Lecture 5
Advanced Features

Goals:

· to show how to use IDL exceptions in Java programs
· to introduce inheritance in IDL and its mapping to Java
· to expose the problem of creating Java implementations that have to extend more superclasses
· to show how to use the callback mechanism

· to introduce how to implement dynamic interfaces

· to show how to access information about dynamic interfaces

Contents

5.1 Exception Handling

5.1.1 Exception definition

5.1.2 Exception handling

5.2 Using Inheritance of IDL Interfaces

5.2.1 IDL inheritance

5.2.2 Tie mechanism

5.3 Callback from Servers to Clients

5.4 Type Any

5.4.1 The TypeCode

5.4.2 Identifying and comparing TypeCodes

5.4.3 General methods on the class any

5.4.4 Named Values and NVLists

5.5 Dynamic Invocation Interface

5.5.1 Creating a Request

5.5.2 Request interface

5.5.3 Invoking a Request

5.5.4 Example

5.6 Dynamic Skeleton Interface

5.5.1 Example

5.6 The Interface Repository

5.1 Exception Handling

5.1.1 Exception definition

The mapping for exceptions is similar to that for structs. A user-defined IDL exception is mapped to a generated Java class that provides instance variables for the fields of the exception and some constructors. The class is named after the exception. There are also CORBA system exceptions provided by the ORB library.

User defined exceptions are part of an exception hierarchy. The generated classes are declared final and extend the class org.omg.CORBA.UserException. The generated class has a data member for each of the exceptions declaration’s members. It has two constructors, a null constructor that only creates the object, leaving the values of the fields to be filled in later. The other is a constructor with parameters for each data member that initializes the object properly.

Here is an example exception declaration in IDL:

exception SomethingWrong {

string reason;

long id;

};

The generated Java code is:

public final class SomethingWrong

extends org.omg.CORBA.UserException

{

 //
instance variables

 public String reason;

 public int id;

 //
constructors

 public SomethingWrong() {

 super();

 }

 public SomethingWrong(String __reason, int __id) {

 super();

 reason = __reason;

 id = __id;

 }

}

A holder class is also generated.

Every CORBA system exception CORBA::XXX is mapped to Java exception org.omg.CORBA.XXX, e.g.:

CORBA::DATA_CONVERSION (org.omg.CORBA.DATA_CONVERSION

5.1.2 Exception handling

IDL operations can explicitly raise one or more user-defined exceptions and can also implicitly raise system exceptions. Java methods which map IDL operations may always throw CORBA system exceptions which extend java.lang.RuntimeException. The raises clause of an IDL operation is mapped to a throw clause on the equivalent Java method.

For example a simple method that throws the exception defined above:

interface Tester

{

 boolean test(in string name)

 raises (SomethingWrong);

};

And its Java counterpart:

public interface Tester extends org.omg.CORBA.Object

{

 boolean test(String name) throws SomethingWrong;

}

The server-side implementation may now throw a SomethingWrong exception during the execution of the test() method the ‘normal’ way.

If a client calls the method Tester.test(), and on the server-side the implementation method raises the SomethingWrong exception, then it is the client’s responsibility to catch it the same way as any ‘normal’ exceptions.

5.2 Using Inheritance of IDL Interfaces

5.2.1 IDL inheritance

OMG IDL allows multiple inheritance for interfaces, that is, an IDL interface can inherit from any number of interfaces. Since IDL interfaces are mapped to Java interfaces, the mapping of inheritance is straightforward. A Java interface representing a derived IDL interface, D, extends all the Java interfaces representing the base interfaces of D. The following example illustrates inheritance by using a diamond inheritance structure.

interface Base {

 void baseOp();

};

interface Left : Base {

 void leftOp();

};

interface Right : Base {

 void rightOp();

};

interface Derived : Left, Right {};

When we look at the generated code we see the same pattern mirrored by the Java interfaces:

public interface Base

extends org.omg.CORBA.Object { … }

public interface Left extends Base { … }

public interface Right extends Base { … }

public interface Derived extends Left, Right { … }

5.2.2 Tie mechanism

The inheritance approach, however, has the following shortcomings:

· Java single inheritance. Since Java only supports single class inheritance, an object implementation cannot extend any application specific class as it already extends the skeleton class.

