Lecture 2.
Introduction to CORBA

Goals:

· to introduce the CORBA architecture;

· to define the CORBA structure;

· to give an overview on the CORBA components;

· to study the main features of the CORBA services and facilities.

Contents:

· CORBA Architecture Overview

· CORBA Services and Facilities

2.1 CORBA Architecture Overview

Goals:

· to introduce the Object Management Architecture;

· to present the Reference Model;

· to provide the big picture of the CORBA structure;

· to provide an understanding of the static and dynamic invocations;

· to provide an understanding of the roles of CORBA components;

· to give an overview on the Object Adapters.

Contents:

2.1.1
The Object Management Architecture

2.1.2
CORBA Structure

2.1.1 The Object Management Architecture

Object Management Group (OMG) is the world largest computer consortium, over 750 members (1997).

Founder: 3Com, Canon, HP, Philips, Sun.

Goals:

· promotion of the OO approach to software engineering;

· development of a common architectural framework for writing distributed OO applications based on interface specifications for the objects in the application.

The Object Management Architecture (OMA) is the framework within which all OMG adopted technology fits. It provides two fundamental models on which CORBA and other standard interfaces are based: core and reference models.

· Core Object Model (for ORB designers) defines

· the concepts (restricted to abstract definition) that allow distributed application development;

· a framework for refining the model to a more concrete form.

· Reference Model places the ORB at the center of grouping of objects with standardized interfaces that provide support for application object developers. The groups are:

· Object services – infrastructure;

· Domain Interfaces – special support to application from various industry domain;

· Common Facilities – application level services across domains;

· Application Interfaces – set of all other objects.

2.1.1.1 Core Object Model

theoretical underpinnings of CORBA

design portability - knowledge of interfaces

interoperability - location, platform and language

2.1.1.2 Reference Model

is an architectural framework for standardization of interfaces to infrastructure and services that applications can use.

· Object Request Broker (ORB)

Common Object Request Broker Architecture is the standard distributed object framework developed by the OMG consortium. This standard allows CORBA objects to invoke one another object without knowing where the objects they access reside or in what language the requested objects are implemented.

It acts as a message bus between object.

CORBA objects have three difference from typical programming language objects:

· CORBA objects can be located anywhere on a network.

· CORBA objects can interoperate with objects on other platforms.

· CORBA objects can be written in any programming language for which there is a mapping from OMG IDL to that language.

An extended CORBA core including a syntax and semantics for an Interface Definition Language (IDL)

A set of language mappings from IDL to implementation languages (C, C++, Java, Smalltalk, Ada'95)

IDL (heart of CORBA) is a strongly typed declarative language with a rich set of data.

An IDL interface

· acts as a contract between developers of objects and the eventual users of their interfaces;

· allowed the user of CORBA object to compile the interface definitions into hidden code.

· Object Services

fundamental services that may be needed in order to

· find and manage objects;

· coordinate the execution of complex operations.

Published services

Naming
Licensing

Event
Query

Life Cycle
Properties

Persistent Object
Security

Relationship
Time

Externalization
Collections

Transactions
Trading

Concurrency control

· Common Facilities

End-user oriented interfaces that provide facilities of direct use to application objects.

The first is the Distributed Document Component Facility, based on OpenDoc.

Currently under construction mobile agent, data interchange, workflow, firewalls, business object frameworks, metaobjects, printing and internationalization.

· Domain Objects

OMG focuses on particular application domains such as telecommunications, Internet, business object, finance, manufacturing and health care.

2.1.2 CORBA Structure

2.1.2.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its interfaces. The interface is organized into three categories:

· Operations that are the same for all ORB implementations

· Operations that are specific to particular types of objects

· Operations that are specific to particular styles of object implementations.

The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests. CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2.2 Client

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows only the logical structure of the object according to its interface and experiences the behavior of the object through invocations.

Clients generally see objects and ORB interfaces through the perspective of a language mapping, bringing the ORB right up to the programmer's level. Clients are maximally portable and should be able to work without source changes on any ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which ORB is used to access it.

