Discrete-time models


Discrete models of systems presupposes the presence of discrete signals. The discrete (or discontinuous) signals are signals quantized in amplitude and/or in time. In contrast to continuous signals that describe any amplitude value for any time instant (referred also as analogue signals), the discrete signals contain only values of discrete amplitudes for discrete-time points.


For engineers, the most important issue suggesting the use of discrete-time models occurs when a system contains a digital computer. A digital computer works with discrete signals (values) that are quantized in time and in amplitude, too. The digital computer is an inherently discrete-time device because it is driven by an internal clock that allows activities to take place only at fixed time intervals. Thus a digital computer cannot compute results, cannot give commands or cannot take measurements continuously but it „samples“ them at discrete time instants.


Even if the (dynamic) system being simulated, measured or controlled is a continuous-time system, the discrete-time nature of the computer’s operations means that computed output remains unchanged until new information (another sample) is fed into the digital computer. It is more convenient to employ in such cases a discrete-time model instead of a continuous-time one. Therefor the discrete-time models of such applications are called sampled-data models or computer-oriented models (called also as stroboscopic models). This means that the system is studied as seen from the point of view of the digital computer and the goal is to describe the change in the signals from sample to sample and to give the behaviour of the considered system only at the sampling points. This will greatly simplify the treatment comparing to the so called process-oriented models (called also as modulation models), that take the continuous-time behaviour into account.


Even if the discrete-time models arise mostly from digital systems, they can be also achieved from the description of systems that are inherently of discrete-time nature. A well-known example is the guidance equipment that utilises radar scanning in which a given sector or region is scanned once every revolution. Thus, in any given direction the signal (position of an aircraft) is sampled at a rate equal to the scan rate of the radar. Another example could be the time sharing of telemetered information transmission from different processes in order to make more effectively the use of expensive control equipment.


Discrete models arise also frequently from the numerical solution methods for differential equations of continuous-time models. This leads to difference equations that can be obtained by discretizing the differential equations of the continuous-time models.


In the following the mathematical descriptions of the discrete-time signals, of the discrete-time functions and of the discrete-time models are presented.


Discrete-time signals


The discrete-time signals consist of trains of pulses at certain time points. They are generated quite often by sampling continuous signals at given time intervals. The pulses can be modulated in several ways depending on the respective value of the continuous signal. Mainly pulse amplitude, pulse width and pulse frequency modulations are distinguished. In digital control systems pulse amplitude modulation is usually of interest, especially when the pulses occur in equidistant sampling instants (constant sampling period), the pulse amplitude is proportional to the continuous signal value and the pulse width is constant and negligible in connection to the sampling period. This type of discrete-time signals leads to linear relationships in the treatment (modelling) of linear dynamic systems. Since, using of digital computers, mainly the amplitude modulated signals are of interest, we will focus our attention upon the most important relationships of these signals.


Sampling of continuous-time signals


Figure 1.4. shows the generation of discrete-time amplitude modulated pulse train � EINBETTEN Equation.2  ��� through periodic detection of the continuous signal � EINBETTEN Equation.2  ��� with a „switch“ that closes with sampling time � EINBETTEN Equation.2  ��� for the time period � EINBETTEN Equation.2  ���. If the switch duration � EINBETTEN Equation.2  ��� is very small in comparition to the sampling period � EINBETTEN Equation.2  ���, the sampled signal � EINBETTEN Equation.2  ���can be considered as a train of impulses with a strength equal to the sampled value of the � EINBETTEN Equation.2  ��� at the sampling instants. This is shown in Figure 1.5. In this case the switch becomes an ideal sampler.


In our context, sampling will mean that a continuous-time signal is replaced by a sequence of numbers, which represent the values (amplitudes) of the considered signal at certain times. Uniform (or periodic) sampling occurs when the sampling period (or sample time) � EINBETTEN Equation.2  ��� is constant. The corresponding frequency � EINBETTEN Equation.2  ��� is called sampling frequency.
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Figure 1.4. Generation of discrete-time amplitude modulated pulse train





�





Figure 1.5. Discrete-time signal(impulse train) generated by an ideal sampler





More complicated sampling schemes can also be used. For instant, different sampling periods can be used for different control loops. This is called multirate sampling and can be considered as superposition of several periodic sampling schemes. Multirate sampling are becoming more important because of the increased use of parallel processing and that of multiprocessor systems. Nowadays, there are available complex software systems that run asynchronously different concurrent processes. There are also technical advantages in using different sampling rates for different variables.