· One implementation object for multiple interfaces. There are occasions where it makes sense for one Java object to implement multiple IDL interfaces, for example, Base and Left. This can not be achieved via Java extension because the implementation object needs to extend two or more skeletons.

For example we have a good implementation of the interface Base, and we want to extend this class to implement the Left interface as well. In Java we can not do this directly, for we may either extend BaseImpl or _LeftImplBase, but not both.

A solution to these problems is to use delegation instead of inheritance. This is achieved by generating a pseudo-implementation or Tie class, which inherits the skeleton. However, rather than implementing the operations, this pseudo-implementation class calls methods on another object that actually implements the operations’ semantics. The delegation approach is also known as the Tie mechanism.

To use this feature we have to create the corresponding classes and interfaces, using the –ftie option of the idltojava tool.

If we have the InterfaceName IDL interface, it generates additionally the _InterfaceNameTie class and _InterfaceNameOperations Java interface. For instance in our previous example we’ll have the following files for interface Left:

//_LeftTie.java

public class _LeftTie extends _LeftImplBase {

 public _LeftOperations servant;

 public _LeftTie(_LeftOperations servant) {

 this.servant = servant;

 }

 public void baseOp()

 {

 servant.baseOp();

 }

 public void leftOp()

 {

 servant.leftOp();

 }

}

//_LeftOperations.java

public interface _LeftOperations

extends _BaseOperations {

 void leftOp();

}

And similar classes and interfaces for Base, Right, and Derived.

Now let’s assume we have a working implementation of Base, called BaseImpl, and we want to extend this class so that it implements Left. First we create a new class LeftImpl that extends BaseImpl and implements _LeftOperations:

public class LeftImpl extends BaseImpl

implements _LeftOperations

{

// baseOp() is already implelented in BaseImpl

void leftOp()

{ … }

}

Then we construct a _LeftTie object, and set its servant to this newly created LeftTieImpl, and use this _LeftTie object like the implementation classes before. For example:

…

LeftImpl leftImpl = new LeftImpl();

_LeftTie leftServant = new _LeftTie(leftImpl);

orb.connect(leftServant);

…

Once a method is invoked by a client, the pseudo-implementation object leftServant calls the method leftOp() on the real implementation object leftImpl and returns the result from this invocation back to the client.

Of course this Tie mechanism can be used in other situations as well. For example if we have a class A, have an IDL interface B, and want create C that extends A to implement B.

5.3 Callback from Servers to Clients

There are a number of cases when we want the server to notify the client about some event. There are two major solutions to this problem. Either the client asks the server repeatedly whether something has happened (the so-called pull-method), or the client runs independently from the server, and if something happens, the server accesses the client (the push-method, or callback mechanism). We’ll look at the latter in this section.

To solve the problem, the client has to give a reference of an object X to the server, so that the server can call a special method of X in order to notify the client. Let’s look at the following IDL definitions:

interface XCallback

 {

 void callback(in long param);

 };

 interface Test

 {

 void regist(in XCallback objRef,

 in string clientname);

 void finish(in string clientname);

 void add(in long i);

 };

Here we have to interfaces. On the server side we should have an implementation of Test. Clients may register, providing a name and a callback reference; the registered clients may unsubscribe; and anyone may increment the counter. If the counter changes, the registered clients will be notified.

The clients, who want to register should have an own servant object, an implementation of XCallback, which accepts calls with a long integer number as an argument. They should connect this servant to the ORB, and send it’s reference to the TestServant of the server side at registration:

//client.java

void someMethod()

{

 …

 XCallbackImpl xcall = new XCallbackImpl();

 orb.connect(xcall);

 …

 // getting the test servant as a CORBA object

 …

 Test test = TestHelper.narrow(object);

 test.register(xcall, myname);

 …

 test.add(3);

 …

 test.finish(myname);

 …

}

The implementation of Test is:

//TestServant.java

class TestServant extends _TestImplBase {

private Hashtable clients;

private int nmbr;

 TestServant(){

 nmbr = 0;

 clients = new Hashtable();

 System.out.println("TestServant started");

 }

 public void regist(XCallback callobj,

 String clname){

 clients.put(clname, callobj);

 callobj.callback(nmbr);

 System.out.println("actual clients:");

 Enumeration en = clients.keys();

 while (en.hasMoreElements())

 System.out.println((String)en.nextElement());

 }

 public void finish(String clname){

 if (clients.contains(clname))

 clients.remove(clname);

 Enumeration en = clients.keys();

 while (en.hasMoreElements())

 System.out.println((String)en.nextElement());

 }

 public void add(int i){

 nmbr += i;

 Enumeration en = clients.elements();

 while (en.hasMoreElements())

 ((XCallback)en.nextElement()).callback(nmbr);

 }

}

Note two major issues. One of them is that callback turns client-servant hierarchy upside down. At callback the former client is the server, and the former server behaves as a client. The other is that references of CORBA objects can be transmitted transparently and easily via ORB between client and server.

