic
- Database Services
- File Services

 Client Server

The 2-tier structures
Fat clients: Most of the functional modules of the
application are performed on the clients

Lite clients: Only few functional modules of the
application are performed on the clients

Remote Data Client-Server Architecture

Client Server
Presentation
Business logic
Data logic

⇔
Data services
File services

Remote Presentation Client-Server Architecture

Client Server
Presentation

⇔
Business logic
Data logic
Data & file services

Split Logic Data Client-Server Architecture

Client Server
Presentation
Business logic ⇔

Business logic
Data logic

Data logic Data & file services

The 3-tier Structures
Usual distribution:

1. tier: Presentation logic, lite client
2. tier: Business logic, application server
3. tier: Database logic, database server

The 3-tier structure can be extended to n-tier
structure, containing several special application
servers

The WEBDBP is based on the 3-tier client-server
model

The three layers:
1. tier : the client, it is a browser

the browser is connected to the web-server
2. tier : the web-server

it is connected to both the browser as to
the database

it can pass static and dynamic HTML
documents to the clients
3. tier : the database - server

it is connected to the web server

A special module is required to create a connection
between the database and the web server

Processing of a user-
request

1. user sends a request from the browser to the web
server
2. the web server detects that a database access is
required
3. the web server passes control to the server
extension modul
4. the extension modul formulates a command for
the database
5. the extension modul sends a request to the
database server
6. the database server processes the request
7. the database server sends the result back to the
extension program
8. the extension modul generates a result page
9. the result page is transfered back to the web
server
10. the web server sends the result page to the client

The web server can processes several requests
parallel

The database server can processes several requests
parallel

Mixed WEB Database
Systems

It is based on the 2-tier structure instead of the 3
tier structure.

The browser downloads a database client program
and executes it as a client site extension module.
This database client uses a session-oriented
protocol with the database server. This
communication channel is independent from the
web server.

Browser --- web server
client database application --- database server

The client database program is based on the usual
interface. It can perform the usual input validations.

CGI - concepts
The WEB Server can access and span an external
program that can perform among others database
manipulation too. The output of the external
program is posted back to the Web Server.

The Web Server communicates with a CGI
program through environment variables and
through the operating system’s standard
input/output.

You can develop CGI programs in many languages
but PERL, C, shell scripts are the most common.

Browser

WEB Server

CGI
program

Environment
variables

DBMS
data source

Data transfer to the
CGI program

Two methods of the data transfer:

GET method
POST method

In the case of GET method the program receives
the data in the QUERY_STRING variable. The
program parses this variable to get the values.

In the case of POST metyhod, the parameters are
passed through the standard input chanel. The
program reads data from the stdin.

Drawbacks of the CGI-DB solution:
- every connection too the data source, DBMS
needs a new process, new allocations
- CGI programs lacked any method for co-

operating with each others

COLD FUSION
Cold Fusion is a database application development
tool that enables the rapid creation of dynamic,
database WEB applications.

Cold Fusion is based primary on the CGI concepts.
It allows developing schemas, so called templates
of HTML pages to describe the database
connection at a higher level.

The database connection is described with the
special HTML-DBML language instead of a low-
level procedural language.

Benefits:
- no code required
- based on database connection standards
- flexible

it allows
- connection to data sources via ODBC
- querying the database
- updating, inserting, deleting data
- validation rules for field entries
- formatting of field entries
- implementing conditional statements
- dynamic data manipulations

- variable handling

Structure of the Cold
Fusion

client:
browser
request html page

server:
web server
cgi connection to cold fusion server

connection:
cold fusion server reads the given template file
performs the actions given in the template file
connection to data sources vie ODBC
performing data manipulation
generating the result page
web server passes the result page to the
browser

Browser

WEB Server

CGI
program

Environment
variables

DBMS
data source

Template file

ODBC

Cold Fusion
Components

1. Request HTML page
2. Template files
3. ODBC data sources

Request HTML pages

referencing to the cold fusion server:

