

Web servers

Lecture notes

	

	dr. Broczkó Péter
	Kandó Polytechnic

London
1999

1. Web servers

1.1. Introduction

People use World Wide Web through browser software on their local computer, the client system. The client computer software retrieves information (documents, images, etc) from other computers, which are called Web servers. The Web client and the Web server communicate by exchanging messages.

1.2. The parts of the Web servers

A Web server can be described by the next formula:

Web server = platform, connected to Internet + software + information

The platform is the computer hardware, its operating system and the network software. The next part of the Web server is the software itself. The information is the reason for the existing of the Web server. In this material we concentrate to the second part of the Web server: on the software.

1.3 The Web server software

1.3.1. The job of the Web server

The job of the Web server software is very simple:

receives requests from browsers for information (represented in different formats of files) over the network;
determines from requests which file is needed;
finds that file if it is available;
sends the requested file back to the Web browser over the network connection.

The Web server software runs continuously, waiting for users’ request from Internet. The Web server program then creates a network connection to receive the user’s request. The programs generally communicate over the network by establishing a connection from one port to another. A port is an abstraction that provides a simple and generic way to make and use network connections. The Web server software only needs to know how to read and write the network port. It does not need to know anything future about transmitting the message over the network.

1.3.2. The HTTP protocol

The Web browser and the Web server communicate with each other using the HyperText Transfer Protocol (HTTP), which defines a simple request - response conversation. The requesting program (the client) establishes a connection with a receiving program (the server). The client sends a request to the server. The HTTP rules define, how to correctly form the request. The server replies the request with a response, which, it is hoped, includes information desired by the client. The rules the HTTP also define, how to correctly form the response.

1.3.3. The connection

The request

An HTTP request consist of the following pieces:

The method, which must be one of a set of legal actions;
The Universal Resource Identificator (URL), which is the name of information requested;
The protocol version;
Optionally other information to modify or supplement the request.

Method

The basic idea of the request is that the method is to be executed on the information named by URL.

Method�Action��GET�retrieve the information��HEAD�return only the head information��POST�send information to be stored on server. Many servers do not allow information to be POSTed except as input scripts��PUT�send a new copy of the information to the server. Many servers do not allow information to be PUTed.��DELETE�Permanently delete an information from the server. Many servers do not allow information to be DELETEed.��
HTTP methods

Universal Resource Identificator (URL),

The URL identifies the information required by the request. According to the rules of the standard, the URL contains three pieces:

the protocol identifier;
the name of the server computer and
the full name of the document.

The protocol version

The client computer can use any protocol version including the ancient ones. If the server would send the response for the newest protocol version the client could not handle it. That is while important to know for server, in which protocol version have to send the response for the client request.

Other optional information

The request may contain additional information that may indicate, how the request may be filled. This information may include identification or payment authorisation.

Field�Information��User-agent�what kind of browser is making the request��Authorisation�user password or other authentication as required��If-modified-since�asks that information required be returned only if it is newer than the specified date. This saves the cost of retrieving a document that has already been acquired and has not changed��
Optional information sent from the client to server

Example

User-side

Identifying the request by the user:

	http://www.winnie.hu/work/index.html

That tells
how to get the information (use HTTP) and
the name of the server (www.winnie.hu) and
the full name of the needed document (/work/index.html).

Client-side (Unix-like)

On the basic of the user definition the Web client would send the following message to the Web server:

GET /work/index.html HTTP 1.0
User-agent: NCSA Mosaic for the X Window System/2.5
Accept: text/plain
Accept: text/html
Accept: application/postscript
Accept: image/gif

The first line is the method, the URL and version of HTTP (1.0). The second line identifies the type of the browser (the user-agent) that sent the request and going to accept the response. The following lines indicate that the client is prepared to receive text documents and GIF images. Instead of the list of Accept lines we can indicate, that the browser will accept any type of information:

Accept: */*

The response

An HTTP response consist of the following pieces:

a status line;
a description of the information in the response. This is information about information, called metainformation;
the actual information requested.

The basic idea is that the server replies to the request with a description of what is being returned, followed by the information requested.

Status line

The status line has the form:

HTTP-version Status-code Reason

The status code is a number that indicates the result of the request. The reason is a short phrase that explains what the number means.

Code�Reason�Explanation��200�Document follows�The request succeeded. The information requested will follows.��301�Moved permanently�The document has moved to a new URL��302�Moved temporaly�The document has moved temporaly to a new URL��304�Not modified�The document has not been modified since the date specified in a GET request with IF-modified-since��401�Unauthorised�The information is restricted: please retry with proper authorisation.��402�Payment required�The information requires paying a fee; please retry with proper payment.��403�Forbidden�Access forbidden��404�Not found�The information could not be found or permission was denied. This error is returned is the requested URL does not exist or was misspelled��500�Server error�The sever experienced an error��
Selected Status codes

Description of the information in the response: metainformation

The metainformation in the response tells the browser what it must know to interpret and display the information.

Field�Information��Server�The type of the server software providing the response��Date�The date and the time of the response��Content length�How many bytes of data will be sent to the client��Content language�The language of information such us English or Hungarian��Content encoded�Additional encoding, such compression��Last modified�The date and the time that the information was most recently modified��
Metainformation

Example (Unix-like)

HTTP/1.0 Status 200 documents follows
Server: NCSA/1.4
Date: Tue, 11 Aug, 1999 19:15:24 GMT
Content type: text/html
Content length: 5280
Last modified: Sun, 8 Aug, 1999 11:19:37 GMT

How it works?

The Web server program is a reactive program. It waits for a client to request something and fulfils the request if it can. The HTTPD (Unix-like) program does it for example.

The httpd daemon is listening to the network, waiting for a request. Since the Web uses the world-wide Internet, the next request could come form anyone on the network, anywhere in the world. The httpd program never knows what is coming next.

When someone selects, or clicks on, an anchor that links to the document, an HTTP request is sent to the appropriate server. This request specifies what to do (GET), what to do it to (the document: /work/index.html) and how to do it (use HTTP version 1.0). The httpd program reads the request, including metainformation, such as the User agent and Accept) from the network and figures out what is supposed to do.

Once the httpd program receives the request, it tries to fulfil it. To do this, the httpd program must find the document on the disk. Assuming it is available, the httpd program sends the document back to the client computer (and so to the browser, to the user). The contents of the document are preceded by the metainformation that tells the client what is coming. The metainformation includes the type of the document, the length, and other information, as described earlier. The contents are sent by copying the document file from the disk to the network connection. When the document is sent, the httpd software dismantles from the connection and goes back to listening again.

1.4. Formulating of the request

The basic use of the Web is to publish and distribute information to the general public. These services are essentially broadcasts, where everyone receives the same information. But there is much more to the Web than this: there are customised and interactive Web documents. Some of these customised documents are designed to make order or legacy information systems accessible via the Web.

Many important uses of the Web require interaction between the individual user and the server to customise the result. For instance to search a database or catalogue, there must be some way for users to tell what they want, so they must be some way to obtain the user input.

All these services require something more that just returning the contents of a particular file. Web servers can do all these things and more by using auxiliary programs that run on the server platform and allow the server to generate customised responses. These programs are called gateways or scripts.

Scripts may connect the Web to other services; they also may collect information from the user through interactive forms.

1.4.1.The different between Web script and gateway

The fundamental idea behind Web scripts is that some „documents” are not actually a documents, but are really programs. When a client browser requests the URL of something that is actually a program, the server executes the requested program and returns the result (and not the program itself) to the client. The result should appear to be an HTML document so the browser and the user may never realise that a program was executed. These programs, called scripts, can do many things:

scripts are used to access information from non-Web sources, such as databases;
scripts allow interaction between the user and server. This allows the user to search databases, make purchases, and many other possibilities;
scripts can construct custom documents dynamically at the time they are requested. Scripts create intelligent documents that reflects the user circumstances.

Scripts collect information from the user through a special type of HTML document that is a fill in form:
the form document is sent to the client;
the browser displays the form to the user and collects input from the user.;
the filled-in form returned to the server;
the server send back the customised answer to the user browser.

The filled-in form can collect a lot of information such as the name and the account number of the customer, words to search for in an on-line catalogue.

The Web script that provides access to an on-line service, such as an existing database, is commonly called as gateway because it acts as a door between the Web and another on-line service. A Web gateway script talks to a database service by translating from the Web language, to the language which is spoken by the database service.

1.4.2.The Web script

A Web script is a program that can be executed by the Web server in response to Web request. Despite the name, practically any program can be a Web script; it does not matter what language it is written in. Programs compiled in C or BASIC work as well as Perl. The basic goal is for the browser program and the script program to communicate with each other. From the point of view of the Web script, the input comes from the client and the output goes back to the client.

A script may, in fact, call other programs or contact other servers. It also may translate the information from the client into different format. Example a gateway script can use the input from the client to construct and send an appropriate query to a database server, possibly over another network connection if the database is on a remote computer. The script should return a file or data that is in a format which is expected by the browser, such as HTML document. The result of the database search might be a series of database records. The gateway script would convert them into a HTML document so the browser can display the result appropriately. Every Web script may do something different, even they may do something different each time they are invoked.

