Lecture 1.
Client/Server with Distributed Objects

Goals:

· to place the client/server system into its broader context;

· to examine what object can do for client/server;

· to introduce the principles of distributed objects;

· to expose the problems to be solved of creating a distributed object system;

· to study the main features of RMI.

Contents:

· Distributed Application Concepts

· Distributed Object Concepts

· Remote Method Invocation

1.1 Distributed Application Concepts

Goals:

· to provide a familiarity with client/server concepts;

· to introduce the widely used distributed environments;

· to present the trends in c/s application;

· to emphasise the role of distributed objects;

· to introduce the component objects.

Contents:

1.1.1
What c/s software is needed?

1.1.2
SQL Databases

1.1.3
TP Monitors

1.1.4
Groupware

1.1.5 Distributed Objects

1.1.6 Components

1.1.1 What c/s software is needed?
Rich transaction processing

· nested transactions span across multiple servers;

· long-lived transactions;

· queued secured transactions.

Roaming agents

· personal agents that look after their interests;

· businesses agents to sell their wares on the net;

· sniffer agents looking for trends and gathering statistics.

Rich data management

· multimedia documents;

· compound document management.

· Intelligent self-managing entities

· system administrator for every $ 99 operating system ?

· we need distributed software that knows how to manage and configure itself.

Intelligent middleware

· the middleware must create an illusion that the global network behaves like single computer system;

· users and programs dinamically join, leave and discover each other;

· universal naming conventions to locate any resources on the network;

· you should be able to talk to any resource without worrying about the underlying protocol stacks or transport medium.

1.1.2 Client/Server with SQL Databases
SQL database servers are the dominant model.

[image: image1.wmf][image: image2.wmf]
· management of data alone was not enough.

· a need: to manage the functions that manipulated the data.

· performance improved by encapsulating SQL commands in a procedure that resides on the server as the database.

· procedure is invoked by clients via an RPC-like call.

Advantages

· application logic on the server side

· enforce data integrity

· easy system maintenance

Disadvantages

· procedural SQL extension totally non-standard

· SQL is very poor at managing processes

· SQL middleware is non-standard

· SQL is not suitable for managing rich data

1.1.3 Client/Server with TP Monitors
· in the mainframe world Transaction Processing Monitors are used with every mission critical database.

· breaking complex applications into transactions.

· manage transactions, route them across system, load-balance their execution, and restart them after failures.

Without a TP Monitor

With a TP Monitor

What do TP Monitors do for objects ?

· under the control of a TP Monitor, objects can be managed in a predictable manner (prestart objects, manage their life cycle, provide transaction-level authorization);

· the marriage of objects and TP Monitors will create some interesting new patterns.

· TP Monitors will simply morph into the distributed object infrastructure (standard of CORBA Transaction Service).

1.1.4 Client/Server with Groupware

It builds on five foundation technologies

· multimedia document management,

· workflow,

· e-mail,

· conferencing,

· scheduling.

collects highly unstructured data – including text, images, faxes, mail – and organizes it in a document.

the documents can then be viewed, stored, replicated, and routed anywhere on the network.

workflow

· is used to automatically route events and works from one program to the next in structured or unstructured c/s environments.

· Routes: sequential, parallel, with feedback, circular.

· Acceptance criteria for moving work from one operation to the next.
1.1.5 Client/Server with Distributed Objects
c/s centralized applications sliced into two halves.

Object technology with proper packaging and infrastructure subdivided the structure into self-managing components, that can play together and roam across networks and operating systems.

The benefits of distributed objects

· granular components of software to plug-and-play;

· interoperate across network;

· run on different platforms;

· coexist with legacy application through object wrappers;

· roam on networks;

· manage themselves and the resources they control;

The waves of c/s

1.1.6 Components
Components are standalone objects that can plug-and-play across networks, applications, languages, tools and operating systems.

Components are software ICs. Frameworks are the boards we plug these components into.

Three new markets (Gartner Group, 1995)

· the component market itself

· a market for component assembly tools,

· market for custom application developed using components

Component's properties

· it's a marketable entity

· it's not a complete application

· it can be used in unpredictable combinations

· it has a well-specified interface

· it is an interoperable object

Supercomponents are components with added smarts. The smarts are needed for creating autonomous, loosely-coupled, shrink-wrapped objects that can roam across machines and live on networks.

