Lecture 3.
The first CORBA program

Goals:

· to give an overview on the CORBA programming;

· to introduce the JDK 1.2 and idltojava compiler;

· to make clear the structure of CORBA programs;

· to study running CORBA applications based on pure Java code and applet.

Contents:

· Pure Java application

· Client is an Applet

3.1 Pure Java Application

Goals:

· to introduce the principles of building distributed application with Java IDL;

· to present the structure of CORBA programs;

· to define the development process;

· to implement a client which is a Java application;

· to present a complete program.

Contents:

3.1.1
Requirement Specification

3.1.2
Sequences at First Glance

3.1.3
Development Process

3.1.4 The Count IDL

3.1.5 Mapping CORBA IDL to Java

3.1.6 Implementation of Count

3.1.7 The CountServer Program

3.1.8 The CountClient Program

3.1.9 Compiling and Running the Application

3.1.1 Requirement Specification

3.1.1.1 Problem Definition

Let the Server object a wrapped integer, Count. It exports an increment() operation.

[image: image1.png]Dynamiclmplementation

Object | [portable IDLEntity

portable. Streamable

portable. Objectimpl

CountHolder

<<interface>> CountHelper

Count

_CountimplBase | [_Countstu

CountServer

Countimpl | [CountClient

Client program

· sets the initial value of the sum attribute;

· invokes the increment method 1000 times;

· displays the value of the sum attribute along with the average response time.

3.1.1.2 Development Environment

Java IDL is an Object Request Broker provided with the JDK 1.2. Together with the idltojava compiler it can be used to define, implement, and access CORBA objects from the Java programming language.

Java IDL is compliant with

· CORBA/IIOP(Internet Inter-ORB Protocol) 2.0 Specification (orbos/97-02-25)

· IDL-to-Java Language Mapping (orbos/98-01-06 Final).

The Java IDL ORB supports

· transient CORBA objects

· transient nameserver

The nameserver is compliant with the Naming Service Specification described in CORBAservices

· POA (not full)

· no interface repository is provided as part of Java IDL.

3.1.2 Sequences at First Glance

[image: image2.png](Caunt

‘sum=1000

1000

Avg Ping

5178 msecs

Roles:

· CountServer – provides the main that initializes the server and instantiate a single CountImpl object;

· CountImpl – servant object, implements the Count interface. It inherits its functionality both the CORBA and Java object model.

· NameService – maps the human names to object references. It lets you find object by name.

· CountClient – provides the main method, executes the defined program of a Client.

3.1.3. Development Process

3.1.4 The Count IDL

The IDL file is the glue that holds the system of programs together and makes it possible for code in a client to invoke methods in a remote object on a basis that is both platform and language independent.

// Count.idl

module Count

{

 interface Count

 { attribute long sum;

 long increment();

 };

};

A module is the CORBA equivalent of a Java package.
Our interface has one method (operation in CORBA terminology) and one attribute.The operation returns the value of the count.

3.1.5 Mapping CORBA IDL to Java

WinNT

idltojava -fno-cpp Count.idl

Linux

jidl Count.idl

The IDL compiler maps each module to a Java package and uses Java conventions for putting packages into directories.

The following files are generated by the IDL compiler:

_CountImplBase.java

_CountStub.java

Count.java

CountHelper.java

CountHolder.java

· _CountImplBase.java

Java class, implements the CORBA server-side skeleton.

· unmarshalls the arguments for the Count object;

· brings together the CORBA and Java object models;

· is the root CORBA interface, all CORBA objects must implement it.

· _CountStub.java

Java class, implements the clien-side stub.

· an internal implementation of the Count;

· provides marshalling functions.

· Count.java

Java interface, it maps the Count IDL interface to the corresponding Java interface.

package Count;

public interface Count

 extends org.omg.CORBA.Object,

 org.omg.CORBA.portable.IDLEntity {

 int sum();

 void sum(int arg);

 int increment();

}

A CORBA IDL attribute is mapped to a pair of overloaded Java accessor and modifier methods with the same name as the attribute.

· CountHelper.java

Java class, provides useful helper functions for Count client.

The compiler generates code for a narrow function that lets clients cast CORBA object references to the Count type.

· CountHolder.java

Java class, produces a final class that holds a public instance member of type Count. It provides operations for out and inout arguments, which CORBA has but which do not map easily to Java's semantics.

3.1.6 Implementation of Count

Implementation class = servant class.

The IDL to Java mapping specification defines a servant base class which is named as _XXXXImplBase, where XXXX is the name of the .idl file.

This base class is a skeleton.