From the point of view of the Web server, all scripts work the same way. The httpd program starts the script and passes the data from the browser to the script and vice versa. The httpd daemon must do the same basic things:

the daemon must determine that the request is really supposed to be a program rather than a document;
the daemon must locate the program and determine if it is permissible to execute it;
the daemon must start the script program and ensure that the input from the client will be passed to the script;
the daemon must read the output from the script and pass it back to the client;
the daemon must send and error message back to the client if something goes wrong with the script program. The daemon must also close the network connection properly when the script completes.

1.4.3.The executable Web script

How does the Web server know which „documents” are programs to execute and which documents are information to be delivered? The execution of scripts is always controlled by the Web server and not the browser. The server software will execute scripts only according to specific rules, as configured by the system administrator.

The NCSA httpd for UNIX system requires scripts
to be located in a particular directory or directories and to have UNIX execute permission or
have a particular name, such us files ending in .cgi.

The CERN httpd server, also for UNIX systems, uses rules in its configuration file to determinate which specific URLs are allowed to be executed.

1.4.4. Running of the script

The Web server software has a simple role: it starts the script program and passes along data. Making sure that the server program and the script will work correctly together can be a problem, though, since they are usually written by completely different programmers.

This problem is solved by standards, from which we talk about some types.

1.4.4.1.The Common Gateway Interface: CGI

Common Gateway Interface: CGI. This is a standard for how scripts are to be called and how data is passed between the httpd server and the script. The CGI performs the same role for the server and the script as HTTP does for the server and the client: as long as both the httpd program and the script program follow the CGI rules, everything will work. The CGI is so important that Web scripts are often called cgi-scripts, and the scripts directory is often called cgi-bin (that is CGI binaries: executable programs).

A script that works well on one type of Web server system may not work at all on another type of server system. The details of the CGI-rules depend on the type of operating system the server runs on:
for UNIX systems the script executes as a process, with the data from the browser arriving through standard input as UNIX environment variables, and the results passed back through standard output;
for Macintosh systems the Web script program runs as a Macintosh script and the data is passed through Apple Events;
for Windows NT servers the script is launched as an application process and data are passed through temporaly files.
The CGI standard is actually a suite of standards, one for each operating system.

1.4.4.2. Netscape Server Application Program Interface: NSAPI

Netscape servers also use NSAPI, which serves the same purpose as the CGI.

1.4.4.3. Windows possibilities

Web servers on Microsoft Windows platforms can use the standard DLL interface or OLE.

The future is likely to see even more „standard” interfaces. In this paper will be explained how CGI works. The principles to apply to any script interface, although the details may differ considerably.

1.4.5. The script’s view from two side

1.4.5.1. The user’s view

If the user want to run a UNIX program from the client computer, than the script does two things:

it prints information describing the information to come (the metainformation);
it prints the result of running the asked UNIX-program.

In this case three programs run on the server:

httpd
script
UNIX-program.

1.4.5.2. The server’s view

The httpd daemon begins by listening to the network until a request arrives from somewhere. A user requests a script the same way as he requests a document: usually by clicking on an anchor. The user may have no idea that he has clicked to a script. So the server tasks are follows:

listening to the network;
arrives a request from somewhere;
the httpd program decodes the request and discovers that the requested „document” is really a program to execute;
the httpd software sets up an appropriate context;
must lunch the script program;
pass data from the script to the client
wait for the script to finish.

The details of these steps depend on the operating system and the CGI standard. In general, the httpd program does whatever is necessary to start up the script program, then waits to pass along whatever results occur.

1.4.6. The cost of using scripts

Scripts require the Web server to do a lot more work than just retrieve a document. Running the script means that at least twice as many programs must run on the server, and if the script does any significant computation, executes other programs, or communicates with other servers, this can add up to very large burden on the server. If the server processes more than one request at the same time, it might run many scripts at the same time, magnifying the problems.

If the source language of the script is Perl or Shell, these programming languages are interpreted. Interpreter are generally slower and less efficient than the compiled programs. Web scripts that are really compiled programs generally run faster and take up less memory than scripts executed by shells. For heavily used script program on a busy Web server, using Shell or Perl scripts may merit a second look.

1.4.7. Occurring a problem

Unless Web scripts are carefully written, they may not work correctly. At best, the user will get an error message. At worst, the whole Web server system could hang or crash. If the script program encounters an error or has problem and does not return appropriate data, the httpd server may or may not be able to figure out what to send to the client. The httpd server will generally return anything it gets from the script to the browser, but if turns out to be meaningless garbage, the browser may not know what to do. Unusual error messages and any information that is not correctly formatted as an HTML document may baffle both the browser program and the user. For these reasons, Web scripts must be robust and should reliably return information that will make sense to httpd and the browser.

It is important to note that if the script fails to terminate, the httpd server will wait indefinitely for the script to reply. For this reason, Web scripts should never stop and wait for anything. Remember that the client is waiting for the response and will only continue to wait for a reasonable time. A script that takes too long to finish will find that the client has given up and gone away. Also, if scripts hang around a long time, they will fill up the server system and eventually cause it to be completely unusable.

If the script crashes, the connection will terminate and the client will probably get an error message of some kind, but the user will almost certainly have no way to tell what went wrong. Web scripts should be as „bullet-proof” as possible, so that mistakes by a user are diagnosed and useful feedback is returned. If an error by a user is are diagnosed and useful feedback is returned. If an error by the user causes a script to crash and the user does not know it is an error, he my make the same mistake over and over again. This is frustrating to him and running the same script the same wrong way over and over again is a waste of resources of the server.

1.5. Architecture, improving the performance

When improving the performance of systems, it is important to keep in mind the overall goal of Web server: to meet the needs of users. This requires improving the performance of the Web as a whole, which is considerably more complex than creating efficient Web servers. The main components of Web systems are:
the Web server;
the network;
the browser and the client system.
According to our topic we are going to explaining detailed the first component, but we have to shortly talk about the second and third one too.

1.5.1. The Web server

The Web server architecture

A Web server system typically has
one processor, but some systems has
more then one processor.

One processor’

The most of Web servers has one processor and limited amount of memory, which are shared between the operating system and all application programs, including httpd program and its CGI scripts. Any processor time and memory used by the operating system is lost to the „real work” of serving Web requests.

More then one processor

Some systems have more than one processor. One way several processors may improve performance by allowing several programs to run at the same time. For a Web server, the goal would be to have several requests in progress at once, each using a different processor. Multiply processors do not simply multiply the performance of the system, however, because the program still share the memory, disk and network connections. A system with multiple processors does not necessarily have faster network or disk access, both of which are critical to Web servers. Also, co-ordinating among several active programs may add system overhead not required by a single processor system.

The tasks of Web servers

A simple cycle

The basic operation of Web server follows the HTTP protocol. When a new request arrives, a process or thread is created to handle it. The request is read from the network and the name of the document or script is determined. The document is looked up using the standard operating system services to find the file and the relevant information about it. Assuming the file is available, the server reads the file from disk and sends it back over the network to the client.

Execution of CGI scripts and other programs

If the server has CGI scripts available, they need extra computing resources to work. When a script is invoked, the HTTP server starts another program to execute the script. Depending on what the script does, it may need significant processor time and memory. The script may do practically anything, but typically it will
read the request;
execute command;
format the result and
return the result to the client.
The script may start other processes, access disks or use the network.

Scripts share the processor and memory with the httpd program and the operating system. When script is executing, other Web requests must wait their turn to run, because the processor is busy. Scripts are usually run longer than a simple GET request, so they take a bigger share of processor time for each request. A server that executes a lot of CGI scripts will have a lot of overhead and will also have many processes competing for the processor and memory of the server. Starting scripts and relaying their results use operating system or system library calls, so each time a script is executed, there is additional overhead lost to the system services.

A script can be written in Perl, in Shell or in any programming language. The data indicate, that a Perl script is slower, than the equivalent C program. The reason is: Perl program is interpreted, but the C program is compiled.

Data compression and encryption

Data compression

The speed of some networks may limit the availability of high-resolution images, sound, and video, because they are encoded in ways that require very large amount of data. When high resolution images are used, it may necessary to compress them to reduce the time it takes to transmit them over the network. Data is compressed by applying an algorithm that recodes that data to remove redundancies and to otherwise make a compact but distorted version of the data. The compressed data can be used by reversing the process, decompressing it to recover the original form the information. Data compression reduces the amount of data to be transmitted and thereby increases the effective capacity of any network. The amount of compression that can be achieved varies, but the compressed image may well be 1/2 or 1/10 the size of the original. If for instance, the information compressed to one half its original size, this would be reduce the transmission time by the same amount.

The trade-off in using data compression is that the compression and decompression process may take a lot of memory and processor time. Fortunately, it is usually cheaper and easier to provide faster computers on either end of the network than to increase the speed of the network, as increasing the speed of the network is extremely expensive and the network links are mostly owned by other parties. Indeed, displaying compressed video images is one of the most important applications of the fast new microprocessors being introduced to desktop computers. Data compression technology is becoming essential technology for all network and information services, not just the Web.