2.1.2.3 Object Implementation

An object implementation provides the semantics of the object, usually by defining data for the object instance and code for the object's methods.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

2.1.2.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object implementations have an opaque notion of object references according to the language mapping, and thus are insulated from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

2.1.2.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by specifying their interfaces. An interface consists of a set of named operations and the parameters to those operations.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming languages or object systems.

2.1.2.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objects in different ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method names, etc. A particular mapping of OMG IDL to a programming language should be the same for all ORB implementations. Language mapping includes definition of the language-specific data types and procedure interfaces to access objects through the ORB. It includes the structure of the IDL stub interface, the dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or implementation.

There are tree kinds of operation execution semantics defined for static invocation:

· At-most-once. The invocation of an operation results in the ORB conveying the arguments to the object implementation and returning the results (if any) to the requester, which is blocked and waiting for successful termination or an exception.

· Best-effort. If an operation is declared oneway then the requester does not wait for the operation to complete.

· Deferred-synchronous. This allows the requester to send the request without blocking and some later time to poll for the results.

2.1.2.7 IDL Stub

When a client wishes to invoke an IDL-defined operation on an object reference as if it were a local method or function call, it must link in stubs for the IDL interface which convey that invocation to the target object. In object-oriented implementation language the stub are instantiated as local proxy objects that delegate invocations on their methods to the remote implementation object. The stubs are generated from an IDL compiler for the language the client is using.

2.1.2.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code must supply information about the operation to be performed and the types of the parameters being passed (perhaps obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may vary substantially from one programming language mapping to another.
A Request is a notional message that is sent to an object denote by an object reference to request the invocation of a particular operation with particular arguments. The DII defines the form of such a message so that clients that know of an object by reference, and can determine its interface type, can build Requests without requiring an IDL compiler to generate stub code. A Request interface is defined in pseudo-IDL. It provides operations to set the target object for the invocation, name the operation to be invoked, and add arguments to send to it. It also provides operations to invoke the operation and retreive any resulting values. The implementations of pseudo-IDL is provided as a library and the operations map to local method on non-CORBA object.

The DII defines various types of execution semantics for operations invoked using Request pseudo-objects. The usual synchronous at-most-once semantics are available, es well as a deferred-synchronous option.

2.1.2.9 IDL Skeleton

Once a Request reaches a server that supports one or more objects, there must be a way for it to invoke the right method on the right implementation object. The translation from a wire format to in-memory data structures (unmarshalling) uses the language mapping to the implementation languuage. This is achieved by the skeleton code generated by an IDL compiler.

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods that implement each type of object. The interface will generally be an up-call interface, in that the object implementation writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via the dynamic invocation interface). It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it may be possible to create implementations dynamically for languages such as Smalltalk.
2.1.2.10 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is, rather than being accessed through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through an Interface Repository) may be also used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the values of any input parameters for use in performing the operation. The implementation code provides the values of any output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton interface may vary substantially from one programming language mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of client request construction interface provides identical results.

2.1.2.11 Object Adapter

An object adapter is the primary means for an object implementation to access ORB services such as object reference generation. An object adapter exports a public interface to the object implementation, and a private interface to the skeleton. It is built on a private ORB-dependent interface. Object adapters are responsible for the following functions:

· Generation and interpretation of object references

· Method invocation

· Security of interactions

· Object and implementation activation and deactivation

· Mapping object references to the corresponding object implementations

· Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or more of its responsibilities to the Core upon which it is constructed.

The Object Adapter is implicitly involved in invocation of the methods, although the direct interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or authenticating the request.

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different ORBs will provide different levels of service and different operating environments may provide some properties implicitly and require others to be added by the Object Adapter.

It is not necessary for all Object Adapters to provide the same interface or functionality. Some Object Implementations have special requirements, for example, an object-oriented database system may wish to implicitly register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to provide the most effective access to the ORB.

Currently CORBA defines two such interfaces

· Basic Object Adapter (BOA)
· Portable Object Adapter (POA)

2.1.2.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for all ORBs and does not depend on the object's interface or object adapter. Because most of the functionality of the ORB is provided through the object adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These operations are useful to both clients and implementations of objects.