Supercomponent's facilities:

· security

· licensing

· versioning

· life cycle management

· event notification

· configuration and property management

· scripting

· transaction control and locking

· persistence

· relationships

· easy of use

· self-testing

· semantic messaging

· self-installing

Chapter achievements

At the end of the chapter the student will:

· understand why c/s software is needed;

· be familiar with the different c/s application environment;

· be aware of wider issues in c/s environments;

· be able to explain the main features of distributed objects;

· have a reasonable idea of the software components.

1.2 Distributed Object Concepts

Goals:

· to summarize the power of distributed objects;

· to provide the big picture of the distributed object life cycle;

· to provide an understanding of the role of object manager and naming service;

· to study the fundamental issues associated with the development tools and security;

Contents:

1.2.1
Why distributed objects ?

1.2.2
Object life cycle

1.2.3
Main features

1.2.1 Why distributed objects ?
Power of distributed objects

· any agent in our system can directly interact with an object on a remote host;

· a tool for opening up the distributed system's resources;

· our object can run on remote host;

· transmit an object from one host to another - agents.

1.2.2 Object life cycle

essential operations on an object in a distributed system:

· create

· invoke

· interact

· delete

data, what we need to send over the network

· class reference

· object reference

· method reference

· method arguments

· return values

Class references

· compile time - common class definition

· run time - sending class definition to the remote host and tell it to build a default constructor (ClassLoader)

Object references

can be packaged up and sent over the network - serializable

refers to the original object on the remote host

deferred method invocation

simple implementation - lookup table

Client:

 Class myClass = Class.forName("SampleClass");

 Socket objConn =

 new Socket("sor.iit.bme.hu", 1050);

 OutputStreamWriter out =

 new ObjectStreamWriter(objConn.getOutputStream());

 DataInputStream in =

 new DataInputStream(objConn.getInputStream());

 out.write("new " + myClass.getName());

 int objRef = in.readInt();

Server:

 Hashtable objTable = new Hashtable();

 ServerSocket = ...;

 Socket conn;

 // Accept the connection from the client

 if ((conn = server.accept()) != null) {

 DataOutputStream out =

 new DataObjectStream(conn.getOutputSteream());

 BufferedReader in = new BufferedReader(

 new InputStreamReader(conn.getInputStream()));

 String cmd = in.readLine();

 // Parse the command type from the command string

 if (parseCmd(cmd).compareTo("new") == 0) {

 String classname = parseClass(cmd);

 Class reqClass = Class.forName(classname);

 Object obj = reqClass.newInstance();

 // by constructor

 Integer objID = nextID();

 objTable.put(objID, obj);

 out.writeInt(objID.intValue());

 }

 }

Method references

index of the method

 Class reqClass = Class.forName("SampleClass");

 Method reqMethod =

 reqClass.getDeclaredMethod("MethodName", null);

 Method[] methodList = reqClass.getDeclaredMethods();

 int methodIdx = 0;

 for (int i = 0; i < methodList.length; i++) {

 if (reqMethod == methodList[i]) {

 methodIdx = i;

 break;

 }

 }

 String cmd = "call " + methodIdx + " on " + objRef;

 out.writeUTF(cmd);
Method arguments and return values

data marshaling

· object reference  as we did previously

· object by value field values

Further problems

· Java only solution

· not scalable - development and run time complexity

· index table - ad hoc, no guarantee for uniqueness

· parameter passing - extra overhead

1.2.3 Main features

An object interface specification is used to generate a server implementation of a class of objects, an interface between the object implementation and the object manager, sometimes called an object skeleton, and a client interface for the class of objects, sometimes called an object stub. The skeleton will be used by the server to create new instances of the class of objects and to route remote method calls to the object implementation. The stub will be used by the client to route transactions (method invocations, mostly) to the object on the server. On the server side, the class implementation is passed through a registration service, which registers the new class with a naming service and an object manager, and then stores the class in the server's storage for object skeletons.
In the following sections we will look at each element of a general distributed object architecture in more detail.

1.2.3.1 Object Interface Specification

Goals:

· allow the client to access objects regardless of their implemen​ta​tion details, like hardware platform and software language;

· allow the object server to implement an object in whatever way it needs to;

· reuse already implemented (C, C++, or Smalltalk) objects, wrapping their existing services with object interfaces and using them directly via the remote object system.