Data encryption

Ensuring the privacy of transactions requires encryption and decryption of data by the Web server system. Encryption and decryption may require very significant processing time, so using this schemes will have a significant performance impact on the Web server. For instance one experiment found that encryption slowed the server response time by 10 t0 50 times! Data encryption technology, too is becoming essential technology for all network and information services and often provided in combination with data compression technology.

The technology for both encryption and compression is developing rapidly. Specialised chips are available that will make compression and encryption extremely efficient, at least for some application.

Accessing documents

In addition to the processor and memory, the Web server must read data from permanent storage. This is almost always a hard disk of some type, although data may be stored on CD-ROM, an automated tape system or a network file system. No matter what is the storage medium, it is likely to be one of the slower parts of the server, so great attention should be given to how well it performs.

The effectiveness of disk I/O system depends on two important factors:
speed of the device and
efficiency of the system software that manages the device.
The primary performance goal of the system software is to cache data in memory so that it is not always necessary to read the disk. When this succeeds, the system can get data from the memory cache hundreds times faster than the disk could supply it. This strategy trades memory for time and s unquestionably the most important use of memory on Web server.

One problem for a Web server is that high quality information, such as images sound and movies requires a large amount of storage. While disk space is relatively cheap and easy to get, the operating system cannot deliver large files as quickly as smaller ones. One reason for this is that large file is difficult to cache, as it is usually impractical to cache more than few images, and most movies are too big to cache at all.

Compression can improve the performance of the storage system as well as that of the network. The compressed data not only saves storage space; it reduces the time needed to read from disk and can be cached more effectively.

Different server configurations

Web servers were first developed on UNIX systems and the new server ideas generally appear on UNIX first. Our discussion will concentrate to UNIX-based servers, although the principles apply to Windows or any other multitasking network operating system.

If the server receives more many simultaneous requests and only responds to one at a time, many of the requests will be delayed. For instance, a request for an image may take several seconds to finish, If another request arrives during that time, it won’t be served until the first one is completed, even though the request might be for a very small document. Worse, if requests arrive fast enough, the waiting line will snowball and the server will be overwhelmed by the backlog. For these reasons, most servers try to do as many requests as possible at the same time.

Handling multiple requests may be done in three ways:
by cloning a copy of the httpd program for each request;
by multithreading the httpd program or
by spreading the work among several helper programs.

One process per request

This approach is simple to do, especially in UNIX system. In a server that clones itself, each request is actually processed by a new copy of the httpd program. The original (the parent process) immediately goes back to listen for the next request. The new copy (the child process) is serving the received request. When the parent spaws the child, it passes along the network connection from which it receives the request it is supposed to satisfy.

�

Step 1.: Listening...

�

Step 2.: A new connection...

�

�

	Step 3.: Listening again...	...with the new connection

When the child finishes the request, it terminates and ceases to exist forever. The Web server may well have many copies of the httpd program running at the same time, with manz network connections active. The main copy spaws one child after as the requests arrive, each request has a separate copy of the program assigned to it, and each process handles exactly one request.
�

	Listening...	Request 1	Request 2	Request n
		in progress...	in progress...	in progress...

Several copies of the server program, with several requests in progress at the same time

In UNIX programming for cloning a copy (for create a child process) is used the fork() system call., followed by adjustments so the new copy of program has a private copy of network connection. The fork() operation creates an entirely new copy of the execution environment:
a new process with a new copy of the process control information;
a new virtual-memory image of the executing program, and so on.
The new process is scheduled with along with all the rest of the processes on the system. The code to fork the child is pretty simple, and the result is a completely separate copy of the httpd program for each request.

The creation of a new process is a relatively costly operation, though, using up
processor time,
memory,
operating system table space.

Preparing a program to run on the processor and scheduling one that is ready to run are also costly operations, so switching among several copies of the httpd server can use up a lot of processor time, while one is running, all the others must wait. These problems are especially acute on a busy server, with 10 or more requests arriving each second, requiring dozens of copies of the server program running at the same time.

Since the Web requests are typically very short and simple to complete, the overhead of process creation might well become a significant fraction of the whole time to satisfy a Web request. And from the perspective of the overall server, the overhead from thousands of requests each day may accumulate to use up a significant fraction of the whole system.

How much overhead is there? This entirely depends on the computer and operating system. The time to do fork() is form about 7 milliseconds to about 40 milliseconds. In each case, the time to do fork() is at least 15 percent, and possibly much more, of the typical time to process a short request on that system. Of course, for longer transactions, such as transferring a large image file, the overhead of the process setup is only a tiny fraction of the total time to complete the request.

A multithreaded server

Multiple threading dramatically reduces the overhead for each request because only the memory and process control information relevant to the request are duplicated, not the whole server program. Further, switching between several threads of program is much simpler and faster than switching between processes. A multithreaded server eliminates much of the overhead incurred by one-process-per-request server, so it can serve more requests and serve each request faster.

�

One server program processing five request at once

Operating system SUN Solaris

Implementing a multithreaded program is rather complex programming, though. The phttpd Web server is an example of a multithreaded server. It runs on the Solaris operating system. How well does it work? On 5.3 creating and starting a thread is more than 30 times faster than starting a process (0,9 ms vs 30 ms). The phttpd server handles HTTP GET requests with threads, but requests that execute script cannot be done as a thread. These requests must be served by creating a new process to execute the script. Thus, for a server that provides a lot of scripts, a multithreaded server will not necessarily improve performance, because the scripts do not benefit from the multithreading.

Operating system Microsoft Windows NT

Microsoft Windows NT supports threads on all the platforms it tuns on. CGI scripts can be run in a thread as a dynamically loaded library module (using DLL), which is much more efficient than starting another process. For this reason, Windows NT may be a cost-effective choice for a Web server that must serve many scripts.

Helper processes

A third way to handle more than one request at once is to make the httpd server a group for co-operating program. In this compromise model, each request is handled by a separate copy of the httpd server, so the complexities of the multithreaded server are avoided. But the processes are created only once and reused, so the overhead of process creation is almost eliminated too.

There are two different types of processes:

the dispatcher process is listening the network and accepts the initial network connection from the client. The dispatcher passes the connection to one of the helpers and closes its copy of the connection;
the helper itself does not listen for requests on the network, instead, it listens and waits for requests from the dispatcher process. Once the connection arrives from the dispatcher, the helper works pretty much the same as if it had been created though fork(). The helper processes do only one request at a time, so they are relatively simple and have no multithreading overhead. Also, the helpers can execute scripts with no special arrangements. The helper process does not terminate after each request, instead, it waits for another request to arrive from the dispatcher program.

�

	Listening	Requ est 1 in progress...	Requ est 2 in progress...
	Request 3 is waiting for Helper

A dispatcher and two helpers, with two requests in progress and one for waiting

There are several potential drawback to this architecture:

the dispatcher process is a potential bottleneck, as it must respond to every requests. The whole system cannot proceed any faster than the dispatcher can work;
the number of helpers must be managed. While the helper processes wait for requests, they use up memory and operating system resources. For this reason, it is wise not to create more helpers than necessary, lest the whole system become clogged with idle helper processes. On the other hand, if all the helpers are busy and more request arrive, the dispatcher program must either reject the overflow requests, queue them up until the helper is free, or start more helper processes. Which of these three choices is the best depends on the server and the situation:
rejecting connections is clearly to be avoided if possible;
queuing the requests is better than rejecting them, but if the wait is more than few seconds, many clients will think that the server has crashed and will close the connection from their end anyway
starting more helpers allows the system to dynamically adjust to the number of requests, but creating and starting extra helpers slows the system at the worst time - peak load. Worse, the extra helpers may soon become idle if the load drops, and will continue to hang around unless action is taken to retire them;

Version 1.4 of NCSA

Version 1.4 of NCSA httpd creates helper processes when it starts up. The number of helpers created can be controlled by the server administrator. The requests are passed to the helper programs, one at a time, as described earlier. If the request is for a script, the helper process executes the script program.

Netsite Communications Server

The Netsite Communications Server is a commercial descendant of NCSA httpd with an independently developed helper process architecture. One difference between Netsite and NCSA servers is that Netsite does not start extra helpers under heavy load but NCSA httpd does.

Evaluation of the helper processes version

The difference between forking a new process and using helper may not be noticed by most of users, but in the long run allows a server too handle many more requests without being overwhelmed. For instance, one experiment showed that the NCSA server using helpers handled twice as many requests as the same server using forking.

The helper process model is much simpler to implement than the multithreaded server and requires less system-specific support, so it is portable to different platforms. It works on multiprocessor systems and works naturally with standard scripts and forms. For these reasons, the helper process architecture is a good compromise design for UNIX-based Web servers.

The performance of the Web server

With millions of people navigating the Web, there are many more clients than servers, so any Web server can get very busy trying to serve dozens or possibly even hundreds of request every second. There might be many ways to evaluate a Web server, but the consensus seems to have formed that there are three important variables that describe the performance of Web server:
connections per second;
number of bytes transferred and
round -rip time.