URL = node:/cgi-
path/dbml.exe?Template=tname&…

where
dbml.exe - name of the cold fusion server
tname - name of the template file

the POST parameter passing method is
required

<FORM ACTION="… /cgi-
path/dbml.exe?Template=in1.dbm"
METHOD=POST>
… ..
<INPUT TYPE=SUBMIT … ..>
</FORM>

The fields of the form are passed to the cold
fusion server

Components
Template files

It combines normal HTML and DBML
commands

<command parameter-list>

Special DBML commands

Insertion of new record:

<DBINSERT DATASOURCE = dsn
TABLENAME = table … >

dsn : ODBC DSN identifier
table : table name

the cold fusion detects the field structure of the
table and stores the parameter values into the fields
of the new records

html page field and database table field are
connected to each others upon the name (both must
have the same name)

Components
Updating table records

<DBINSERT DATASOURCE = dsn
TABLENAME = table … >

dsn : ODBC DSN identifier
table : table name

the cold fusion detects the field structure of the
table and stores the parameter values into the fields
of the new records
The table must have a key and there must exist
parameter values for the key and the fields to be
modified.

Creating Queries

<DBQUERY NAME = name DATASOURCE
= dsn SQL = query … >

name: query identifier
dsn : ODBC DSN identifier
query : SQL SELECT command

the SELECT command can refer to dynamic
parameters

dynamic parameter:
- html form parameter
- URL parameter
- CGI environment information

Query in ColdFusion
reference to a dynamic variable :

#varname#

SQL = " SELECT * FROM Books WHERE
price > #iprice# "

Displaying output values on the result page

<DBOUTPUT QUERY = name … >
display format description

</DBOUTPUT>

The format description section may contain
dynamic field variables that correspond to the fields
of the result table.

field reference : #queryname.fieldname#

the output is generated for every records of the
result table.

<DBOUTPUT QUERY = phone … >
<HR>
#phone.firstname# #phone.lastname#

Phone: #phone.phone#

</DBOUTPUT>

Query in ColdFusion
Presenting the results in tabular formats

<DBTABLE QUERY = name >
<DBCOL HEADER = heading1 TEXT =

#field1# … >
<DBCOL HEADER = heading2 TEXT =

#field2# … >
… .

</DBTABLE>

Basic input field validation and formatting for input
field fname

- requiring entry
<INPUT TYPE=HIDDEN

NAME=fname_required>

- simple type checking
<INPUT TYPE=HIDDEN

NAME=fname_type>

- range checking
<INPUT TYPE=HIDDEN

NAME=fname_range

VALUE="MIN=v1 MAX=v2">

Template control flow
the cold fusion allows conditional processing of
statements

<DBIF value operator value >
html part A

<DBELSE>
html part B

</DBIF>

Sending SMTP mails:

<DBMAIL TO = to FROM = from SUBJECT
= subject … >

letter text
</DBMAIL>

The letter text may contain dynamic variables too.

API - concepts
In this structure the server exrension program is
implemented as a part of the server, as a DLL or a
shared object

Server API’s are the methods that you can use to
extend the server functionality.

- it is faster than CGI

API’s are specific for the WEB server.

- NSAPI Netscape
- MS ISAPI Microsoft
… .

It is strongly coupled with the WEB server

Browser

WEB Server

DBMS
data source

API Shared object

MIIS HTTP-ODBC
structure

Two description files

Data Source description
.IDC

Template for display the result
.HTX

Browser

Browser

W3svc

W3svc

ISAPI

ISAPI

HTML

CGI

ODBC

ODBC

URL=… /A.IDC?..