A platform-independent description for specifying object interfaces. These descriptions can be converted into server skeletons, which can be compiled and implemented in whatever form the server requires.

· Interface Definition Language (IDL) in CORBA

· Component Object Model (COM) in Microsoft's DCOM

· Interface Specification Language (ISL) in Xerox's Inter-

Language Unification (ILU) system,

1.2.3.2 Object Manager

Manages the object skeletons and object references on an object server.

When a client asks for a new object, the object manager

· locates the skeleton for the class of object requested,

· creates a new object based on the skeleton,

· stores the new object in the object storage,

· sends a reference to the object back to the client.

remote method calls made by the client

· are routed to the proper object on the server,

· the manager also routes the results back to the client.

client requests to the object manager to destroy remote object
· the manager removes the object from the server's storage,

· frees up any resources the object is using.

Some distributed object systems support dynamic object activation and deactivation, and persistent objects. The object manager needs

· to have activation and deactivation method registered for each object implementation it manages.

· a method for storing the object's state when it is deactivated, and for restoring it the next time a client asks for the object.

Depending on the architecture of the distributed object system, the object manager might be located on the host serving the objects, or its functions might be distributed between the client and the server, or it might reside completely on a third host.

Implemented managers:

· registry service in Java Remote Method Invocation (RMI)

· Object Request Broker (ORB) in CORBA system

1.2.3.3 Registration/Naming Service

acts as an intermediary between the client and the object manager.

An implementation of an interface needs to be registered with the service so that it can be addressed by clients. The naming service routes the requests to the proper object server.

If the object manager also supports dynamic object activation and persistent objects, then the naming service can also be used to support these functions.

1.2.3.4 Object Communication Protocol

General protocol for handling remote object requests.

This protocol needs to support, at a minimum, a means for transmitting and receiving object references, method references, and data in the form of objects or basic data types. Ideally we don't want the client application to need to know any details about this protocol.

1.2.3.5 Development Tools

develop, debug, and maintain the object interfaces, as well as the language-specific implementations of these interfaces.

1.2.3.6 Security

Agents making requests of the object broker may need to be authenticated and authorized to access elements of the object repository, and restricted from other areas and objects. Transactions between agents and the remote objects they are invoking may need to be encrypted to prevent eavesdropping. Direct support for these operations: object communication protocol through a secure protocol layer, with public key encryption on either end of the transmission.

Chapter achievements

On the completion of this chapter the student will:

· be able to explain the power of distributed objects;

· know the phases of the distributed object life cycle;

· appreciate the need of interface specification;

· understand the importance of the object manager;

· be familiar with the role of naming service;

· define the expected features of the communication protocol and the security.

1.3 Remote Method Invocation

Goals:

· to summarize the main features of the RMI;

· to give an overview on the steps of developing an RMI application;

· to introduce the student to the server implementation;

· to provide a detailed understanding of RMI registry, the client stubs and the server skeletons;

· to make clear to the student the role and technique of serializing.

Contents:

1.3.1
RMI features

1.3.2
Remote Method Interfaces

1.3.3 Server Implementation

1.3.4 The RMI Registry

1.3.5 Client Stubs and Server Skeletons

1.3.6 Registering and Using a Remote Object

1.3.7 Serializing Objects

1.3.1 RMI features

The Java Remote Method Invocation (RMI) package is a Java-centric scheme for distributed objects that is now a part of the core Java API.

RMI offers some of the critical elements of a distributed object system for Java, plus some other features that are made possible by the fact that RMI is a Java-only system.

RMI has object communication facilities that are analogous to CORBA's IIOP, and its object serialization system provides a way for you to transfer or request an object instance by value from one remote process to another.

RMI architecture:

1.3.2 Remote Method Interfaces

· The interface for the remote object has to be written as extending the java.rmi.Remote interface. The Remote interface just serves to mark remote objects for the RMI system.

· All methods in the interface must be declared as throwing the java.rmi.RemoteException or a superclass of it (such as io.IOException or lang.Exception). This is one of the drawbacks of RMI: it requires you to alter an existing interface in order to apply it to a distributed environment.

