Lecture 4
IDL to Java Mapping

Goals:

· to show how the default and user-defined IDL types are mapped to their Java counterparts

· to show how to define complex types like arrays and structs

· to introduce the principles of interface mapping

· to expose the problems of parameter passing

Contents:

4.1 Reserved Names

4.2 Basic Data Types

4.3 Holder Classes

4.6 Structs

4.7 Unions

4.8 Typedefs

4.9 Arrays

4.10 Sequences

4.11 Interfaces

4.11.1 Client-side Mapping

4.11.2 Server-side Mapping

4.12 Constants

4.12.1 Constants within interfaces

4.12.2 Constants outside interfaces

4.13 Attributes

4.14 Operations

OMG IDL is the language in which the interface of a CORBA object type is defined. Java is the language that Java IDL developers use to invoke and implement CORBA objects. The correspondence between the two languages is called the mapping, and is defined in Java IDL Language Mapping, which has been submitted to the Object Management Group. This lecture introduce just the main points of the IDL-Java mapping. 

4.1 Reserved Names

For each user-defined IDL type called IDLType and each primitive Java type JavaType the following names are reserved:

IDLTypeHelper, IDLTypeHolder, JavaTypeHelper and JavaTypeHolder.

For each IDL interface IDLInterface, the name IDLInterfacePackage is also reserved.

4.2 Basic Data Types

IDLType
Java

boolean
boolean

char
char

wchar
char

octet
byte

short/unsigned short
short

long/unsigned long
int

long long/ unsigned long long
long

float
float

double
double

4.3 Holder Classes

To accommodate the passing of inout and out parameters in Java, which can only pass arguments by value, there are holder classes for IDL predefined and user-defined types. Holder classes for user-defined types are generated by the IDL compiler. Holder classes for IDL predefined types are provided as part of the CORBA class library.

Holder classes for the basic IDL data types are defined in the package org.omg.CORBA:

final public class TypeHolder {


public Type value();


public Typeholder() { };


public TypeHolder( Type initial( {



value = initial;


}

}

Holder classes for user-defined Type are extension of the holder classes generated for basic data types:

public void

     _read(org.omg.CORBA.portable.InputStream i) {…};

public void

     _write(org.omg.CORBA.portable.OutputStream o) {…};

public org.omg.CORBA.TypeCode _type()) {…};

The _read() and _write() methods are used by marshalling code. The _type() method provides an easy way to access the TypeCode of a user-defined type.

4.4. String Types

OMG IDL defines strings and wide strings which can be either bounded or unbounded. All IDL strings and wide strings are mapped to a Java object of the class java.lang.String.

The stub code generated from the IDL checks the correctness of the string bound at run time and raises the exception CORBA::MARSHAL if it is exceeded.

The holder class for the strings is defined as it for basic types.

4.5 Enums
An IDL enum type is mapped to a generated Java final class with the same name as the enum. This class defines a pair of static data members for each enum member, one of type final int and the other of the type of the generated class. The int version is used as an index type, for example, to access an array member, and the class constructor version is used for strongly typed parameter passing. There is also a public method value() and a constructor for enum class. The mapping follows the template:

final public class enum_name {


// static data members for each enum member


public static final int _enum_member = <value>;


public static final enum_name enum_member =

new enum_name(_enum_member);

//constructor

private enum_name(int) {…}

public int static value() {…}

A holder class is also generated for each enum type, it follows the pattern we just explained.

4.6 Structs

An IDL struct is mapped to a Java final class that provides fields for the members of the struct and some constructors. The class is named after the struct. There is a constructor that has a parameter for each member of the struct and initializes the object properly. A second constructor, the null constructor, only creates the object; the values of the structure members have to be filled in later.

Here is an example IDL struct:

struct XStruct {


short a_short;


char a_char;

};

which is mapped to the Java class:

final public class XStruct {


public short a_short;


public char a_char;


public XStruct() {}


public XStruct(short a_short, char a_char) {



this.a_short = a_short;



this.a_char = a_char;


}

A holder is also generated following the same concepts as above.