5.4 Type Any

5.4.1 The TypeCode

The IDL Any type is a predefined, self-describing type which can hold values of an arbitrary IDL type (including another Any). It describes the type information about the contained value using a TypeCode.

TypeCodes can represent type information about any IDL type. Many IDL data types are structured and contain other types within them. These are represented as nested TypeCodes. The TypeCode pseudo-interface is mapped to an abstract Java class in the package org.omg.CORBA.

IDL interface
pseudo interface CORBA::TypeCode

Java interface
public abstract class TypeCode {…}

The CORBA module defines a pseudo-IDL definition of an enum, TCKind. This enum defines constants to distinguish between various “kinds” of TypeCodes.

IDL type
enum TCKind{ tk_null, tk_void, tk_short, tk_long, …}

Java class
public final class TCKind{

 public static final int _tk_null = 0;

 public static final TCKind tk_null =

 new TCKind(_tk_null);

 ...

}

For every IDL type XXX there is an element in this enumeration tk_XXX.

There are two exceptions in the CORBA specification that are raised when a query on a TypeCode is invalid. These are exception Bound{}; and exception BadKind{};. The former is usually raised when an indexed query parameter exceeds the length of the list being queried, for example, when asking for the fourth member of a struct with only two members. The latter is raised when an inappropriate query is made for the kind of TypeCode, for example, asking for the discriminator type of a string.

5.4.2 Identifying and comparing TypeCodes

The operation equal() returns true if the TypeCode is structurally equivalent to its argument tc, and false otherwise.

The operation kind() returns an enum of type TCKind indicating the kind of TypeCode.

The operation id() returns a Repository ID for a type in the Interface Repository.

The operation name() returns the unscoped name of the type as specified in IDL. (Only valid for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_except.)

TypeCodes are created using operations in the CORBA::ORB interface. All the TypeCode creation methods follow a similar pattern. The result of each method is the newly created TypeCode object. These methods must be recursively applied for TypeCodes of nested types.

5.4.3 General methods on the class any

The IDL Any is mapped to the predefined class org.omg.CORBA.Any. This class provides methods to store values in and retreive values from an Any object. These methods deal only with predefined IDL types. The Helper classes that are generated for user-defined types contain methods to insert values into and extract values from Anys. An instance of the Any class can be obtained from the ORB, by calling its method create_any().

The type of an Any object can be obtained and modified with the methods

org.omg.CORBA.TypeCode type();

void type(org.omg.CORBA.TypeCode);

If you change the type of an Any that is already initialized with a value, the value is discarded. If you try to extract the value of an Any where only the type has been set, but no value was supplied, the exception CORBA::BAD_OPERATION is raised. You should not use the type modifier method unless you intend to use this Any as an out parameter. Additionally there are methods to supply the value of an Any in the form of a CORBA input stream and to extract the value as a CORBA output stream:

abstract public void read_value(

org.omg.CORBA.portable.InputStream,

org.omg.CORBA.TypeCode)

 throws org.omg.CORBA.MARSHAL;

abstract public void write_value(

org.omg.CORBA.portable.OutputStream);

The read method throws an exception if the value of the input stream does not match the supplied type code. You can use these two methods if you want to create Any objects dynamically. They are also used for inserting and extracting arbitrary values for user-defined types. However, the main motivation for a stream interface is to create a portability API for use by the IDL compiler when generating marshalling code. If the API is used, then stubs and skeletons generated by an IDL compiler can use the CORBA class libraries of any compliant ORB.

There is a pair of methods for inserting and extracting each predefined IDL type type. These methods following the pattern:

abstract public void insert_type(type t)

throws org.omg.CORBA.BAD_OPERATION;

abstract public type extract_type()

throws org.omg.CORBA.BAD_OPERATION;

Anys have generic methods to insert input streams and extract output streams. This means that methods can be generated in helper classes by the IDL compiler, which use these ORB implementation constructs.