Connections per second

The number of connections per second is a critical measure of capacity of the Web server, because each Web request is a separate TCP/IP connection.

We can be estimate it by counting the connections (requests) in the standard Web server log during a period of time and dividing by the number of seconds.

For a real Web server the number of requests received per second is highly variable. Any server system can answer only a given quantity of request in a given time period, and some system will crash when overloaded. It is very important to know the maximum, rather than the average, number of requests per second the system can handle. The maximum number of requests per second represents how well the server can perform when stressed.

Bytes per second

The number of bytes transferred is the total size of the documents, images and output of scripts returned by the server. This sometimes called the „throughput”.

The bytes per second can be calculated by adding up the sizes of the requests in the log files for a period of time and dividing by the time. This may be a slight underestimate of the total bytes transferred, as the server also transmits header information, which is not recorded in logs.

The amount of data transferred is particularly important in considering the performance of the network, as it can only transfer a limited amount of data at one time.

Round-trip time

The round-trip time (RTT) is the time it takes for a client to retrieve a document. This time includes:
setting up the connection;
processing the request;
sending the response to the client.

The RTT is different for each client, and even from request to request, and it depends on many factors other then Web server itself.

Monitoring the system

In addition to measuring of the Web service, it is important to measure (and tune) the performance of the network, disks, and operating system of the server platform.

The details are specific to each type of system. For instance, most UNIX workstations have programs, such as vmstat or sar, which report, how busy the processor is, how much memory is in use.

1.5.2. The network

The Internet is a collection of many co-operating networks. Any given Web request travels over one or more networks and the weakest link in this chain of networks will determine the overall quality of the network service. There are many types of computer networks, but all networks share similar basic characteristics. Some of important characteristics of a network that affect the performance of the Web are :

latency or delay;
capacity (bandwidth);
congestion;
protocols used.

Latency or delay

The most important aspect of network is delivering information with little noticeable delay or latency. This delay is caused by two reasons:

delay of distance;
delay of relay points

Delay of distance;

Data can be transmitted no faster than the speed of light. It takes 1/9 of a second for light to travel around the earth following it’s surface, so it takes at least that long to send a request to the other side of the world and to receive a reply.

Delay of relay points

The Internet is a large collection of networks, connected by relays, routers, bridges and modems. When a message travels across the Internet, it is transferred from net to net though these relay points, which can add significant delays. The distance a message travels on the Internet is often more a matter of how many „hops” is makes - the number of times it is delayed - rather than the geographic distance.
It will be always faster to use data that is „close” rather than far away. This is one of the reason, why
replicating and
caching
information near user is so important.

Capacity (bandwidth)

The speed (capacity) of a network is usually expressed in bits per second. The speed of network is determined by the physical medium used to transport the data (twisted pair, coaxial cable, optical fiber), the limits of relays and interfaces and the transport protocols, used to manage the network traffic. A network link is characterised by a theoretical maximum speed based on the physical medium, interfaces and transport protocol. The actual speed in practice is, of course, less than the theoretical maximum.

Commonly used networks have bit rates ranging from 9600 bits per second (bps) for a personal computer modem, up to many millions of bits per second (Mbps) for experimental research networks. A Web request will usually traverse several network connections, with different technologies and speeds:

Technology�Theoretical bandwidth�General use��Modem�9.600 bps�personal computer��Modem�14.400 bps�personal computer��Modem�28.800 bps�personal computer or LAN or server to ISP��Phone�56 Kbps�LAN or server to ISP��Phone�64 Kbps�LAN or server to ISP��Phone (ISDN)�128 Kbps�personal computer��Phone (ISDN)�1,5 Mbps�WAN, LAN to ISP��Ethernet�10 Mbps�LAN��Trunk�45 Mbps�WAN��FDDI�100 Mbps�LAN��ATM (OC-3)�155 Mbps�WAN��ATM (OC-12)�622 Mbps�WAN��
The speed of computer network

Web clients may connect to the Internet
through 14,4 -128 Kbps modem using SLIP (Serial Line IP) or PPP (Point-to-Point Protocol);
through a local area network (LAN). The inside speed is typically 10-100 Mbps.
directly through ISDN (Integrated Services Digital Network) from the local phone company.

A site will typically connect to an Internet Service Provider (ISP) with a connection of 56 Kbps to 1,5 Mbps.

The ISPs connect to the Internet backbone with connections of 45 Mbps or faster.

Of course
the LAN has only tens or hundreds of computer attached,
the connection to the ISP carries all the traffic from the whole site, and
the connection from the ISP to the backbone probably carries all the traffic from several sites.

The speed of network is an extremely fundamental parameter for the Web, as it largely determines the time needed to transfer information from the server to the client. Since users are not likely to wait for more than few minutes for most Web documents, anything that takes longer than that to arrive is impractical.

�Network speed & Time to transfer��Document�Size�14.400 bps�56 Kbps�100 Mbps��ASCII text�10 KB�6 sec�1,4 sec�0.0008 sec��Image�1 MB�9,25 min�2,5 min�0.08 min��Movie (5 minutes playing time)�50 MB�7,7 hrs�2 hrs�4 sec��
Transfer times for Web documents over different networks
(theoretical maximum network speeds)

From the point of view of an individual request, the speed of the network is how fast data can be transferred between the client and the server. The transmission travels over several network links, and the effective speed of network is limited by the slowest of these links. If the user connects to a network with a 14.400 baud modem, no matter how fast the other parts of the network are, the client cannot receive data over the last link at a rate any faster than 14.400 bits per second.

�

The client connects to the server through different links with different speeds. The slowest determines the fastest speed that data can reach the client

Congestion

Networks are shared resources, like highways. When they are overloaded, traffic slows or cannot move at all. Each user needs only a tiny part of the capacity of the whole network, but even high-capacity network may be overwhelmed by traffic. It will never be possible or economical to make every network link large enough to handle the maximum possible load. New computers and networks are added to the Internet all the time and there are always events that will create heavy traffic, so network links and relays will always be subject to overloads.

The Web itself can cause congestion in two specific ways:
on local networks with large numbers of clients and
on the local network of the Web server.

On local networks with large numbers of clients

Personal computers and workstations are usually connected to a local network, which connected to the Internet through a router, bridge or modem of some kind. All packets to or from other networks must travel over this relay. This same usually works well as long as most of the traffic is within the network, with only small proportion going to and from the Internet. But Web browsers have changed all that, because practically everything you can click on is outside the local network. Even a moderate number of people using the Web can dramatically increase the traffic through the relay to the wide area network. This has potentially dire results, as the whole local network may even become unusable.

�

The user’s (browser’s) view of the Web (it hides the real network)

�

The real network architecture from clients view
(the link from the local network to the Internet may be a bottleneck)

The problem here is that every computer on the local network is trying to reach all kinds of places on the Internet, and they must all go out through the relay. The conceptual „fan-out” from the browsers must be carried at some point over a single shared link. This shared link is vulnerable to becoming overwhelmed.

On the local network of the Web server

On the Web server the problem is the converse. Browsers from everywhere are trying to connect to the server. These connections must all come in through a relay and the local network. In this case, the clients conceptually „fan-in” to the Web server, and must be carried at some point across a single shared link. With millions of people on the Web, it is easy to see how the last leg of the journey to a popular Web server could get swamped.

�

The server’s view of the Web (it hides the real network)

Each network may have a different configuration, but the basic fan-out and fan in problems exist at many places in the Internet. Upgrading network capacity is very expensive, and in any case, it is unlikely that network can keep pace with the proliferation of local networks and Web browsers. The best solution to congestion is to reduce the number of connections between clients and servers. This can be done by caching information closer to the users.

�

The real network architecture from server’s view
(the between the server’s local network and the Internet may be a bottleneck)

Protocols used

The Web uses own protocol, HTTP, and also relies on Internet protocols such TCP/IP. Web requests use the general-purpose Internet services and protocols in ways that are sometimes inefficient and sometimes, by the sheer volume of Web traffic, overwhelm them. It is not the case that the Internet is „broken” or performs poorly in general. The problem is that the Web is using the Internet in ways in which the network protocols were not designed, and the volumes that existing equipment and software were never intended to accommodate.

Domain Name Service (DNS)

One problem with the Web services is the translation of network addresses. The URL contains an Internet host address. This host name must be converted into network address and then to route through network to the computer. The translations usually done by a network name service, such as the Domain Name Service (DNS). The DNS system keep lists of host addresses it knows and will automatically contact other servers (using the Internet) to find addresses it does not already know.

For every Web request, the browser contacts local DNS server to ask for the address of the host it needs to find. If the local network name service is slow, each Web request will be slowed. Worse, with millions of Web requests per day, local name services may be overwhelmed. Just as a shared link to the Internet may be overloaded by the Web traffic, the local DNS may be overloaded by address lookups from Web browsers. A name service that was adequate a few years ago may be completely inadequate today.

The browser or client computer may help the situation by remembering (caching) addresses it has already looked up; this should be done as much as possible. The network name service is usually provided by the network service provider, so there may be little that an information provider can do about DNS problems. A medium-to-large organisation may well wish to run its own local DNS service, through, to ensure adequate performance.