The two main ways of associating object implementation classes with skeleton class are by inheritance or delegation.

The inheritance approach involves a Java implementation class extending the servant base class. The servant base class is an abstract implementation of the Java interface which corresponds to the IDL interface. The object implementation is an extension of the base class and implements the methods.

The delegation approach is also known as the Tie method. This is done by providing the skeleton with a reference to an implementation object. This explained in detail later.

// CountImpl.java: The Count Implementation

import Count.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

import java.io.*;

class CountImpl extends _CountImplBase {

 private int sum;

 // Constructors

 CountImpl(){

 super();

 System.out.println("Count Object Created");

 sum = 0;

 }

 // get sum

 public int sum(){

 return sum;

 }

 // set sum

 public void sum(int val){

 sum = val;

 }

 // increment method

 public int increment(){

 sum++;

 return sum;

 }

}

3.1.7 The CountServer program

This class initializes the environment, creates the implementation object, makes it available to clients, and listens for events.

Initializing an ORB means obtaining a reference to an ORB pseudo-object. The ORB is called a pseudo-object because its methods will be provided by a library in communication with the run-time system, and its pseudo-object reference cannot be passed as a parameter to CORBA interface operations. Excluding that restriction, however, a reference to an ORB looks like other object reference.

// CountServer.java: The Count Server main program

import Count.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

import java.io.*;

class CountServer {

 static public void main(String[] args) {

 try {

 // create and initialize the ORB

 ORB orb = ORB.init(args, null);

 // create servant and register it with the ORB

 CountImpl count = new CountImpl();

 orb.connect(count);

 // get the root naming context

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext ncRef =

 NamingContextHelper.narrow(objRef);

 // bind the Object Reference in Naming

 NameComponent nc =

 new NameComponent("MyCount", "");

 NameComponent path[] = {nc};

 ncRef.rebind(path, count);

 System.out.println

 ("Count servant has been started");

 // wait for invocations from clients

 java.lang.Object sync = new java.lang.Object();

 synchronized (sync) {

 sync.wait();

 }

 }

 catch (Exception e) {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

 }

}

Because all CORBA programs can throw CORBA system exceptions at runtime, you will place all of the main functionality within a try-catch block. CORBA programs throw system exceptions whenever trouble occurs during any of the processes involved in invoking the server from the client. Our exception handler simply prints the name of the exception and its stack trace to standard output so you can see what kind of thing has gone wrong.

After initializing the ORB object, the servant object is instantiated:

CountImpl count = new CountImpl();

Next, we connect the servant to the ORB, so that the ORB can recognize invocations on it and pass them along to the correct servant:

orb.connect(count);

This program works with the naming service to make the servant object's operations available to clients. The server needs an object reference to the name service, so that it can register itself and ensure that invocations on the Count interface are routed to its servant object.

After instantiation of the servant, we call resolve_initial

_references to get an object reference to the name server:

org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

The string ”NameService” is defined for all CORBA ORBs. When we pass in that string, the ORB returns a naming context object that is an object reference for the name service.

As with all CORBA object references, objRef is a generic CORBA object. To use it as a NamingContext object, we must narrow it to its proper type.

NamingContext ncRef =

 NamingContextHelper.narrow(objRef);

Here we can see the use of an idltojava-generated helper class, similar in function to CountHelper. The ncRef object is now an org.omg.CosNaming.NamingContext and we can use it to access the naming service and register the server.

Registering the servant with the name server.

Just below the call to narrow, we create a new NameComponent member:

NameComponent nc =

 new NameComponent("MyCount", "");

CORBA name servers handle complex names by way of NameComponent objects. Each NameComponent holds a single part, or element, of the name. An array of NameComponent objects can hold a fully specified path to an object on any computer file or disk system.
This statement sets the id field of nc, the new NameComponent, to "MyCount" and the kind component to the empty string. Because the path to the Count has a single element, create the single-element array that NamingContext.resolve requires for its work:

NameComponent path[] = {nc};

We pass path and the servant object to the naming service, binding the servant object to the "MyCount" id:

ncRef.rebind(path, count);

The server is ready; it simply needs to wait around for a client to request its service.
This form of Object.wait requires the server to remain alive until an invocation comes from the ORB. Because of its placement in main, after an invocation completes, the server will wait again.

3.1.8 The CountClient Program

A client implementation follows these steps:

· Initialize the CORBA environment; that is, obtain a reference to the ORB;

· Obtain an object reference for the object on which to invoke operations;

· Invoke operations and process the result.