2.1.2.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form available at runtime. The Interface Repository information may be used by the ORB to perform requests. Moreover, using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was not known when the program was compiled, yet, be able to determine what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or skeletons, routines that can format or browse particular kinds of objects, etc., might be associated with the Interface Repository.

2.1.2.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of objects. Although most of the information in the Implementation Repository is specific to an ORB or operating environment, the Implementation Repository is the conventional place for recording such information. Ordinarily, installation of implementations and control of policies related to the activation and execution of object implementations is done through operations on the Implementation Repository.

The Implementation Repository also stores additional information associated with implementations of ORB objects.

Chapter achievements

At the end of the chapter the student will:

· be familiar with the Object Management Architecture;

· know the components of the Reference Model;

· be familiar with the CORBA structure;

· have basic knowledge on the CORBA structure

· understand the roles of CORBA components;

· define the expected features of the Object Adapters.

2.2 CORBA Services and Facilities

Goals:

· to give an overview on the CORBA services and facilities;

· to emphasise the role and function of the Naming Service;

· to provide the big picture of the Life Cycle Service;

· to introduce the main features of the Persistent Object Service;

· to study the fundamental issues associated with the Transaction, Concurrency Control, Security, Time and Trading Services;

· to summarize the common and market facilities.

Contents:

2.1.1
CORBA Services

2.2.2
CORBA Facilities

2.2.1 CORBA Services

A collection of services (interfaces and objects) that support basic functions for using and implementing objects. Services are necessary to construct any distributed application and are always independent of application domains. For example, the Life Cycle Service defines conventions for creating, deleting, copying, and moving objects; it does not dictate how the objects are implemented in an application.
2.2.1.1 Naming Service

· The Naming Service provides the ability to bind a name to an object relative to a naming context. A naming context is an object that contains a set of name bindings in which each name is unique. To resolve a name is to determine the object associated with the name in a given context.

· Through the use of a very general model and dealing with names in their structural form, naming service implementations can be application specific or be based on a variety of naming systems currently available on system platforms.

· Graphs of naming contexts can be supported in a distributed, federated fashion. The scalable design allows the distributed, heterogeneous implementation and administration of names and name contexts.

· Because name component attribute values are not assigned or interpreted by the naming service, higher levels of software are not constrained in terms of policies about the use and management of attribute values.

· Through the use of a “names library,” name manipulation is simplified and names can be made representation-independent thus allowing their representation to evolve without requiring client changes.

2.2.1.2 Event Service

· The Event Service provides basic capabilities that can be configured together in a very flexible and powerful manner. Asynchronous events (decoupled event suppliers and consumers), event “fan-in,” notification “fan-out,” and (through appropriate event channel implementations) reliable event delivery are supported.

· The Event Service design is scalable and is suitable for distributed environments. There is no requirement for a centralized server or dependency on any global service.

· The Event Service interfaces allow implementations that provide different qualities of service to satisfy different application requirements. In addition, the event service does not impose higher level policies (e.g., specific event types) allowing great flexibility on how it is used in a given application environment.

· Both push and pull event delivery models are supported: that is, consumers can either request events or be notified of events, whichever is needed to satisfy application requirements. There can be multiple consumers and multiple suppliers events.

· Suppliers can generate events without knowing the identities of the consumers. Conversely, consumers can receive events without knowing the identities of the suppliers.

· The event channel interface can be subtyped to support extended capabilities. The event consumer-supplier interfaces are symmetric, allowing the chaining of event channels (for example, to support various event filtering models). Event channels can be chained by third-parties.

· Typed event channels extend basic event channels to support typed interaction.

· Because event suppliers, consumers and channels are objects, advantage can be taken of performance optimizations provided by ORB implementations for local and remote objects. No extension is required to CORBA.
2.2.1.3 Life Cycle Service

· The Life Cycle Service defines conventions for creating, deleting, copying and moving objects. Because CORBA-based environments support distributed objects, life cycle services define services and conventions that allow clients to perform life cycle operations on objects in different locations.