TCP/IP and HTTP

The HTTP protocol was designed to efficiently transfer files in a single request-response transaction, using separate TCP/IP connection for each transaction. This design causes two sort of problem:
series of requests and responses;
slow start-mechanism.

Series of requests and responses

In the frame of TCP/IP protocol it is difficult to provide services that require a series of requests and responses, forming single session. For example searching or authentication often need several requests and responses in a series.

TCP/IP was designed to provide a reliable connection for session-oriented services, such as Telnet and FTP. These services set up a connection and exchange substantial amount of data for relatively long periods of time. A Telnet session may last many hours, with many commands and results transmitted for the login session. An FTP session may transfer many files and may also last for hours. For these services TCP/IP provides reliable and efficient service.

HTTP and Web use TCP/IP in ways that it was not really designed for. There is nothing illegal or improper about HTTP pr the Web; they are just not ordinary internet services. The Web makes extraordinary demands on TCP/IP and servers, which stresses otherwise sound systems.

The first performance problem stems from the cost of setting up and closing a TCP connection. This is done by the exchange of three packets (including acknowledgements), which can take a long time (perhaps more than 1/2 second) to travel between widely separated computers on Internet. It takes only a few milliseconds to fulfil a request for short document, so the waiting time during the establishment of the connection can be large proportion of the total time to fill the request.

Slow start-mechanism

The TCP protocol also performs slowly for Web request because of the way it manages the amount of data it sends before waiting for acknowledgement. TCP uses an adjustable window to automatically adapt the amount of data sent form the source to the capacity of the receiver. Initially, the source sends one packet and waits for the acknowledgement, then sends larger and larger groups of packets before waiting for acknowledgement. This slow-start procedure discovers the best number of packets per burst for that individual network connection.

In case of Telnet

The slow-start mechanism works very well for most Internet services, such as remote logins or file transfers. The user establishes a single connection, then types a series of commands, each of which returns some results. A Telnet login connection, for instance, last minutes or hours, and exchanges thousands of packet in each direction. The adjustable window reaches an optimal size after first few changes, and the data is transferred very efficiently for the rest of the session.

In case of Web

Unfortunately, this slow-start mechanism, which works so well for login sessions, works too slowly for typical Web requests, which require only a few packets in total. The request is sent, the document transferred, and the connection closed before the „right” window is reached. Every time a small document is sent, the server waits for acknowledgement from the client several times as it builds up to the optimal windows size. But the optimum is never reached because the transfer is completed using only few packets. The waiting time serves no good purpose for the connections.

The wasted time setting up connections and adjusting the window are compounded by multimedia documents containing several inline images. Each inline image must be obtained by a separate request, which occurs the costs of setting up a connection and repeats the slow-start procedure. The waste is all the worse since all these connections are usually between the same server and client, and the documents and images could all be sent using a single connection. Furthermore, if all the data were sent over one longer-lasting connection rather than several shorter ones, the adjustable-window mechanism would probably achieve its purpose. Using the same connection for several requests would definitely be much more efficient.

The shortcomings of HTTP can be addressed only by creating a new protocol and software that uses it. Individual information providers and system administrators can’t do much about them until a new protocol is adopted and the software to implement it available.

1.5.3. The browser and the client system

If the client system does not perform well, the Web service will appear to be slow or broken. From users’s perspective, it will take a long time for the document to be displayed, and it might not arrived at all - regardless the speed and capacity of the network or Web servers. The typical problems:
some browsers simply cannot display anything other than ASCII text;
other browsers that are capable of displaying multimedia documents may not be able to display all types of information;
even when the browser can display multimedia documents in principle, this may be impractical on a given system because the images may take too long to transmit or require too much memory to display.

No matter how well servers and the rest of the system work, if the client is inadequate, some types of information simply are not available to the user. Information providers often create documents with text or low-resolution alternatives for images, so that as much information is available as possible for all clients. Unfortunately, there is little that an information provider or Web server administrator can do about some kinds of inadequacies and problems in Web client systems, or about the fact that there is such a diversity of Web clients in use.

1.6. Organisation of the document tree

The World Wide Web gives users access to information in millions of documents on thousand of computers. All this information is available through a single interface, a Web browser, which gives the user a single, consistent view of the information. But there are two different views:
the view that the user sees is actually a convenient fiction, which we could call: logical view of the organisation of the information of WWW;
the real, physical organisation of the information is much different from the logical organisation.

The user does not want to know the details, but the information provider must deal with them. Optimising the organisation of information is one of the most important issues for information provider on the Web.

The information in the World Wide Web is organised as multimedia documents. A document is obtained by using its URL, which contains the name of the server system and the name of the document on that server.

In contrast of that the documents on the server are organised just like conventional hierarchical file systems, with a root and directories that contain other directories or files (documents). Each Web server serves only one such tree of documents. Just as Web browser provides a seamless view of the information on the whole Web, the Web server provides a seamless view of the information provided by that server.

The Web server acts as a translator between
the simple view of a single tree of documents (what the users on the Web see) and
the files that contain the information.

1.6.1. Connections between logical and physical views

Mapping

The Web server software can translate from URL to the actual name of the file using rules in its configuration files:

MAP /siker/* /users/image/siker-projekt/web-docs/

which says when a user requests a URL to, say

siker/kep12.html

the server should return file

/users/image/siker-projekt/web-docs/kep12.html

Symbolic links

The server can also use the facilities of the operating system and the file system itself to make such mappings. For instance, on UNIX system, the translation above could have been done by creating symbolic link from

/siker/

to

/users/image/siker-projekt/web-docs/

insted of using configuration file.

A large server may have many thousands of documents to serve, amounting to gigabytes of disk storage. This amount of information will not fit on a single disk. In any case managing a large amount of information as a single tree is difficult It is much better to break up the documents into groups, store the parts of the tree as convenient, and let the Web server make them appear to be single tree through the mechanisms described above. Parts of the Web tree may be on completely separate disks, in a distributed file system, or even on other servers.

1.6.2. Spreading the documents across several servers

For a really busy server, it may be desirable or necessary to spread the documents across several servers. In principle, this would allow each Web server to handle part of the load, improving the service. There are many possible configurations, no one way is guaranteed to work best for any particular server. The two main ways is:

divide the documents among several different servers and
replicate (mirror) the entire document tree among several servers.

Dividing the documents across several servers (each document stored only once)

For instance the siker projekt might acquire its own Web server and move all its Web pages there. This reduces the number of documents served by the original server and, it is hoped, speeds the requests over the two servers.

One problem is that there may already be many documents around the Web that point to the original location of the siker projekt. New documents will have the correct URL to the new server, and the links in local documents can be changed to point to the new location. But what about the hotlists and other documents that people have created pointing to the siker pages? These older URLs point to the original server, not to the new one, and there is no way for the siker projekt to find them, let alone change them.

When one of the out-of-date URL is selected, one of three things can happen:

The user can receive an error message saying that the document does not exist;
The user can get a message indicating the document has moved and its new URL;
The user can get the correct document from the new server.

The first possibility is not desirable, as the document really does not exist, and we would like the user to successfully get it. The second possibility can be done by placing a short document in the old location, explaining where the information has moved. This helps little, but the links still don’t work right. The third choice is really what we want to happens.

There are several ways to make this sort of forwarding or redirection happen.
some Web servers allow a mapping to include a full URL;
another way to redirect an access is to use a simple CGI script that returns the new URL of the document in HTTP header information using the Location header. This header line tells the client the correct URL of the document, and the browser can automatically send the request to the new server without the user’s being aware of the redirection. In fact, this is what the server itself does when the MAP directive sends the request to a new server.

Both of these mechanisms will result in the desired effect> if someone requests the old URL, they will get the correct document at its new location. However, notice, that the old server must answer the requests to tell the clients where the new location is. This is less work than serving the whole document (especially if it has embedded images), but it may add up to quite a bit of traffic for a popular document. Basically, the Web server is required to keep track of all documents it used to have but doesn’t anymore. This is a real maintance headache< the server is burdened with many MAP directives and many requests for documents it no longer serves.

The redirections mechanisms provide the ability to split up the documents among servers while maintaining the facade of a single Web server. But if several servers are available, how should the documents be divided? This can be a difficult decision. Suppose that the siker pages are the most popular pages on the server, with thousands of requests per hour. Moving the entire siker projekt to its own server may relieve the stress on the first server, but it has simply moved the load to the second server. Spreading the documents evenly among servers does not necessarily spread the load evenly, as documents are not all equally popular. Characteristically, home pages, „what’s new” pages, indexes are much more heavily used than other pages. So to balance the load among several servers, it would be necessary to determine which pages are used the most and spread them evenly accross servers.

Replicating (mirroring) (each document has minimum one more copy)

Ideally, the most popular pages should be served from several servers to spread the load. Replicating or mirroring documents is this way is a second way to spread documents over several servers. Instead of splitting the tree among servers and redirecting requests, the whole tree is copied onto a second server and users can get the same documents form either server.