// CountClient.java

import Count.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

import java.io.*;

class CountClient {

 public static void main(String args[]){

 try {

 // Initialize the ORB

 System.out.println("Initializing the ORB");

 org.omg.CORBA.ORB orb =

 org.omg.CORBA.ORB.init(args, null);

 // get the root naming context

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext ncRef =

 NamingContextHelper.narrow(objRef);

 // resolve the Object Reference in Naming

 NameComponent nc =

 new NameComponent("MyCount", "");

 NameComponent path[] = {nc};

 Count counter =

 CountHelper.narrow(ncRef.resolve(path));

 // Set sum to initial value of 0

 System.out.println("Setting sum to 0");

 counter.sum((int)0);

 // Calculate Start time

 long startTime = System.currentTimeMillis();

 // Increment 1000 times

 System.out.println("Incrementing");

 for (int i = 0 ; i < 1000 ; i++)

 counter.increment();

 // Calculate stop time; print out statistics

 long stopTime = System.currentTimeMillis();

 System.out.println("Avg Ping = "

 + ((stopTime - startTime)/1000f) + " msecs");

 System.out.println("Sum = " + counter.sum());

 }

 catch(Exception e) {

 System.err.println("System Exception");

 e.printStackTrace(System.out);

 }

 }

}

Initializing the ORB object, creating a reference to the naming context (ncRef) and defining a path for the naming service is the same as in the case of the server object. Finally, we pass path to the naming service's resolve method to get an object reference to the Count server and narrow it to a Count object:

Count counter =

 CountHelper.narrow(ncRef.resolve(path));

On the server side the class of the bound object (count) was CountImpl, while on the client side we have got an object (counter) of Count class.

CORBA invocations look like a method call on a local object (counter.increment()). The complications of marshaling parameters to the wire, routing them to the server-side ORB, unmarshaling, and placing the upcall to the server method are completely transparent to the client programmer. Because so much is done for you by generated code, invocation is really the easiest part of CORBA programming.
3.1.9 Compiling and Running the Application

On both sides we must compile all java sources using jdk1.2 compiler:

prompt>javac *.java

First we start the tnameserv in a separate process that makes the name server available. Under WinNT we can do it from an MS-DOS window:

tnameserv –ORBInitialPort 1050
Note that it is necessary to manually terminate this program (Ctrl-C under WinNT) when we are finished with it.

By default, this name server operates on port 900. The above usage overrides the default and specifies that it operates on port 1050.

tnameserv prints out the stringified object reference of the Initial Naming Conrtext which looks like this:

Initial Naming Context:

IOR:000000000000002849444c3a6f6d672e6f72672f436f734e616d696e672f4e616d696e67436f6e746578743a312e300000000001000000000000003000010000000000086b6c6f74696c64000521000000000018afabcafe00000002dd295655000000080000000000000000

TransientNameServer: setting port for initial object references to: 1050

Next we start the server program from a separate MS-DOS window by the command given below:

java CountServer –ORBInitialPort 1050
We know that the server program goes into an infinite wait state waiting for requests from clients. Therefore, it is necessary to manually terminate it when we are finished with it.

Te last step is to start the client running in a process (and window) of its own.

java CountCount –ORBInitialPort 1050
When tnameserv is running on another machine, the command line parameters passing to the server and client program must be extended by this member:

–ORBInitialHost <host.machine.name>
where the host is that machine on which the tnameserv is running.

Chapter achievements

At the end of the chapter the student will:

· be familiar with the JDK and idltojava compiler;

· have a global view and understanding of the structure of a CORBA program;

· define the development process of a CORBA/Java program.

· be able to write simple Java application using CORBA.

3.2 Client is an Applet

Goals:

· to summarize the main features of the applet;

· to provide the big picture of the applet programming;

· to present a sample applet program using CORBA;

Contents:

3.2.1
Applet Overview

3.2.2
The Client-side Programs

3.2.3
Compiling and Running the Applet

3.2.1 Applet overview

An applet is a component, that runs within a browser's environment. A web browser provides services to its applets:

· fully controls the applet's life cycle;

· supplies the applet with attribute information from the APPLET tag;

· serves as the main program within which the applet executes.

The java Applet class and the Runnable interface define the methods that a browser can invoke on an applet during its life cycle.

The browser invokes

· init – when it loads the applet first time;

· start – whenever a user enters or returns to the page containing the applet;

· stop – whenever the user moves off the page;

· destroy – before it shuts down normally.

To be highly interactive, the applet should implement a run method that executes inside a thread. Managing the lifecycle of the thread within an applet:

· create a thread when the applet receives an init;

· run the thread when the applet receives a start;

· destroy the thread when the applet receives a stop or destroy.

