Flow processes for liquids and gases








2.5. Tank with an orifice.





	The effort variable in such systems as tank systems , liquid flow systems, pipe systems, or combination of this systems may be either the hydrostatic pressure p , or the liquid height h , which produces hydrostatic pressure. This two variables are related by the fluid weight-density (g as :


p=(gh�
(2.5.1.)�
�
.The fluid quantity can be either mass m , or volume V , with the rate variable selected as mass flow � EINBETTEN Equation.2  ���, or the volume flow rate q . If volume V is selected as quantity , the container capacitance relation describes head as a function of volume. For a tank with vertical sides and cross section area A this relation is :


h=V/A�
(2.5.2.)�
�
thus this tank capacitance is A. If pressure is taken as the effort variable than the tank capacitance relation is :


� EINBETTEN Equation.2  ����
(2.5.3.)�
�
thus the capacitance is :� EINBETTEN Equation.2  ��� ( ( is the mass density, g the acceleration due to the gravity.). In the case when the pressure is the effort than instead of capacitance the generally used term is compliance. The compliance of a fluid system is found by computing the pressure p required to force a given quantity of fluid into the system. For incompressible fluids with volume as quantity , the compliance is V/p .


	Fluid-flow resistance can result from orifices , wall friction in conduits such as pipes, and restrictions such as valves, elbows, and other fittings. The resistance relates the effort to the rate, and vice versa. Usually height and volume flow rate are selected as a pair for liquid systems. The conversion to mass flow is easily obtained through the fluid mass density. The resistance relation can be linear or non linear , depending on flow conditions .Here we present only the most commonly used formulas with minimum of fluid theory.


	The inductance path is not discussed here because in most applications of interest to us , the fluid inertia or kinetic storage compartment is negligible in comparison to the capacitance compartment.


The typical fluid mechanics units are given in the Table 2.5.1. below:





Table 2.5.1.





Quantity and symbol�
Units (SI)�
�
Pressure p �
N / m2  (pascal)�
�
Volume flow rate q �
m3 / sec�
�
Mass density � EINBETTEN Equation.2  ����
kg / m3�
�
Viscosity� EINBETTEN Equation.2  ����
N-sec / m2�
�
Weight density � EINBETTEN Equation.2  ����
N / m3 �
�



Other names and conversions:


1 atm = 1.01325(105 N / m2 =14.695 psi(pound square inch)=760 mmHg.


1 mmHg = 133.32 N / m2


1 lb / ft2 = 47.88 N / m2


1 lb-sec / ft2 = 47.88 N-sec / m2


Some fluid properties are given in Table 2.5.2.





Table 2.5.2. Properties of water and Fuel Oil





Fluid�
Mass density � EINBETTEN Equation.2  ����
Viscosity � EINBETTEN Equation.2  ���**�
Specific gravity*�
�
Water at 68(F(20(C)�
999.841 kg/m3 �
95.76(10-5 (Nsec/m2)�
1�
�
Fuel oil at 68(F(20(C)�
968.918 kg/m3�
95.76(10-2(Nsec/m2)�
0.97�
�



*Remark 1: The specific gravity is the ratio of the density to that of pure water at 4(C and a pressure of 1 atm.


**Remark 2 : the viscosity is usually highly temperature dependent.





2.5.1. Tank with an Orifice
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Consider the tank shown in figure 2.5.1.1 with vertical sides and cross sectional area A and a circular orifice of area A1 .The atmosphere pressure denoted by pa acts at the liquid surface and at the orifice outlet. The hydrostatic pressure resulting from the weight of a column of liquid of height h is: � EINBETTEN Equation.2  ���. The relation between the fluid v velocity through the orifice and the pressure drop (p1 -p2 ) can be shown by experiments to be :


� EINBETTEN Equation.2  ����
(2.5.4.)�
�
This is Torricelli’s formula and dates from 1640.


In our case � EINBETTEN Equation.2  ���. This results that the flow rate q through the orifice is :


� EINBETTEN Equation.2  ����
(2.5.5.)�
�
Experiments reveal that the jet area decreases to a minimum A2 at a distance of about one orifice diameter and that the relation between A2 and A1 is approximately given by A2 = 0.61A1 , if we assume that the jet does  not bend downward significantly. That fact shows that frictional effects are not completely negligible. All this facts lead to the following equation for the volume discharge rate:


� EINBETTEN Equation.2  ����
(2.5.6.)�
�
where Cd is called discharged coefficient and is approximately equal 0.60 for water if h(0.45m and the orifice diameter d(0.06m.


This is a non-linear constitutive relation between the rate variable q and the effort variable h The liquid mass in the tank is � EINBETTEN Equation.2  ���. From conservation of mass , the rate of change of this mass must equal the difference between the mass inflow and outflow rates. This is :


� EINBETTEN Equation.2  ����
(2.5.7.)�
�
For an incompressible fluid the density is constant and cancels from the equation. The tank cross section area A and orifice height ho are constant. This yields:


� EINBETTEN Equation.2  ����
(2.5.8.)�
�
Substituting q for (2.5.6.) in the (2.5.8.) we obtain:


� EINBETTEN Equation.2  ����
(2.5.9.)�
�



Example 2.5.1.1.