Mirroring an entire server is not difficult to do and indeed it is widely done. Having the documents available from several servers has obvious advantages:
even if one server is down, the documents may still be obtained;
users can obtain documents from a server that is „near” them, which speeds up the delivery of documents dramatically. For example, Australians mirror many Web servers from other parts of the world, because it takes so long to access Web server in Europe or North America from Australia. It is more convenient to move the documents to Australia once and serve them from a mirror server there.

There are problems with mirroring:
it is an extremely blunt instrument: copying all the documents of the server includes many that will rarely be used. This is a waste, especially for a server with a very large number of documents and
even worse problem is that the mirrored copy must be kept up to date. New documents are added, other deleted and existing ones changed. How does the mirrored copy reflect the changes? In practice, mirrored servers usually take a snapshot of the server periodically, perhaps once in the middle of the night. Taking a snapshot every so often means that the mirrored version my not be totally up to date if documents change rapidly. Mirroring the server is a nonselective and very simpleminded way to cache documents,
another detail to worry about with mirrored servers is how users should locate them. If the user has a URL that points to the original location, how can they obtain the document from the mirrored copy? One alternative is to set up a proxy that relays requests from Web clients to appropriate servers.

Distributed file-systems

A distributed file system makes disks attached to several computers on a network appear as one file system on the local computer. Distributed file systems make it possible to access the same file from any computer on the network no matter where the file is actually stored.

There are many distributed file systems available:
Novell of Pcs;
Apleshare for Macintoshes;
AFS, DFS and NFS for UNIX.

Each product has good points and bad points, but they all do fundamentally the same thing.

Using a distributed file system allows several Web servers to „mount” the Web documents and access them across network. The advantage of this approach is that the distributed file system software automatically keeps the documents up to date on each server and handles all the details of moving the documents from one server to another. Furthermore, the distributed file system will copy documents only as needed, not the whole document tree. This is a significant savings in storage and copying time, as there are relatively few popular documents.

The performance of this arrangement depends on the effectiveness if the distributed file system. Fetching document across the network is much slower than reading them from disk, so a particular distributed file system may perform much worse than replicating the documents on local disks. In addition distributed file system uses the local network, so it adds to the total traffic. This may be problem for an overloaded network.

1.6.3. Location-independent names

It would be advantageous if users could specify the name of the information they want and let servers deliver it from the most convenient or efficient source. In other words, it would be very useful to separate
the name of the document
from it’s location,
to give documents location-independent name.

The Internet community has defined such names, called Universal Resource Names (URN). According to generally accepted proposals, a URN is the name of a document (or other object) that may be available from several servers at different URLs. When a Web user clicks on an anchor that contains URN, the browser must look up the URN to obtain a list of URLs that point to the location of the documents. The browser then retrieves the document using one of the URLs.

URNs are not yet in widespread use, although several candidate schemes are under development with prototype URN services and browsers that use them.

1.7. Caching Web information

When a users contacts the Web server to request documents or run scripts, response to these requests may be slow, especially for servers that are
far away from the client;
connected through slow network link or
very busy.

The entire document must be transferred over the network for each request, which uses up network capacity, especially for large files, such images. The Web is a major load on the whole Internet and the Web server itself must serve all the requests, no matter how many times the same document is delivered to the same place.

For instance, consider a popular „What’s new” page. Many people will want to check the page every couple of days to find new and interesting Web sites to visit. With thousands of people requesting the same document, connecting to the server and transferring it over the network, a considerable amount of resources are being spent distributing just this one item.

For local area networks the problem may be acute. If there are dozens of people on the local network using the Web and they each request the same popular documents, these documents are retrieved from the same Web server repeatedly. This can be a very serious load, especially on the link between the local network and the Internet. This is often the slowest and most congested part of the local network and is likely to be expensive to upgrade.

For a popular document, it would be nice if it could be saved and reused, so that it could be obtained without transferring it again from the original Web server. This is particularly efficient for large organisations such as corporations and universities, which could fetch a copy of, say, the „What’s news” page once and then have everyone on their local network use the local copy. The requests from the users are served as much as possible from the cache on the local network, rather than from the originating Web server over the Internet. Only relatively few requests are sent from the caching server to the Web server over the Internet.

The potential benefits are clear. It is faster to fetch a document from a local server than from one far away, and if each document is fetched only once and then reused, the load on the relay and the wide area network is vastly reduced. The load on the originating Web server will be reduced because it serves only one request from the caching server, which satisfies many requests from the users on the local network.

1.7.1. The work of Web caching

When the user clicks on an anchor, instead of automatically connecting to the Web server designated in the URL, it would be better to check to see if the document is available locally and, if so, to use that copy instead of the one on the originating Web server. The basic idea of caching is to save documents after they have been requested, on the assumption that they will be requested again. In practice, this assumption is true often enough to justify caching recently requested documents.

There are several ways that document can be cached:
the Web browser itself can save documents it has fetched;
the Web servers themselves may act as caches;
use an intermediate server that provides the caching.

The Web browser itself can save documents it has fetched

The NCSA Mosaic and Netscape browsers itself can save documents and images. The browser stores documents and images on the local PC or workstation, and if one of them is requested a second time, the browser uses the copy it has stored rather than making a request to the server. Caching by the browser is tightly limited:
by the memory and disk space available on the client computer;
the cached documents might not be saved after the browser is closed, so each session might have start over again;
since each copy of a browser is caching its own documents, each user may well have its own copy of the same popular documents as his neighbour. This is a waste and does little reduce the load on the Internet, since each user fetches the document at least once.

Caching by the browser helps a little, but it is too limited to solve the overall problems of the Internet.

The Web servers themselves may act as caches

This is especially true for server that contains many pointers to the servers:
the Web server itself can fetch the document and modify the links to point to its local copy rather than the more distant original;
the replication or mirroring is also a form of caching, because the documents are copies to several servers to improve their availability and reduce the load on server. Caching and replication of documents by servers makes accessing some documents more convenient, but the clients must still connect to the Web server, which means that the load on the Internet is not reduced.

Use an intermediate server that provides the caching

The intermediate server acts as an agent representing the server to the client and the client to the server. Such a server is usually called a „proxy server” or just a „proxy”. In general, proxy servers forward Web requests from clients to other Web servers and return responses from servers to clients. The purpose is to filter or redirect the requests from some reason - usually to improve performance (or to enforce a security policy).

There are many proxy servers, including CERN proxy, which is the most widely used Web caching proxy and so is used here as the principal example.

Redirecting requests to the proxy

In order for a caching proxy server to work, the client browser must send the request to the proxy instead of the Web server specified in the URL. There are two ways to do this:
the URLs can be rewritten to point to the caching proxy or
the browser can be configured to send requests to the caching proxy.

The URLs can be rewritten to point to the caching proxy or

The first possibility is to rewrite the URL, responding the address of the caching server. In this scheme, a request for the URL

http://server.org/interesting.html

would be changed to something like

http://cache.local.org/ http://server.org/interesting.html

The caching proxy-server at cache.local.org/ would examine the URL and return the document from its cache or fetch the document from server.org if necessary. This is exactly we want to happen, but it is very inconvenient , if not impossible, to modify every URL in every document.

The browser can be configured to send requests to the caching proxy

The best way to redirect requests to a proxy server is to configure the client browser to do so automatically. The Web browser can, in principle, check one or more local caches and/or send the request to appropriate server. However it is much easier to configure Web browser so that it sends all requests to a proxy. Most Web browsers support this feature and it works with any kind of local caching server (see the Preferences menu of your Web browser).

The idea is that you configure your browser to refer URLs to an appropriate caching proxy server and let the browser and proxy server take care of the rest of the details. The configuration is done by setting environment variables or through preferences menu. Different proxies can be used for the different protocols used by the Web browser: HTTP, FTP, Gopher and NNTP.

From the point of view of the user, the browser works the same with or without caching, the URLs are unchanged, and the right thing happens when an anchor is clicked on. From the point of view the Web server, the proxy server is just another client, so everything works as expected. In this sense, the proxy is transparent to both the user and server.

The work of the proxy server

A caching proxy server has a fairly simple design. It does four things:
it receives requests from clients;
serves them from its cache is possible;
fetches documents from other servers, if they are not in the cache, and
manages the cache of documents.

Notice that a proxy server is capable of acting both as a server (to fulfil requests form clients) and as client (to make requests to servers). I also manages its information store, which may contain information originally form many different Web servers.

As far as the browser is concerned, the proxy is a Web server. The client opens a connection to the proxy and sends the HTTP requests.

The proxy server determines if it should serve the request itself or should pass it along to the real server. This decision involves several steps, usually guided by rules specified by the server administrator. The rules may specify, for example,
which documents should be cached and
for how long.

For instance, if the request is actually a filled-in form, such as a query, then the request must be always forwarded to the Web server. The output of any CGI-script is a dynamic document that may be unique each time it is requested, so they cannot be cached.

If the request is for a static document, the server must check to see if it has a copy of the document. Strictly speaking, the server wants to match the HTTP request, which includes not only the URL but the metainformation in the HTTP headers as well. In practice, though matching the URL is what really matters.