· The client’s model of creation is defined in terms of factory objects. A factory is an object that creates another object. Factories are not special objects. As with any object, factories have well-defined OMG IDL interfaces and implementations in some programming language.

· The Life Cycle Service defines an interface for a generic factory. This allows for the definition of standard creation services.

· The Life Cycle Service defines a LifeCycleObject interface. This interface defines remove, copy and move operations.

· The Life Cycle Service has been extended to support compound life cycle operations on graphs of related objects. Compound objects (graphs of objects) rely on the Relationship Service for the definition of object graphs.
2.2.1.4 Persistent Object Service

· The Persistent Object Service (POS) provides a set of common interfaces to the mechanisms used for retaining and managing the persistent state of objects.

· The object ultimately has the responsibility of managing its state, but can use or delegate to the Persistent Object Service for the actual work. A major feature of the Persistent Object Service is its openness. In this case, that means that there can be a variety of different clients and implementations of the Persistent Object Service, and they can work together. This is particularly important for storage, where mechanisms useful for documents may not be appropriate for employee databases, or the mechanisms appropriate for mobile computers do not apply to mainframes.
2.2.1.5 Relationship Service

· The Relationship Service allows entities and relationships to be explicitly represented. Entities are represented as CORBA objects. The service defines two new kinds of objects: relationships and roles.

· A role represents a CORBA object in a relationship. The Relationship interface can be extended to add relationship-specific attributes and operations. In addition, relationships of arbitrary degree can be defined. Similarly, the Role interface can be extended to add role-specific attributes and operations.

· Type and cardinality constraints can be expressed and checked: exceptions are raised when the constraints are violated.

· The Life Cycle Service defines operations to copy, move, and remove graphs of related objects, while the Relationship Service allows graphs of related objects to be traversed without activating the related objects.

· Distributed implementations of the Relationship Service can have navigation performance and availability similar to CORBA object references: role objects can be located with their objects and need not depend on a centralized repository of relationship information. As such, navigating a relationship can be a local operation.

· The Relationship Service supports the compound life cycle component of the Life Cycle Service by defining object graphs.
2.2.1.6 Externalization Service

· The Externalization Service defines protocols and conventions for externalizing and internalizing objects. Externalizing an object is to record the object state in a stream of data (in memory, on a disk file, across the network, and so forth) and then be internalized into a new object in the same or a different process. The externalized object can exist for arbitrary amounts of time, be transported by means outside of the ORB, and be internalized in a different, disconnected ORB. For portability, clients can request that externalized data be stored in a file whose format is defined with the Externalization Service Specification.

· The Externalization Service is related to the Relationship Service and parallels the Life Cycle Service in defining externalization protocols for simple objects, for arbitrarily related objects, and for facilities, directory services, and file services.
2.2.1.7 Transaction Service

· The Transaction Service supports multiple transaction models, including the flat (mandatory in the specification) and nested (optional) models.

· The Object Transaction Service supports interoperability between different programming models. For instance, some users want to add object implementations to existing procedural applications and to augment object implementations with code that uses the procedural paradigm. To do so in a transaction environment requires the object and procedural code to share a single transaction.

· Network interoperability is also supported, since users need communication between different systems, including the ability to have one transaction service interoperate with a cooperating transaction service using different ORBs.

· The Transaction Service supports both implicit (system-managed transaction) propagation and explicit (application-managed) propagation. With implicit propagation, transactional behavior is not specified in the operation’s signature. With explicit propagation, applications define their own mechanisms for sharing a common transaction.

· The Transaction Service can be implemented in a TP monitor environment, so it supports the ability to execute multiple transactions concurrently, and to execute clients, servers, and transaction services in separate processes.
2.2.1.8 Concurrency Control Service

· The Concurrency Control Service enables multiple clients to coordinate their access to shared resources. Coordinating access to a resource means that when multiple, concurrent clients access a single resource, any conflicting actions by the clients are reconciled so that the resource remains in a consistent state.