The Applet class has a large number of methods that a browser calls in response to user actions.

APPLET tag is used to place an applet inside a web page and describe its attributes and environment. The tag tells the browser where to find the applet to download.

3.2.2 The Client-side Programs

CountClientApplet.html file:

<h1>Count Client Applet</h1>

<hr>

<center>

<APPLET CODE=CountClientApplet.class WIDTH=300 HEIGHT=60>

</APPLET>

</center>

<hr>

The Count applet consist of a single Java class. This class extends java.applet.Applet and implements two methods: init and action. The browser call init after it loads the applet. The init method performs the following functions:

· creates the user interface consisting of four widgets;

· initializes the ORB;

· locates a remote Count object.

The browser calls action when the user clicks on the "Run" button.

 The CountClientApplet.java file:

// CountClientApplet.java Applet Client

import java.util.*;

import java.awt.*;

import Count.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class CountClientApplet extends

 java.applet.Applet {

 private TextField countField, pingTimeField;

 private Button runCount;

 private Count counter;

 public void init() {

 // Create a 2 by 2 grid of widgets.

 setLayout(new GridLayout(2, 2, 10, 10));

 // Add the four widgets, initialize where necessary

 add(new Label("Count"));

 add(countField = new TextField());

 countField.setText("1000");

 add(runCount = new Button("Run"));

 add(pingTimeField = new TextField());

 pingTimeField.setEditable(false);

 try {

 // Initialize the ORB.

 showStatus("Initializing the ORB");

 Properties props = new Properties();

 props.put("org.omg.CORBA.ORBInitialPort", "1050");

 org.omg.CORBA.ORB orb =

 org.omg.CORBA.ORB.init(this, props);

 // Bind to the Count Object

 showStatus("Binding to Count Object");

 // get the root naming context

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext ncRef =

 NamingContextHelper.narrow(objRef);

 NameComponent nc =

 new NameComponent("MyCount", "");

 NameComponent path[] = {nc};

 counter = CountHelper.narrow(ncRef.resolve(path));

 }

 catch(Exception e)

 { showStatus("Applet Exception" + e);

 e.printStackTrace(System.out);

 }

 }

 public boolean action(Event ev, java.lang.Object arg){

 if(ev.target == runCount) {

 try {

 // Set Sum to initial value of 0

 showStatus("Setting Sum to 0");

 counter.sum((int)0);

 // get data from and set value of applet fields

 showStatus("Incrementing");

 int stopCount =

 Integer.parseInt(countField.getText());

 pingTimeField.setText(" ");

 // Calculate Start time

 long startTime = System.currentTimeMillis();

 // Increment stopCount times

 for (int i = 0 ; i < stopCount ; i++)

 counter.increment();

 // Calculate stop time; show statistics

 long stopTime = System.currentTimeMillis();

 pingTimeField.setText("Avg Ping = "

 + Float.toString((float)(stopTime - startTime)

 /stopCount) + " msecs");

 showStatus("Sum = " + counter.sum());

 }

 catch(Exception e)

 { showStatus("System Exception" + e);

 e.printStackTrace();

 }

 return true;

 }

 return false;

 }

}

3.2.3 Compiling and Running the Applet

Compile the CountClientApplet.java file:

prompt>javac CountClientApplet.java

First we move the applet files, including the stub and CORBA classes to a web server. We also export the server files to the web server and start it as we described earlier, after we have started the name server.

Next we download the applet and CORBA classes. We point the web browser to our web server. The HTTP server will download the applet, the stub classes, and other CORBA classes. The applet appears in the browser.

Chapter achievements

At the end of the chapter the student will:

· have a global view about the applets;

· understand the steps of applet programming;

· be able to write a simple applet using CORBA.

Lecture achievements:
On the completion of this lecture the student will:

· have a global view and understanding of creating CORBA application;

· be familiar with JDK 1.2 and idltojava compiler;

· understand the structure of a CORBA program;

· have basic skills for creating simple CORBA application.

Other

classes

CountServer

class

CountImpl

class

CountClient

class

Server�Skeleton

Implement�CountClient

Client IDL Stub

idltojava precompilation

Create an IDL Definition

……

javac compilation

Other classes

Implement�CountServer

Implement�CountImpl

increment()

sum ?

set sum to 0

resolve()

new

rebind()

CountClient

NameService

CountImpl

CountServer

Count

+ sum : int

+ increment() : int

TEMPUS S_JEP-12495-97

Parallel and Distributed 1