A user-defined IDL type, usertype, will have the following methods in its helper class usertypeHelper:

public static void insert(Any a, usertype t) {…}

public static usertype extract(Any a) {…}

The insert() method is implemented by creating a stream that is inserted into the Any. The extract() method uses the output stream from an Any to get its value and create a user-defined type.

5.4.4 Named Values and NVLists

An operation’s parameters are stored in NamedValues. The Named Value has the following pseudo-interface:

typedef string identifier;

pseudo interface NamedValue{

readonly attribute identifier name;

readonly attribute any value;

readonly attribute Flags flags;

};

The name determines the name of a parameter; the value carries the type and the value of a parameter, encapsulated in an Any; the flags attribute determines if a parameter is in, inout, or out.

This interface allows access to the contents of a Named Value that is already initialized. Named Values must be created using the following method on the ORB object:

NamedValue create_named_value (String name,

 Any value,

 int flags);

The interface NVList represents a list of Named Values. It was defined as an interface:

pseudo interface NVList {

 readonly attribute unsigned long count;

 NamedValue add(in Flags flags);

 NamedValue add_item(in identifier item_name,

 in Flags flags);

 NamedValue add_value(in identifier item_name,

 in any val,

 in Flags flags);

 NamedValue item(in unsigned long index)

 raises (CORBA::Bounds);

 void remove(in unsigned long index)

 raises (CORBA::Bounds);

};

5.5 Dynamic Invocation Interface

The Dynamic Invocation Interface (DII) enables clients to invoke operations on objects without compile-time knowledge of their IDL type, that is, without the stub code generated by the IDL compiler. A client creates a Request, which is the dynamic equivalent to an operation. A Request contains an object reference, an operation name, and type information and values of the arguments, which are supplied by the client. Once initialized with all these parameters a Request can be invoked, which has the same semantics as invoking the operation using stub code.

Request is a pseudo-IDL interface that provides the operations to initialize an operation invocation request and the dynamically invoke an operation on an object. Requests are created by the ORB.

5.5.1 Creating a Request

In Java a Request object is created by calling methods on object references. However, the IDL pseudo-operation shown below is found in the ORB interface.

IDL operation in ORB
Status create_request (

 in Context ctx,

 in Identifier operation,

 in NVList arg_list,

 inout NamedValue result,

 out Request request,

 in Flags req_flags);

Java methods on CORBA.Object
Request _create_request(

 Context ctx,

 String operation,

 NVList arg_list,

 NamedValue result

);

Request _create_request(

 Context ctx,

 String operation,

 NVList arg_list,

 NamedValue result,

 ExceptionList exclist,

 ContextList ctxlist

);

The two methods are identical, except that the second version adds some extra type information. The flags parameter is not mapped in Java.

· ctx – specifies the execution context of the Request

· operation – determines the name of the operation to be invoked

· arg_list – provides the arguments to that operation

· result – a Named Value with its value initialized to contain only the type expected as the result from the operation

· exclist – a list of TypeCodes that indicates the user exceptions that are declared in the operation’s raises clause

· ctxlist – a list of strings that correspond to the names in the context clause of an operation declaration

5.5.2 Request interface

The pseudo-IDL for Request:

pseudo interface Request {

 readonly attribute Object target;

 readonly attribute Identifier operation;

 readonly attribute NVList arguments;

 readonly attribute NamedValue result;

 readonly attribute Environment env;

 readonly attribute ExceptionList exceptions;

 readonly attribute ContextList contexts;

 attribute Context ctx;

 //operations follow

 ...

};

Operations are defined for adding arguments when a Request has not been initialized with an argument list, for example, when it was created with the _request() method. The following operations each create a new Named Value in the Request’s arguments NVList.

any add_in_arg();

any add_named_in_arg(in string name);

any add_inout_arg();

any add_named_inout_arg(in string name);

any add_out_arg();

any add_named_out_arg(in string name);

They have Java mappings also:

public abstract Any add_in_arg();

public abstract Any add_named_in_arg(String name);

public abstract Any add_inout_arg();

public abstract

 Any add_named_inout_arg(String name);

public abstract Any add_out_arg();

public abstract

 Any add_named_out_arg(String name);
You can set the value of in and inout parameters using the interface to the returned Any.