A.IDC

Data source
B.HTX

Result page

1

2

3 4

5

MSIIS ISAPI elements
IDC parameters

- data source (ODBC DSN)
- template file identifier
- SQL Statement

Template elements

- normal HTML commands
- special HTML commands:

- <%begindetail%>… … ..<%enddetail%>
loop on the result record set

- <%name%>
parameter, data field value

- <%if%>… … ..<%endif%>
conditional statements

Structure of Oracle
Application Server

Effective connection to the Oracle DBMS
Easy, flexible programming tool

primary node : it contains the WRB, listeners and
cartridges
secondary node : it contains some of the
components mentioned above

Components of the OAS

Primary node Secondary node

Secondary nodeDBMS

Listener

WRB

resource manager
cartridge server factory
monitoring
authentication
… .

Application

Cartridges

ORB
name server, log server, ORB server, … .

Steps of operation

Request
1. browser 2. listener
3. WRB(ORB) 4 cartridges
5 DBMS
Result
5 DBMS 6 cartridges
7 WRB (ORB) 8 listener
9 browser

Listener WRB Application

Cartridges

ORB … .

Browser Oracle DBMS

1

2

3

4

5

67

8

Application
Programming Models

An application can include several instances of the
same cartridge
The work is distributed among the instances, the
load is balanced

- request-response model : each client
request is processed individually.
two subsequent request from the same
client may be responded by two different
instances

- session model : subsequent requests from
the same client are handled by the same
instance. the connection breaks after a
given amount of time-out.

- transaction model : all requests from the
same URL are processed within the
context of the same transaction. The client
can send commit or roll-back messages.

Security schemes
Authentication schemes:

- basic authentication:
users, password management,
protection of files, directories

- digest authentication:
similar to basic authentication, but it
sends passwords encrypted across the
network

Restriction schemes:
- IP based restrictions

only request from specific IP
addresses can access the protected
files, directories

- Domain based restrictions
similar to the domain based
restrictions except it uses domain
names instead of IP addresses

OAS Manager
The components of OAS Manager System:

- OAS Manager : to manage the WEB site
- OPAS Utilities : to install, to log, to perform
some special administrator tasks

OAS Manager

The components of OAS Manager System:
- OAS Manager : to manage the WEB site
- OAS Utilities : to install, to log, to perform
some special administrator tasks

menu of the OAS Manager
- site manger
- OAS
- Logging
- Security
- DB Access
- ORB configuartion
- HTTP Listeners
- Applications

Start and stop node manager manually
owsctl start -nodemgr
owsctl stop -nodemgr

owsctl status -nodemgrl

Listeners
OAS Manager Listeners

- Node Manager Listener
- Administration Utility Listener

Node manager Listener
it is present on each node of the site
it is the first process of the OAS
default port is: 8888
it has a username/password protection
to manage it manually

start : owsctl start -nodemgr
stop owsctl stop -nodemgr
status: owsctl status -nodemgr

Administration Utility Listener
it is used to run some demos and samples
it is used to run log analyzer
default port is : 8889
it is managed by the OAS Manger web site

Listeners
The OAS listeners like other listeners can handle

- static page requests
- dynamic, CGI page request

and
- Oracle DBMS connection request

Listener parameter
- listener name
- port number
- host name
- root directory
- user id
- maximum number of connections
- URL of redirection server
- configuration directory
- initial file
- directory mappings

Directory mappings

It allows to define virtual file system by mapping
specific virtual pathnames used in the URL to file
system specific filenames of local directories.

http://node.uni.edu/test/a.html
root : virtual : /

physical : /usr2/locals/htp

ORB - WRB
Object Request Broker

ORB provides a distributed-object computing
environment through which clients and servers
interacts. Neither the client nor the server needs to
be concerned with the location of the other or the
transporting, converting data between the different
sites.