Further, we will deal especially with the case of periodic sampling as it is better understood and most theory is devoted to this case.


Mathematical description of discrete-time signals


For the purpose of model analysis, it is useful to have a mathematical description of sampling and of sampled signals. Sampling a continuous-time signal simply means to replace the considered signal with its values in discrete set of points. This means that the pulse train � EINBETTEN Equation.2  ��� is approximated by the impulse train � EINBETTEN Equation.2  ���.


In order to exprime the strength of the pulses (the energy content), we will introduce the unitary impulse function:


� EINBETTEN Equation.2  ��� ,	(1.92)


that has a unitary area:


� EINBETTEN Equation.2  ���.	(1.93)


So, the train of impulses can be exprimed as:


� EINBETTEN Equation.2  ���,	(1.94)


where � EINBETTEN Equation.2  ��� denote the (uniform) sampling instants, with k integer.


The resulting impulse train � EINBETTEN Equation.2  ��� is not a realisable signal but an approximation. This assumption of an ideal sampler, however leads to a considerably simplified mathematical description of the behaviour (model) of systems with discrete-time signals.


For example, the Laplace transform of the sampled signal � EINBETTEN Equation.2  ��� is:


� EINBETTEN Equation.2  ���.	(1.95)


The Laplace transform is an infinite series, but fortunately in most of the cases it leads to simpler forms. That can be done with the aid of the z transform.


Frequency content of discrete-time signals


Sampling a continuous-time signal some information are lost, since the discrete-time signal is defined only for the sampling instants. Very little is lost by sampling if the sampling instants are sufficiently close, but much more about the signal can be lost if the sampling points are too far apart. The proper value of the sampling period (at uniform sampling) depends on the nature of the signal being sampled. This can be easily shown with a sinusoid of period � EINBETTEN Equation.2  ��� (Figure 1.6.). If the sampling period � EINBETTEN Equation.2  ��� is grater than the half-period T/2 (the case shown in Figure 1.6.a.), it is possible to miss completely one lobe of the sinusoid. Even more, if we sample twice per period, the same values are obtained in time for each period.


If the sampling period � EINBETTEN Equation.2  ��� (Figure 1.6.b.), each lobe will always be sampled at least once and the oscillation will be detected. However, if � EINBETTEN Equation.2  ���, all amplitude values of the sinusoid will be detected. Stated in terms of frequencies, the sampling frequency � EINBETTEN Equation.2  ��� must be at least twice the sinusoidal frequency 1/T in order to obtain the whole information about the considered sinusoidal signal.
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Figure 1.6. Sampling a sinusoid. a)� EINBETTEN Equation.2  ���, b)� EINBETTEN Equation.2  ���.


This example is not sufficiently clear when the considered continuous-time signal is not a sinusoid. If the signal x(t) is periodic with the period T0, it can be expanded into a Fourier series as:


� EINBETTEN Equation.2  ��� ,	(1.96)


where:


� EINBETTEN Equation.2  ��� ,	(1.97)


� EINBETTEN Equation.2  ���,	(1.98)


� EINBETTEN Equation.2  ���.	(1.99)


The components of the infinite Fourier series are called harmonics. In our notation � EINBETTEN Equation.2  ��� denotes the amplitude of the (th harmonic and � EINBETTEN Equation.2  ��� its phase angle. The plot of � EINBETTEN Equation.2  ��� versus the frequency is called the spectrum of the signal, in analogy with the light spectrum used in physical optics. Notice that the first component in series expansion is a constant that equals the medium value, while the first harmonic has a period equalling the period of the considered signal (function) and the superior harmonics have their frequencies as integer multiples of the basic frequency (the frequency of the first harmonic). Notice also that the amplitudes decrease with frequency, so the higher the frequency the lower is the effect of the respective harmonic. This is typical characteristic for physical signals.


Illustrative example


Show the spectrum of a half-sine function with unitary amplitude and period.


Solution:


The given function has its analytical expression:


� EINBETTEN Equation.2  ��� .


The function is impair, so it will have only odd harmonics. Its Fourier series expansion is:


� EINBETTEN Equation.2  ���


The spectrum is shown in Figure 1.7.
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Figure 1.7. Spectrum of a half-sine function
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