1.3.3 Server Implementation

· In addition to implementing the object's interface, the server usually extends the java.rmi.server.UnicastRemoteObject. UnicastRemoteObject is an extension of the RemoteServer class, which acts as a base class.

Subclasses of RemoteServer can implement different kinds of object distribution schemes, like replicated objects, multicast objects, or point-to-point communications. The RMI 1.1 version only supports point-to-point communication, and UnicastRemoteObject is the only subclass of RemoteServer provided.

· RMI doesn't require your server classes to derive from a RemoteServer subclass, but doing so lets your server inherit specialized implementations of some methods from Object (hashCode(), equal(), and toString()) so that they do the right thing in a remote object scenario. If you decide that you don't want to subclass from a RemoteServer subclass for some reason, then you have to either provide your own special implementations for these methods or live with the fact that these methods may not behave consistently on your remote objects.

1.3.4 The RMI Registry

· The registry serves the role of the Object Manager and Naming Service for the distributed object system.

· The registry runs in its own Java runtime environment on the server of a remote object. You start an RMI registry on a host by

rmiregistry [<port_number>]
· Once the registry is running, you can register object implementa​tions by name, using the java.rmi.Naming interface.

· Multiple registries are allowed on a server, and address them independently using their port assignments.

1.3.5 Client Stubs and Server Skeletons

· The interface and the server implementation are compiled into bytecodes using the javac compiler, just like normal classes.

· Generate a client stub and a server skeleton for the class, using the RMI stub compiler, rmic.

· A client stub is returned to a client when a remote instance of the class is requested through the Naming interface. The stub has hooks into the object serialization subsystem in RMI for marshaling method parameters.

· The server skeleton acts as an interface between the RMI registry and instances of the object implementation. When a client request for a method invocation on an object is received, the skeleton is called on to extract the serialized parameters and pass them to the object implementation.

1.3.6 Registering and Using a Remote Object

· A server process has to register an instance of the implementation with a RMI registry running on the server:

 MyObjectImpl obj = new MyObjectImpl();

 Naming.rebind("Object1", obj);

· Before loading the remote object stub, we must install a special RMI security manager.

 System.setSecurityManager(new

 java.rmi.RMISecurityManager());

· This enforces a security policy for remote stubs to prevent them from doing illicit snooping or sabotage with they're loaded into your local Java environment from a network source. If a client doesn't install an RMI security manager, then stub classes can only be loadable from the local file system.

· Once this is done, a client can get a reference to the remote object by connecting to the remote registry and asking for the object by name:

 MyObject objStub =

 (MyObject)Naming.lookup("rmi://host/Object1");

1.3.7 Serializing Objects

· The java.io package includes classes that can convert an object into a stream of bytes and reassemble the bytes back into an identical copy of the original object. Using these classes, an object in one process can be serialized and transmitted over a network connection to another process on a remote host. The object (or at least a copy of it) can then be assembled on the remote host.

· An object that you want to serialize has to implement the java.io.Serializable interface.

· Method arguments that aren't objects are serialized automatically using their standard byte stream formats.

Chapter achievements:

At the end of the chapter the student will:

· have a global view and understanding of the RMI application development process and its main features;

· be familiar with the classes used in an RMI application;

· understand the role and need for stubs and skeletons;

· appreciate the importance of serializing;

· have basic knowledge to create a simple RMI application.

Lecture achievements:
On the completion of this lecture the student will:

· have a global view and understanding of the different client/server systems;

· appreciate the role of distributed objects and components;

· be familiar with the key problems of distributed object systems;

· define the main phases of the distributed object life cycle;

· understand the necessity of interface specification;

· appreciate the role of the object manager and naming service;

· understand the need for stubs and skeletons;

· have basic skills for creating simple RMI application.

Database

Update

Insert

Application

server

client

Database

Execute

procedure

Return

results

Application

server

client

1000 Connections

1000 Processes

500 Mbyte of RAM

10000 Open Files

1000

Clients

1982

1986

1990

1995

1998

TP M

TP Monitor

1000

Clients

500 Open Files

25 Mbyte of RAM

50 Processes

50 Shared Connections

Groupware

File

servers

Database

servers

Distributed

objects

Server

Client

Stub

Skeleton

Remote Reference Layer (RRL)

Transport

Transport

TEMPUS S_JEP-12495-97

Parallel and Distributed 4