· Concurrent use of a resource is regulated with locks. Each lock is associated with a single resource and a single client. Coordination is achieved by preventing multiple clients from simultaneously possessing locks for the same resource if the client’s activities might conflict. Hence, a client must obtain an appropriate lock before accessing a shared resource. The Concurrency Control Service defines several lock modes, which correspond to different categories of access. This variety of lock modes provides flexible conflict resolution. For example, providing different modes for reading and writing lets a resource support multiple concurrent clients on a read-only transaction. The Concurrency Control Service also defines Intention Locks that support locking at multiple levels of granularity.
2.2.1.9 Licensing Service

· The Licensing Service provides a mechanism for producers to control the use of their intellectual property. Producers can implement the Licensing Service according to their own needs, and the needs of their customers, because the Licensing Service does not impose it own business policies or practices.

· A license in the Licensing Service has three types of attributes that allow producers to apply controls flexibly: time; value mapping, and consumer. Time allows licenses to have start/duration and expiration dates. Value mapping allows producers to implement a licensing scheme according to units, allocation (through concurrent use licensing), or consumption (for example, metering or allowance of grace periods through “overflow licenses.”) Consumer attributes allow a license to be reserved or assigned for specific entities; for example, a license could be assigned to a particular machine. The Licensing Service allows producers to combine and derive from license attributes.

· The Licensing Service consists of a LicenseServiceManager interface and a ProducerSpecificLicenseService interface: these interfaces do not impose business policies upon implementors.
2.2.1.10 Query Service

· The purpose of the Query Service is to allow users and objects to invoke queries on collections of other objects. The queries are declarative statements with predicates and include the ability to specify values of attributes; to invoke arbitrary operations; and to invoke other Object Services.

· The Query Service allows indexing; maps well to the query mechanisms used in database systems and other systems that store and access large collections of objects; and is based on existing standards for query, including SQL-92, OQL-93, and OQL-93 Basic.

· The Query Service provides an architecture for a nested and federated service that can coordinate multiple, nested query evaluators.
2.2.1.11 Properties Service

· Provides the ability to dynamically associate named values with objects outside the static IDL-type system.

· Defines operations to create and manipulate sets of name-value pairs or name-value- mode tuples. The names are simple OMG IDL strings. The values are OMG IDL anys. The use of type any is significant in that it allows a property service implementation to deal with any value that can be represented in the OMG IDL-type system. The modes are similar to those defined in the Interface Repository AttributeDef interface.

· Designed to be a basic building block, yet robust enough to be applicable for a broad set of applications.

· Provides “batch” operations to deal with sets of properties as a whole. The use of “batch” operations is significant in that the systems and network management (SNMP, CMIP, ...) communities have proven such a need when dealing with “attribute” manipulation in a distributed environment.

· Provides exceptions such that PropertySet implementors may exercise control of (or apply constraints to) the names and types of properties associated with an object, similar in nature to the control one would have with CORBA attributes.

· Allows PropertySet implementors to restrict modification, addition and/or deletion of properties (readonly, fixed) similar in nature to the restrictions one would have with CORBA attributes.

· Provides client access and control of constraints and property modes.

· Does not rely on any other object services.
2.2.1.12 Security Service

· Identification and authentication of principals (human users and objects which need to operate under their own rights) to verify they are who they claim to be.

· Authorization and access control - deciding whether a principal can access an object, normally using the identity and/or other privilege attributes of the principal (such as role, groups, security clearance) and the control attributes of the target object (stating which principals, or principals with which attributes) can access it.

· Security auditing to make users accountable for their security related actions. It is normally the human user who should be accountable. Auditing mechanisms should be able to identify the user correctly, even after a chain of calls through many objects.

· Security of communication between objects, which is often over insecure lower layer communications. This requires trust to be established between the client and target, which may require authentication of clients to targets and authentication of targets to clients. It also requires integrity protection and (optionally) confidentiality protection of messages in transit between objects.

· Non-repudiation provides irrefutable evidence of actions such as proof of origin of data to the recipient, or proof of receipt of data to the sender to protect against subsequent attempts to falsely deny the receiving or sending of the data.

· Administration of security information (for example, security policy) is also needed.
2.2.1.13 Time Service

· Enables the user to obtain current time together with an error estimate associated with it.