But note that the proxy must assume that a document with the same name but from a different Web server is, in fact, two different documents. Thus, the same document may be cached twice, under different names. Unfortunately, this is quite common. There are many little images, such as balls and arrows, that are widely used as icons and buttons. These popular images have been copied to many Web servers and used in many different documents. In this case, the exact same image is likely to be cached from many different Web servers.

If the document is not in the cache (or out of date, or is an uncacheable result of script), the proxy server holds open the connection from the client and acts like a browser itself, opening the connection to the Web server and sending HTTP request. The response from the server is relayed to the browser as if the request had been sent directly to the Web server. When everything works correctly, neither the browser nor the Web server will notice that the proxy server was involved: the cache is transparent.

When a document is fetched by the proxy server, it will be stored in the cache if possible. This is a simple storing a copy of the document on the local disk, end remembering that a copy is available. Documents can be cached from many servers, and different documents may have the same name on different servers, so the proxy must keep
track of the name of the document and
the server it came from.

The proxy must also keep track of when the document was fetched. Managing the cache of document is a straightforward problem, though a caching server may easily accumulate thousands of documents amounting to many megabytes of storage.

Maintaining consistency

A big problem with reusing copes of documents is keeping them up to date. I and when the original document is changed, the cached copy becomes inconsistent with the original and should not be used. Unfortunately, the proxy server will continue to hand out the stale version of the document unless and until it fetches a new version. Keeping the cached copies of information consistent with the original is a general problem for many computer systems, usually called „cache consistency’ or „cache coherence”. It is often a difficult problem to solve, especially for decentralised distributed systems such as Web.

The fundamental problem is for the cache to know when the original document has changed. There are two possibilities:
the originating server can notify the caching servers that the document has changed, or
the caches can ask the originating server is the copy is still valid.

For Web servers neither alternative is very satisfactory.

There is no practical way for the originating server to notify caching servers, since the originating Web server does not know where the document is cached. Even if did, it would be impractical to attempt to notify what could be hundreds of caching servers every time any one of thousands of documents. changed. This could require hundreds of messages over the network, and might well be more work for the server and network than just serving all the requests for the documents without the caching proxy.

On the other hand it is easy for the caching server to check if its copy of a document is up to date. The caching server can obtain a fresh copy of the original document and cache it if it has changed. But contacting the originating server every time a document is requested from the cache would be nearly as costly to Internet and the originating server as fetching the document each time, and would be slower for the browser and the user. This would cancel much of the advantage of using the cache. This would be especially wasteful for information that seldom changed, as the cached copy would nearly always be up to date.

For this reason, caching servers generally do not check the validity of cached documents every time they are requested. Instead, the freshness of a document is checked periodically. The strategy is to check as few times as possible while keeping the information as up to date as possible. The most common approach is to keep a copy of a document is requested again after that period, it is fetched again from the originating server to see if it has changed.

The expiration time is established by rules set by the caching server administrator. The goal is to try the set „the time to live” of each document to more or less match how often the document changes. Obviously is very difficult for anyone to predict when the document will next be changed, as the document can be modified one second after it fetched, or never modified at all. Using a time to live is not perfect; there are bound to be items when a cached copy of document is out of date, and times when the original document is still unchanged at the expiration day of the copy.

Most caching servers allow the administrator to control the time to live. The widely used CERN proxy server lets the administrator control the caching of documents according to their URLs. The rules can be used to set the time to live of individual documents, group of documents, or documents from particular servers.

This approach is not foolproof, either in theory or in practice. But, imperfect as it is, caching is very practical and usually provides many advantages that more then make up this problem.

1.7.2. Tuning a caching server

There are several parameters that can be adjusted when managing a caching proxy. The details of hoe to configure the cache vary for each type of server, but each caching server has much the same general parameters to tune.

Amount of the storage

Amount of the storage available sets the limit on the cache. The more information that can be cached, the more likely that requests will be satisfied by a cache hit. How many documents can fit in a cache? Most Web documents (HTML text and small images) are fairly small, tens of kilobytes of storage. Many thousands of documents of this size can easily stored in a practical disk cache. However, multimedia documents featuring many images and sound clips are much larger and are gaining in popularity. And movies (digital video) are even larger. Thus, as Web documents become larger, fewer can fit an the same size cache. Fortunately, it is relatively easy to provide large amounts of storage for a proxy server cache.

What documents should be cached?

The caching server also manages what documents are cached and how the cached copies are kept consistent with the originals:
the results of scripts should never be cached
nor should documents requiring authorisation or payment;
some documents have explicit expiration times, the proxy server should it consider;
similarly some documents can have a „don’t cache me” message provided by the originating server;
documents from local or nearby Web servers probably should not be cached, as they can be retrieves as easily from the Web server as from the caching server.

The widely used CERN proxy server may be configured to cache documents whose URLs match certain patterns. This feature can be used to specify that documents from nearby servers are not to be cached, or that some types of documents, such as images, should always be cached. There may be other parameters to configure, such as the time to retain documents in the cache and the address of other caches.

The usual strategy for keeping documents up to date is to make a reasonable guess as to how long to use the cached copy before refreshing it. Proxy servers usually keep documents for 24 or 48 hours, after which time they connect to the originating server to obtain an up-to-date copy if requested. This policy means that users may receive a copy of the document that is one or two days out of date, but no older. For many purposes, this may be acceptable.

Some servers elaborate on this policy, holding documents for a time proportional to the time since the document was last changed. For instance, the rule might be to keep a document one tenth the time it has been unchanged. So, a document that was last changed 60 days ago will be kept for 6 days, rather than one. This heuristic rule captures the empirical fact that documents that have not changed in a long time are unlikely to ever change.

The CERN proxy server supports such rules through the CacheLastModified parameter in the configuration file.

The effectiveness of caching

The size and retention strategy of the cache should be adjusted to maximise the number of cache hits. The proxy server can log hits and misses; these logs could be analysed to evaluate the hit rate of cache. These logs tell which documents were served from the cache (hits), which were requested from other servers (misses), and when.