The return type can be set:

IDL operation
void set_return_type(in TypeCode tc);

Java method
public abstract void

 set_return_type(TypeCode tc);

5.5.3 Invoking a Request

When the Request is correctly initialized it can be invoked by calling several different operations. The simplest of these is the invoke() operation/method:

IDL operation
void invoke();

Java method
public abstract void invoke();

The invoke() method is a blocking synchronous call, and when it returns the invocation has completed. The Environment attribute env must then be checked for its status because the operation may have raised an exception. If an exception has been raised it can be accessed by calling the exception() accessor method on the Environment returned from the env() method of the Request. If the result is null, then the operation has completed successfully.

To access the result and the inout and out parameters one can use the result() and the arguments() methods.

The operation send_deferred() allows an asynchronous invocation to be made. The semantics are that the operation returns without waiting for the target object to complete the invocation.

IDL operation
void send_deferred();

Java method
public abstract void send_deferred();

It is paired with the operations get_response() and poll_response() which allow the caller to check for results at a later time.

IDL operation
void get_response();

Java method
public abstract void get_response();

The operation result and any out or inout parameters won’t be valid until get_response() has been called and has returned (the method blocks until the result and the out/inout parameters are returned).

The operation poll_response() has a boolean return value. It will return true if the invocation is complete and the result and the inout and out parameters are ready for inspection. Once a true result is returned, the get_response() method must be called.

IDL operation
void boolean_response();

Java method
public abstract boolean

 poll_response();

The operation send_oneway() is for sending oneway operation invocation requests. These invocations have no return values, and so no further calls to the Request are required.

IDL operation
void send_oneway();

Java method
public abstract void send_oneway();

The CORBA specification provides operations for making multiple Requests. These operations are defined on the ORB pseudo-interface:

void send_multiple_requests_oneway(in RequestSeq seq);

void send_multiple_requests_deferred(in RequestSeq seq);

boolean poll_next_response();

Request get_next_response();
These are mapped in the standard way to methods in the ORB class:

public abstract void

 send_multiple_requests_oneway(Request[] seq);

public abstract void

 send_multiple_requests_deferred(Request[] seq);

boolean poll_next_response();

Request get_next_response();

5.5.4 Example

// getting an object reference

org.omg.CORBA.Object cobj = ncRef.resolve(path);

// creating a request

org.omg.CORBA.Request r =

 cobj._request("printHelloArgs");

// setting the requset’s attributes
 r.set_return_type(orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string));

org.omg.CORBA.Any _arg1 = r.add_in_arg();

_arg1.insert_string("Param string 1");

org.omg.CORBA.Any _arg2 = r.add_in_arg();

_arg2.insert_string("This is the second param");

// invoking the request

r.invoke();

// getting the result

String __result = r.return_value().extract_string();

System.out.println(__result);

5.6 Dynamic Skeleton Interface

The DII provides a mechanism to invoke operations from a client without compile-time knowledge about the interface. The Dynamic Skeleton Interface (DSI) provides a similar mechanism for the other side. It allows the ORB to invoke an object implementation without compile time knowledge about the interface, that is, without a skeleton class. For an object implementation, calls via a compiler-generated skeleton and the DSI are not distinguishable.

The idea behind the DSI is to invoke all object implementations via the same, general operation. This is specified in an abstract class DynamicImplementation that contains an operation, called by the ORB, to convey the original request to the server. This class presents a pseudo-object of the type ServerRequest to the server to allow it access to information about the operation being invoked and its arguments. It also uses references to the contents of this object to return the results of the invocation.

IDL interface
pseudo interface ServerRequest {

 Identifier op_name();

 Context ctx();

 void params(in NVList params);

 void result(in any res);

 void exception(in any ex);

};

Java class
public abstract class ServerRequest {

 public abstract String op_name();

 public abstract Context ctx();

 public abstract void

 params(NVList params);

 public abstract void result(Any a);

 public abstract void

 exception(Any a);

}

· op_name returns the name of the operation that was invoked;

· params takes an NVList as an argument. This list must contain the names and parameter direction flags of the arguments expected by the server for the operation given by op_name(). When the params() operation returns the ORB will have inserted the values of incoming arguments into the NVList for use by the server. This NVList will also be used to return the new values for inout and out parameters once the server has finished processing.