4.7 Unions

An IDL union is mapped to a Java final class that provides a constructor, an accessor method for the discriminator, accessor methods for each of the branches, and various modifier methods. The constructor is a null constructor, which means that values for the discriminator and the corresponding branch must be set explicitly by using a modifier method.

The accessor method for the discriminator discriminator() returns a value of the type defined in the IDL switch expression. The accessor method for a branch is named after the branch. The accessor has no parameters and returns a value of the type corresponding to the branch.

There are modifier methods for each of the cases including the default case. If there is more than one case label per branch, the modifier sets the discriminant to the value of the first case label of that branch. There are additional modifier methods generated that take an explicit discriminator parameter. (Note that it is illegal to define a default case when the explicitly defined cases already cover the whole range of the discriminator type.)

Here is an example union for which Java code is generated:

enum Slot { am9, am10, am11, pm };

union XUnion switch(Slot) {


case am9: 
boolean boolean_flag;


case am10:



case am11:
char char_flag;


default:

short short_flag;

};

// Java

public final class XUnion 

implements org.omg.CORBA.portable.IDLEntity {

  //
instance variables

  private boolean __initialized;

  private Slot __discriminator;

  private java.lang.Object __value;

  private Slot _default = Slot.pm;

  //
constructor

  public XUnion() {

    __initialized = false;

    __value = null;

  }

  //
discriminator accessor

  public Slot discriminator() 

      throws org.omg.CORBA.BAD_OPERATION {

    if (!__initialized) {

      throw new org.omg.CORBA.BAD_OPERATION();

    }

    return __discriminator;

  }

  //
branch constructors and get and set accessors

  public boolean boolean_flag() 

     throws org.omg.CORBA.BAD_OPERATION {

    if (!__initialized) {

      throw new org.omg.CORBA.BAD_OPERATION();

    }

    switch (__discriminator.value()) {

      case Slot._am9:


break;

      default:


throw new org.omg.CORBA.BAD_OPERATION();

    }

    return 

      ((org.omg.CORBA.BooleanHolder) __value).value;

  }

  public void boolean_flag(boolean value) {

    __initialized = true;

    __discriminator = (Slot) (Slot.am9);

    __value = new org.omg.CORBA.BooleanHolder(value);

  }

  public char char_flag() 

     throws org.omg.CORBA.BAD_OPERATION {

    if (!__initialized) {

      throw new org.omg.CORBA.BAD_OPERATION();

    }

    switch (__discriminator.value()) {

      case Slot._am10:

      case Slot._am11:


break;

      default:


throw new org.omg.CORBA.BAD_OPERATION();

    }

    return ((org.omg.CORBA.CharHolder) __value).value;

  }

  public void char_flag(char value) {

    __initialized = true;

    __discriminator = (Slot) (Slot.am10);

    __value = new org.omg.CORBA.CharHolder(value);

  }

  public short short_flag() 

     throws org.omg.CORBA.BAD_OPERATION {

    if (!__initialized) {

      throw new org.omg.CORBA.BAD_OPERATION();

    }

    switch (__discriminator.value()) {

      default:


break;

      case Slot._am9:

      case Slot._am10:

      case Slot._am11:


throw new org.omg.CORBA.BAD_OPERATION();

    }

    return ((org.omg.CORBA.ShortHolder) __value).value;

  }

  public void short_flag(short value) {

    __initialized = true;

    __discriminator = (Slot) _default;

    __value = new org.omg.CORBA.ShortHolder(value);

  }

}
There is a holder class created also.

4.8 Typedefs

Java has no aliasing for types, unlike IDL, which uses the typedef for aliases. Consequently, IDL typedefs are ignored. This means that the base type has to be used where the typedef name is expected in the Java implementation. An exception to this rule is that new types are generated for IDL array and sequence typedefs. These mappings are shown in the corresponding sections. There are also helper and holder classes generated for each typedef.