Responsibilities of the ORB:
- finding appropriate object implementation to
handle client reqiuests
- preparing those implementations to receive
requests
- communicating the data
- returning results to the clients

Client

ORB

Server

request forwards
response

forwards
request response

Cartridges and
Applications

cartridge:
- it contains configuration data to locate

application logic
- it contains code to execute the application

logic
cartridges provide runtime environment for
specific programming languages like Java
- every cartridge has a virtual path to access it

some cartridge level parameters:
- virtual path for the catridge
- security schema
- main/max instances
- min/max threads per instance

Application:
it contains one or more cartridges of the same

cartridge type
when application runs it creates instances of its
cartridges within the cartridge server process

Application and
cartridge lifecycles

if OAS starts up it starts up the minimum
number of cartridge servers for each application

each cartridge sever then starts up the
minimum number of cartridge instances

if minimum number is configured to 0, a
cartridge server or cartridge instance is started up
only it is required explicitly by a client request

a new cartridge instance is started up if there
are more requests than cartridge instances

some cartridge are able to start up several
threads per instances

Possible scenarios
scenario A : one thread and one instance in a

cartridge server
scenario B : several threads and one instance in

a cartridge server
scenario C : several instances but only one
thread per instance in a cartridge server

Cartridges types
the following cartridges are supported in OAS4

- PL/SQL cartridge: it executes the PL/SQL
procedures stored in the database
- JWEB cartridge : it runs Java applications.
The access to the Oracle database can be
processed by the following ways:

- pl2java Java utility set
- JDBC

- LiveHTML cartridge: it interprets server-side
include SSI HTML documents
- Perl cartridge: it runs Perl scripts
- C cartridge : it runs C applications
- JCorba cartridge: it runs CORBA objects
written in Java
- ODBC cartridge : to access ODBC databases
like Informix, Sybase

Proposed scenarios:
PL/SQL, JWEB cartridges : scenario A or C
LiveHTML or Perl cartridges : scenario A
C, Jcorba cartridges : scenario A or B or C

DAD
Database Access Descriptor

A database may be local or remote

The DAD's contain the configuration data to
needed by the OAS to connect to the Oracle
database.

configuration data
- DAD name
- database user name
- use password
- database location
- database SID or connect string

TNS_ADMIN directory

TNSNAMES.ORA configuration file

Example1.world =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = Production1)
 (PORT = 1521)
)
 (CONNECT_DATA = (SID = SID1)
)
)

PL-SQL cartridge
It invokes stored procedures written in PL/SQL

Cartridge parameters:
- name
- virtual path
- DAD
- level or error messages
- protection

The DAD describes the access to the Oracle
database

Identifications, activization of a PL/SQL cartridge:

http://host/virtual-path/stored-proc?parameters

steps of execution:
1. listener
2. WRB gets the request
3. cartridge server is activated
4. access to the database (DAD)
5. procedure execution
6. generation of result page
7. result page is passed back to the browser

Development of a
PL/SQL cartridges

1. create a new pl/sql cartridge

2 create dad

3. create stored procedure

4. creating html file to invoke the procedure

A toolkit provided by the Oracle can be used to
implement the HTML specific features in the PL-
SQL environment.

Components, packages of the PLSQL Toolkit:
- htp (htf) : procedures to generate HTML tags
- owa : subprograms required by the PLSQL

cartridge
- owa_util : utility subprograms to perform

dynamic SQL calls
- owa_pattern : string manipulation
- owa_image : retrieve coordinates where the user

clicked on the image
- owa_cookie : procedures to send or receive

HTTP cookies

Sample PL-SQL
applications

1. Creating and Loading the Stored Procedure onto
the Database
2. Installing the PL/SQL Cartridge Packages and
Creating a DAD
3. Reloading
4. Creating an HTML Page to Invoke the Procedure

Sample procedure
The current_users procedure retrieves the contents
of the all_users table and formats it as an HTML
table.
 create or replace procedure current_users
 AS
 ignore boolean;
 BEGIN
 htp.htmlopen;
 htp.headopen;
 htp.title(`Current Users');
 htp.headclose;
 htp.bodyopen;
 htp.header(1, `Current Users');
 ignore := owa_util.tableprint(`all_users');
 htp.bodyclose;
 htp.htmlclose;
 END;