Servers that wish to use the DSI must implement the abstract class Dynamic Implementation, which extends the base used for all object implementations.

5.5.1 Example

// servant must extend DynamicImplementation

class HelloServant extends DynamicImplementation {

 // store the repository ID for the

 // implemented interface

 static String[] myIDs = {"IDL:HelloApp/Hello:1.0"};

 ORB orb;

 // implement an _ids method to return repository

 // ID of interface

 public String[] _ids() {

 return myIDs;

 }

 // create a reference to the ORB

 HelloServant(ORB orb) {

 this.orb = orb;

 }

 // must implement invoke() for handling requests

 public void invoke(ServerRequest request) {

 try {

 System.out.println("DSI: invoke called, op”+

 ” = "+request.op_name());

 // create an NVList to hold the parameters

 NVList nvlist = orb.create_list(0);

 // need an if statement like this for

 // each method name

 if (request.op_name().equals("printHelloArgs"))

 {

 // need an Any for each argument

 Any any1 = orb.create_any();

 any1.insert_string("");

 nvlist.add_value("arg1", any1, ARG_IN.value);

 Any any2 = orb.create_any();

 any2.insert_string("");

 nvlist.add_value("arg2", any2, ARG_IN.value);

 // pass the NVList to the request to

 // get values

 request.params(nvlist);

 System.err.println("Argument 1: In value: "

 + nvlist.item(0).value().extract_string());

 System.err.println("Argument 2: In value: "

 + nvlist.item(1).value().extract_string());

 Any result_any = orb.create_any();

 result_any.insert_string("\nHello”

 +” world !!\n");

 request.result(result_any);

 }

 }

 catch (Exception ex) {

 ex.printStackTrace();

 System.out.println("DSIExample:”

 +” Exception thrown: "

 + ex);

 }

 }

}

5.6 The Interface Repository

To make invocations on objects without having access to IDL-generated code we have to obtain information about the interface type of the object and invoke a method without an IDL-generated client-side proxy class. The first task is carried out using the Interface Repository, which contains type information about interfaces. Typically the Interface Repository is populated by the IDL compiler. Our client will query the Interface Repository using a standard method on the object reference, defined in CORBA::Object. This returns a reference to an Interface Repository object that represents the target object’s interface type. The object is part of a type tree which the client can traverse.

The second task is carried out using DII, as described above.

For example:

org.omg.CORBA.Object obj = orb.string_to_object(ior);

InterfaceDef if_def = obj._get_interface();

The InterfaceDef interface has an operation describe_interface() that returns a structure FullInterfaceDescription. It contains a number of nested structures that represent the operations and attributes contained in the interface. One of the nested structures, OperationDescription, describing an operation, also contains nested structures describing the operation’s parameters.

FullInterfaceDescription full_if_desc =

 if_def.describe_interface();
The interfaces and structures are the following:

typedef string Identifier;

typedef sequence <OperationDescription> OpDescriptionSeq;

struct FullInterfaceDescription {

 Identifier name;

 RepositoryId id;

 RepositoryId defined_in;

 VersionSpec version;

 OpDescriptionSeq operations;

 AttrDescriptionSeq attributes;

 RepositoryIdSeq base_interfaces;

 TypeCode type;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef sequence <ExceptionDescription>

 ExcDescriptionSeq;

struct OperationDescription {

 Identifier name;

 RepositoryId id;

 RepositoryId defined_in;

 VersionSpec version;

 TypeCode result;

 OperationMode mode;

 ContextIdSeq contexts;

 ParDescriptionSeq parameters;

 ExcDescriptionSeq exceptions;

};

enum ParameterMode

 {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParamDescription {

 Identifier name;

 TypeCode type;

 IDLType type_def;

 ParameterMode mode;

};

Using these definitions it is easy to create a client that gets an object’s interface definition, creates Requests according to the operations’ definitions, and invokes these Requests.

Lecture achievements:

On the completion of this lecture the student will:

· understand how to use IDL exceptions in Java programs

· know how inheritance in IDL is mapped to Java

· be able to create Java implementations that implement an IDL interface and extend another class at the same time

· understand how the callback mechanism works

· know what dynamic interfaces provide

· be able to create dynamic interfaces

· understand how to access information about dynamic interfaces

PAGE
29