�

Content

� TARTALOM \o �1. Web servers	� UGRÁS _Toc460945200 � OLDALHIV _Toc460945200 �2��
1.1. Introduction	� UGRÁS _Toc460945201 � OLDALHIV _Toc460945201 �2��
1.2. The parts of the Web servers	� UGRÁS _Toc460945202 � OLDALHIV _Toc460945202 �2��
1.3 The Web server software	� UGRÁS _Toc460945203 � OLDALHIV _Toc460945203 �2��
1.3.1. The job of the Web server	� UGRÁS _Toc460945204 � OLDALHIV _Toc460945204 �2��
1.3.2. The HTTP protocol	� UGRÁS _Toc460945205 � OLDALHIV _Toc460945205 �2��
1.3.3. The connection	� UGRÁS _Toc460945206 � OLDALHIV _Toc460945206 �2��
The request	� UGRÁS _Toc460945207 � OLDALHIV _Toc460945207 �2��
Method	� UGRÁS _Toc460945208 � OLDALHIV _Toc460945208 �2��
Universal Resource Identificator (URL),	� UGRÁS _Toc460945209 � OLDALHIV _Toc460945209 �3��
The protocol version	� UGRÁS _Toc460945210 � OLDALHIV _Toc460945210 �3��
Other optional information	� UGRÁS _Toc460945211 � OLDALHIV _Toc460945211 �3��
Example	� UGRÁS _Toc460945212 � OLDALHIV _Toc460945212 �3��
User-side	� UGRÁS _Toc460945213 � OLDALHIV _Toc460945213 �3��
Client-side (Unix-like)	� UGRÁS _Toc460945214 � OLDALHIV _Toc460945214 �3��
The response	� UGRÁS _Toc460945215 � OLDALHIV _Toc460945215 �4��
Status line	� UGRÁS _Toc460945216 � OLDALHIV _Toc460945216 �4��
Description of the information in the response: metainformation	� UGRÁS _Toc460945217 � OLDALHIV _Toc460945217 �4��
Example (Unix-like)	� UGRÁS _Toc460945218 � OLDALHIV _Toc460945218 �5��
How it works?	� UGRÁS _Toc460945219 � OLDALHIV _Toc460945219 �5��
1.4. Formulating of the request	� UGRÁS _Toc460945220 � OLDALHIV _Toc460945220 �5��
1.4.1.The different between Web script and gateway	� UGRÁS _Toc460945221 � OLDALHIV _Toc460945221 �5��
1.4.2.The Web script	� UGRÁS _Toc460945222 � OLDALHIV _Toc460945222 �6��
1.4.3.The executable Web script	� UGRÁS _Toc460945223 � OLDALHIV _Toc460945223 �6��
1.4.4. Running of the script	� UGRÁS _Toc460945224 � OLDALHIV _Toc460945224 �7��
1.4.4.1.The Common Gateway Interface: CGI	� UGRÁS _Toc460945225 � OLDALHIV _Toc460945225 �7��
1.4.4.2. Netscape Server Application Program Interface: NSAPI	� UGRÁS _Toc460945226 � OLDALHIV _Toc460945226 �7��
1.4.4.3. Windows possibilities	� UGRÁS _Toc460945227 � OLDALHIV _Toc460945227 �7��
1.4.4. The script’s view from two side	� UGRÁS _Toc460945228 � OLDALHIV _Toc460945228 �7��
1.4.4.1. The user’s view	� UGRÁS _Toc460945229 � OLDALHIV _Toc460945229 �7��
1.4.4.2. The server’s view	� UGRÁS _Toc460945230 � OLDALHIV _Toc460945230 �7��
1.4.5. The cost of using scripts	� UGRÁS _Toc460945231 � OLDALHIV _Toc460945231 �8��
1.4.5. Occurring a problem	� UGRÁS _Toc460945232 � OLDALHIV _Toc460945232 �8��
1.5. Architecture, improving the performance	� UGRÁS _Toc460945233 � OLDALHIV _Toc460945233 �8��
1.5.1. The Web server	� UGRÁS _Toc460945234 � OLDALHIV _Toc460945234 �9��
The Web server architecture	� UGRÁS _Toc460945235 � OLDALHIV _Toc460945235 �9��
One processor’	� UGRÁS _Toc460945236 � OLDALHIV _Toc460945236 �9��
More then one processor	� UGRÁS _Toc460945237 � OLDALHIV _Toc460945237 �9��
The tasks of Web servers	� UGRÁS _Toc460945238 � OLDALHIV _Toc460945238 �9��
A simple cycle	� UGRÁS _Toc460945239 � OLDALHIV _Toc460945239 �9��
Execution of CGI scripts and other programs	� UGRÁS _Toc460945240 � OLDALHIV _Toc460945240 �9��
Data compression and encryption	� UGRÁS _Toc460945241 � OLDALHIV _Toc460945241 �10��
Data compression	� UGRÁS _Toc460945242 � OLDALHIV _Toc460945242 �10��
Data encryption	� UGRÁS _Toc460945243 � OLDALHIV _Toc460945243 �10��
Accessing documents	� UGRÁS _Toc460945244 � OLDALHIV _Toc460945244 �10��
Different server configurations	� UGRÁS _Toc460945245 � OLDALHIV _Toc460945245 �11��
One process per request	� UGRÁS _Toc460945246 � OLDALHIV _Toc460945246 �11��
A multithreaded server	� UGRÁS _Toc460945247 � OLDALHIV _Toc460945247 �12��
Operating system SUN Solaris	� UGRÁS _Toc460945248 � OLDALHIV _Toc460945248 �12��
Operating system Microsoft Windows NT	� UGRÁS _Toc460945249 � OLDALHIV _Toc460945249 �13��
Helper processes	� UGRÁS _Toc460945250 � OLDALHIV _Toc460945250 �13��
Version 1.4 of NCSA	� UGRÁS _Toc460945251 � OLDALHIV _Toc460945251 �13��
Netsite Communications Server	� UGRÁS _Toc460945252 � OLDALHIV _Toc460945252 �14��
Evaluation of the helper processes version	� UGRÁS _Toc460945253 � OLDALHIV _Toc460945253 �14��
The performance of the Web server	� UGRÁS _Toc460945254 � OLDALHIV _Toc460945254 �14��
Connections per second	� UGRÁS _Toc460945255 � OLDALHIV _Toc460945255 �14��
Bytes per second	� UGRÁS _Toc460945256 � OLDALHIV _Toc460945256 �14��
Round-trip time	� UGRÁS _Toc460945257 � OLDALHIV _Toc460945257 �14��
Monitoring the system	� UGRÁS _Toc460945258 � OLDALHIV _Toc460945258 �15��
1.5.2. The network	� UGRÁS _Toc460945259 � OLDALHIV _Toc460945259 �15��
Latency or delay	� UGRÁS _Toc460945260 � OLDALHIV _Toc460945260 �15��
Delay of distance;	� UGRÁS _Toc460945261 � OLDALHIV _Toc460945261 �15��
Delay of relay points	� UGRÁS _Toc460945262 � OLDALHIV _Toc460945262 �15��
Capacity (bandwidth)	� UGRÁS _Toc460945263 � OLDALHIV _Toc460945263 �15��
Congestion	� UGRÁS _Toc460945264 � OLDALHIV _Toc460945264 �17��
On local networks with large numbers of clients	� UGRÁS _Toc460945265 � OLDALHIV _Toc460945265 �17��
On the local network of the Web server	� UGRÁS _Toc460945266 � OLDALHIV _Toc460945266 �18��
Protocols used	� UGRÁS _Toc460945267 � OLDALHIV _Toc460945267 �19��
Domain Name Service (DNS)	� UGRÁS _Toc460945268 � OLDALHIV _Toc460945268 �19��
TCP/IP and HTTP	� UGRÁS _Toc460945269 � OLDALHIV _Toc460945269 �19��
Series of requests and responses	� UGRÁS _Toc460945270 � OLDALHIV _Toc460945270 �20��
Slow start-mechanism	� UGRÁS _Toc460945271 � OLDALHIV _Toc460945271 �20��
In case of Telnet	� UGRÁS _Toc460945272 � OLDALHIV _Toc460945272 �20��
In case of Web	� UGRÁS _Toc460945273 � OLDALHIV _Toc460945273 �20��
1.5.3. The browser and the client system	� UGRÁS _Toc460945274 � OLDALHIV _Toc460945274 �21��
1.6. Organisation of the document tree	� UGRÁS _Toc460945275 � OLDALHIV _Toc460945275 �21��
1.6.1. Connections between logical and physical views	� UGRÁS _Toc460945276 � OLDALHIV _Toc460945276 �21��
Mapping	� UGRÁS _Toc460945277 � OLDALHIV _Toc460945277 �21��
Symbolic links	� UGRÁS _Toc460945278 � OLDALHIV _Toc460945278 �22��
1.6.2. Spreading the documents across several servers	� UGRÁS _Toc460945279 � OLDALHIV _Toc460945279 �22��
Dividing the documents across several servers (each document stored only once)	� UGRÁS _Toc460945280 � OLDALHIV _Toc460945280 �22��
Replicating (mirroring) (each document has minimum one more copy)	� UGRÁS _Toc460945281 � OLDALHIV _Toc460945281 �23��
Distributed file-systems	� UGRÁS _Toc460945282 � OLDALHIV _Toc460945282 �23��
1.6.3. Location-independent names	� UGRÁS _Toc460945283 � OLDALHIV _Toc460945283 �24��
1.7. Caching Web information	� UGRÁS _Toc460945284 � OLDALHIV _Toc460945284 �24��
1.7.1. The work of Web caching	� UGRÁS _Toc460945285 � OLDALHIV _Toc460945285 �25��
The Web browser itself can save documents it has fetched	� UGRÁS _Toc460945286 � OLDALHIV _Toc460945286 �25��
The Web servers themselves may act as caches	� UGRÁS _Toc460945287 � OLDALHIV _Toc460945287 �25��
Use an intermediate server that provides the caching	� UGRÁS _Toc460945288 � OLDALHIV _Toc460945288 �25��
Redirecting requests to the proxy	� UGRÁS _Toc460945289 � OLDALHIV _Toc460945289 �25��
The URLs can be rewritten to point to the caching proxy or	� UGRÁS _Toc460945290 � OLDALHIV _Toc460945290 �26��
The browser can be configured to send requests to the caching proxy	� UGRÁS _Toc460945291 � OLDALHIV _Toc460945291 �26��
The work of the proxy server	� UGRÁS _Toc460945292 � OLDALHIV _Toc460945292 �26��
Maintaining consistency	� UGRÁS _Toc460945293 � OLDALHIV _Toc460945293 �27��
1.7.2. Tuning a caching server	� UGRÁS _Toc460945294 � OLDALHIV _Toc460945294 �28��
Amount of the storage	� UGRÁS _Toc460945295 � OLDALHIV _Toc460945295 �28��
What documents should be cached?	� UGRÁS _Toc460945296 � OLDALHIV _Toc460945296 �28��
The effectiveness of caching	� UGRÁS _Toc460945297 � OLDALHIV _Toc460945297 �29��
�

�OLDAL �

�OLDAL �22�

	
TEMPUS S_JEP-12495-97	Network Computing

httpd

httpd

httpd (parent)

httpd (child)

A new copy...

fork()

httpd
(Parent)

httpd
(Parent)

httpd
(Parent)

httpd
(Parent)

httpd

Request 1. Waiting...

Request 2. In progress...

Request 5. Waiting...

Request 4. Waiting...

Request 3. Waiting...

httpd
(Dispatcher)

httpd
(Helper 1)

httpd
(Helper 2)

Web server

Client

Modem

LAN
10 MBPS

LAN
100 MBPS

14 Kbps

Internet
56 Kbps

slowest link

Client (browser)

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

bottleneck

Client

LAN

Internet

Client

Client

Client

Client

Client

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Web server

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

Client (browser)

bottleneck

LAN

Internet

Web server

Client

Client

Client

Client

Client

Client

Client