4.9 Arrays

IDL arrays are mapped to Java arrays. That means there is no particular Java data type or class generated. For example, to create an instance of the following IDL array in a Java application:

typedef long long_array[10][5];

a programmer has to declare and allocate the array in the Java application code:

int [][] a_long_array = new int[10][5];

The IDL compiler generates a holder class for the array typedef:

public final class long_arrayHolder

implements org.omg.CORBA.portable.Streamable

{

    //
instance variable 

    public int[][] value;

    //
constructors 

    public long_arrayHolder() {


this(null);

    }

    public long_arrayHolder(int[][] __arg) {


value = __arg;

    }

    public void

      _write(org.omg.CORBA.portable.OutputStream out) {

        valami.long_arrayHelper.write(out, value);

    }

    public void 

      _read(org.omg.CORBA.portable.InputStream in) {

        value = valami.long_arrayHelper.read(in);

    }

    public org.omg.CORBA.TypeCode _type() {

        return valami.long_arrayHelper.type();

    }

}

4.10 Sequences

Sequences are similarly mapped to arrays. That is, no data type or class is generated. The bound of bounded sequences is checked at runtime and the exception BAD_PARAM is raised if it is violated.

Here are some example sequences in IDL:

typedef sequence<long, 10> bounded_10_seq;

typedef sequence<long> unbounded_seq;

As with arrays, it is the application programmer’s responsibility to declare and create a Java array of the corresponding member type. The semantics and syntax is similar to that of the array typedefs. 

4.11 Interfaces

IDL interfaces are mapped to public Java interfaces of the same name. These Java interfaces are implemented on the client side by the generated stub code. On the server side, interfaces are implemented by the generated skeleton code and the programmer-provided servant class. There are also helper and holder classes for each IDL interface type.

Let’s assume we have an IDL interface called InterfaceName. The following Java interface and helper and holder classes are generated by the IDL compiler. Additional interfaces and classes are generated for the client and server side, which we explain in separate sections.

The Java interface InterfaceName extends the CORBA object base class, org.omg.CORBA.Object. This interface contains the mappings of IDL type and exception definitions, and also the mappings of IDL constants, attributes, and operations defined within the IDL interface. Clients obtain references to objects that implement this interface.

The class InterfaceNameHelper contains the same methods for use with Anys as all other user-defined types as well as a static narrow() method:

abstract public class InterfaceNameHelper {


public static InterfaceName 

  narrow(org.omg.CORBA.Object object) {



…


}


…

}

This method allows objects of type org.omg.CORBA.Object to be narrowed to the more specific interface type InterFaceName. ORB implementers can choose to provide additional methods in this class.

The class InterfaceNameHolder is the usual holder class for inout and out parameters. It also provides methods to deal with input and output streams, and the method _type() to obtain the TypeCode of the interface. 

4.11.1 Client-side Mapping

In a client program, you need only declare an object reference of the Java interface type, such as

Tester myTester;

and assign a value to the variable, for example,

CORBA.Object obj = orb.string_to_object(iorString);

myTester = TesterHelper.narrow(obj);

The client program can now invoke methods on this object in the usual Java manner. The difference is the execution of the method. The proxy object forwards the call to the implementation object by calling the DII, which in turn calls the portable ORB library to send the call to the remote object via the CORBA transport protocol, IIOP.

4.11.2 Server-side Mapping

An object implementation has to implement the Java interface that has been generated from the IDL interface. There is a class called the servant base class which implements the Java interface and provides the skeleton code for a portable transient object implementation. The servant base class is generated by the IDL compiler and follows this naming scheme:

public class _InterfaceNameImplBase 

implements InterfaceName {


…

}

You would then implement the interface by providing the application semantics of the operations. Your implementation class (conventionally called InterfaceNameImpl) is attached to the skeleton by extending the implementation base class:

public class InterfaceNameImpl 

implements _InterfaceNameImplBase {


…

}

On the server side, the object adapter, which defines how the object is accessed when a client makes an operation invocation, is a grey area. You have the following choices to make your object implementation accessible via the ORB:

· No object adapter, using the ORB’s connect operation

· Basic Object Adapter, using the Inheritance approach

· Basic Object Adapter, using the Tie approach

· Portable Object Adapter

CORBA object references can be transient or persistent. Another thing that is controlled by an object adapter is the threading model. There are many variations of threading models, but the most common ones are:

· Single-threaded servers: all incoming invocations are sequential, and queued if necessary

· Multithreaded – one thread per client: for each client (connection) a thread will be provided

· Multithreaded – one thread per request: each incoming request gets its own thread (up to a maximum number of threads in the pool)

4.12 Constants

IDL constants are generally mapped to a static final variable that has the value of the constant. However, IDL constants are mapped differently depending on where they are defined in the IDL specification.

4.12.1 Constants within interfaces

A constant that is defined within an interface is mapped to a final public static field of the Java interface. The field is named after the IDL constant, the type of the field corresponds to the mapped IDL type of the constant. The field is initialized as defined in the IDL definition. For example:

interface Tester {


const short MaxSlots = 8;

};

The Java code generated:

public interface Tester extends org.omg.CORBA.Object {


final public static short MaxSlots = (short) 8;


…

}

4.12.2 Constants outside interfaces

IDL constants that are defined outside the interfaces are mapped to a public interface named after the IDL constant. This interface contains a public final static variable that is always called value.

Declaring the same constant as above, but outside an interface:

const short MaxSlots = 8;

leads to the following Java mapping:

public interface MaxSlots {


final public static short value = (short) 8;

}

4.13 Attributes

IDL attributes are mapped to Java methods: an accessor method, and, if the attribute is not declared readonly, a modifier method. Both methods have the same name as the IDL attribute but they differ in their signature. The accessor method does not have parameters and it returns a value of the attribute type (mapped to Java). The modifier method’s return type is void and has one parameter of the attribute type.

Here are two example attributes in an IDL interface:

interface Tester {


attribute string name;


readonly attribute long id;

};

which map to the following Java methods, defined in the Java interface Tester:

public interface Tester extends org.omg.CORBA.Object {

    String name();

    void name(String arg);

    int id();

}

4.14 Operations

IDL operations are mapped to methods in the Java interface that correspond to the IDL interface. 

The type of the operation result is mapped to Java according to the mapping for data types previously described. The mapping of the parameter types depends on their direction tag.

· in tag: pass by value

· out tag: pass result

· inout tag: pass by reference

Java only defines pass-by-value semantics, that matches the semantics for the in parameters, it is done according the mapping for IDL types. 

When a Java client invokes a method and supplies a Java object reference as an argument, the invoked object can modify the state of the object that was referenced by the parameter. After the invocation, the client still has the reference to the object that has been modified. This is why the corresponding holder objects are used as containers to map inout and out parameters. Thus references to the holder objects are passed instead of the parameters themselves.

As an example, we use an operation that has parameters with all the different tags:

interface Tester {


boolean test(in string name, inout boolean flag,

out long id);

};

The interface is mapped:

public interface Tester extends org.omg.CORBA.Object

{

    boolean test(String name,

                 org.omg.CORBA.BooleanHolder flag,

                 org.omg.CORBA.IntHolder id);

}

OMG IDL and Java Languages

The following table lists the main elements of IDL and their correspondents in Java.

PRIVATE
IDL Construct 
Java Construct 

module 
package 

interface 
interface, helper class, holder class 

constant 
public static final 

boolean 
boolean 

char, wchar 
char 

octet 
byte 

string, wstring 
java.lang.String 

short, unsigned short 
short 

long, unsigned long 
int 

long long, unsigned long long 
long 

float 
float 

double 
double 

enum, struct, union 
class 

sequence, array 
array 

exception 
class 

attribute 
method 

Lecture achievements:

On the completion of this lecture the student will:

· know how the basic IDL types are mapped to Java

· have basic skills for defining and using complex IDL types in Java

· be able to use the IDL interfaces mapped to Java interfaces and classes

· understand the parameter passing semantics of IDL methods mapped to Java




























































































































TEMPUS S_JEP-12495-97

Parallel and Distributed 20