· Ascertains the order in which “events” occurred.

· Generates time-based events based on timers and alarms.

· Computes the interval between two events.

· Consists of two services, hence defines two service interfaces:

· Time Service manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs), and is represented by the TimeService interface.

· Timer Event Service manages Timer Event Handler objects, and is represented by the TimerEventService interface.
2.2.1.14 Collections Service

· Collections are groups of objects which, as a group, support some operations andexhibit specific behaviors that are related to the nature of the collection rather than to the type of object they contain. Examples of collections are sets, queues, stacks, lists, binary, and trees. The purpose of the Collection Object Service is to provide a uniform way to create and manipulate the most common collections generically.

2.2.1.15 Trading Service

· The Trading Service provides a matchmaking service for objects. The Service Provider registers the availability of the service by invoking an export operation on the trader, passing as parameters information about the offered service.

· The export operation carries an object reference that can be used by a client to invoke operations on the advertised services, a description of the type of the offered service (i.e., the names of the operations to which it will respond, along with their parameter and result types), information on the distinguishing attributes of the offered service.

· The offer space managed by traders may be partitioned to ease administration and navigation. This information is stored persistently by the Trader. Whenever a potential client wishes to obtain a reference to a service that does a particular job, it invokes an import operation, passing as parameters a description of the service required. Given this import request, the Trader checks appropriate offers for acceptability. To be acceptable, an offer must have a type that conforms to that requested and have properties consistent with the constraints specified by an imported.

· Trading service in a single trading domain may be distributed over a number of trader objects. Traders in different domains may be federated. Federation enables systems in different domains to negotiate the sharing of services without losing control of their own policies and services. A domain can thus share information with other domains with which it has been federated, and it can now be searched for appropriate service offers.
2.2.2 CORBA Facilities

a collection of services that many applications may share, but which are not as fundamental as the Object Services. For instance, a system management or electronic mail facility could be classified as a common facility.

2.2.2.1 Horizontal Common Facilties

Horizontal Common Facilities include functions shared by many or most systems, regardless of application content. Four major domains for such facilities have been identified so far:

· User Interface makes an information system accessible to its users and responsive to their needs. For example, the Compound Presentation Facility is a facility in the user interface domain.

· Information Management covers the modeling, definition, storage, retrieval, management, and interchange of information. The Compound Interchange Facility is an element of the information management domain.

· System Management covers the management of complex, multi-vendor information systems by service providers.

· Task Management covers the automation of work. This includes automation of both user processes and system processes which operate as part of the information system.

2.2.2.2 Vertical Market Facilties

· Imagery Provides interoperability between imagery objects, image related information, and imagery application services.

· Information Superhighways Supports multi-user information service applications across wide area networks.

· Manufacturing Supports interoperability between manufacturing objects.

· Distributed Simulation Supports the interaction of multiple simulation objects in virtual environments.

· Oil and Gas Industry Exploitation and Production Supports interoperability in the petroleum vertical market.

· Accounting Supports commercial transactions.

· Application Development Supports interoperability between application development objects.

· Mapping Supports interoperability between mapping objects.

Chapter achievements

At the end of the chapter the student will:

· be familiar with the CORBA services and facilities;

· appreciate the functions of the Naming Service;

· understand why the Life Cycle Service is needed;

· understand the importance of the Persistent Object Service;

· have a global view and understanding of the different CORBA services;

· be able to explain the main features of the CORBA facilities;

Lecture achievements:

On the completion of this lecture the student will:

· have a global view and understanding of the CORBA architecture and structure;

· be familiar with the roles and functions of the CORBA components;

· have basic knoledge about CORBA services and facilities.

Implem.

Repository

Interface

Repository

ORB Core

Object

Adapter

Dynamic Skeleton Interface

IDL

Skeleton

Object Impl.

Client

ORB

Interface

ORB

Interface

IDL

Stub

Dynamic Invocation Interface

Legacy Application Wrapper

CORBA Object

Object Request Broker

Common Facilities

Object Services

Domain Objects

Application Objects

TEMPUS S_JEP-12495-97

Parallel and Distributed 4