A cylindrical tank 1.50 meters high stands on its circular base of diameter 1.00 meter and is initially filled with water. At the bottom of the tank there is a orifice(a hole) of diameter 1.00 cm , which is opened at some instant , so that the water starts draining under the influence of the gravity .Find the height h(t) of the water at any time t. Find the times at which the tank is one-half full, one-quarter full, and empty.


Solution. First Step. Modelling: 


According to (2.5.9.) the mathematical model of the problem is : � EINBETTEN Equation.2  ���. Substituting A for 2500( [cm2] , A1  for 0.25 ([cm2] , Cd for 0.6 we obtain the following differential equation with initial value h(0)=150[cm2].


�EINBETTEN Equation.2 \s ��� .


Second Step. General solution, particular solution. The equation can be written as follows:


�EINBETTEN Equation.2 \s ���.By integration we obtain: �EINBETTEN Equation.2 \s ��� which is the general solution of the equation. The particular solution will be obtained from the initial value substituting t for 0 . Than we have  �EINBETTEN Equation.2 \s ��� and the particular solution is :�EINBETTEN Equation.2 \s ���.


Third Step . To answer the remaining questions , we express t in terms of h :�EINBETTEN Equation.2 \s ���. Substituting h for 75 we will obtain the time when the tank is one-half full, and this is t=45 min.


Substituting h for 37.5 we will obtain the time when the tank is one-quarter full, and this is t=76.8 min.


Substituting h for 0 we will obtain the time when the tank is empty, and this is t=154 min.


Fourth Step. Checking the results.


Example 2.5.1.2.


Develop a model for a conical tank (figure 2.5.1.2)of a circular cross-section whose angle at the apex is �EINBETTEN Equation.2 \s ���has an outlet of cross-sectional area of A1=�EINBETTEN Equation.2 \s ���. The tank contains water. Determine the time when the tank will be one half full, when it will be empty, assuming that the initial height of water is �EINBETTEN Equation.2 \s ���, and the orifice cross sectional area is 0.5.
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Solution. First Step. Setting up the Model.


We can not use the model developed in (2.5.9.) because the tank in this case has not vertical sides. According to the principle of conservation of volume we can write: � EINBETTEN Equation.2  ���.In our case according to the model (2.5.9.) we can use (2.5.6) and we have to take into consideration that the inflow rate is zero. We  also know that the volume of the cone is :


� EINBETTEN Equation.2  ���, where A is the instantaneous area of the basis , which depends on time or on instantaneous water height. Using the angle at apex of the cone we have :� EINBETTEN Equation.2  ���and � EINBETTEN Equation.2  ���. Differentiating both sides with respect to h we obtain:


� EINBETTEN Equation.2  ���.We can substitute  this in � EINBETTEN Equation.2  ��� and we obtain :� EINBETTEN Equation.2  ��� or : � EINBETTEN Equation.2  ���. This is the required mathematical model for the conical tank with one orifice.


Second Step. General Solution. Integrating both sides we obtain: � EINBETTEN Equation.2  ��� or � EINBETTEN Equation.2  ���. This is the general solution of the differential equation.


Third Step. Particular solution. From the initial condition h(0)=100cm we will determine the integration constant C: � EINBETTEN Equation.2  ��� results � EINBETTEN Equation.2  ���. Then the particular solution is � EINBETTEN Equation.2  ���.


Answering the other questions: the tank is half full when h(t)=50 which is satisfied for t=2930.8sec or t=48.8 min.. He tank will be empty for t= 3153 sec or t=52.5 min.





Exercise 2.5.1.3. 


a.) Develop a model for the height h for the spherical tank shown in figure 2.5.1.3.


b.) Find the constitutive relation between the liquid height h and the liquid volume V.
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2.5.2. Linearization of dynamic models.


We saw in the first chapter that non-linear dynamic models can be linearized by Taylor series expansion. The Taylor series of a two variable function is given in (1.5.7.).


The non-linear model is:


� EINBETTEN Equation.2  ����
(2.5.2.1.)�
�
with reference solution :


� EINBETTEN Equation.2  ��� and � EINBETTEN Equation.2  ���for a point of equilibrium.�
(2.5.2.2.)�
�
The linearized model is:


� EINBETTEN Equation.2  ��� where : � EINBETTEN Equation.2  ����
(2.5.2.3.)�
�



Example 2.5.2.1. 


Linearize the tank-orifice model in the Example 2.5.1.1.: � EINBETTEN Equation.2  ���., which can be written in the following form :


� EINBETTEN Equation.2  ���and supposing that the given parameter are such that � EINBETTEN Equation.2  ���.and the equilibrium point is (i) � EINBETTEN Equation.2  ���; or as an other exercise (ii) � EINBETTEN Equation.2  ���. Then we have:


� EINBETTEN Equation.2  ����



(2.5.2.3.)�
�
If the inflow rate is held constant at � EINBETTEN Equation.2  ��� , the height will eventually come to equilibrium when :


� EINBETTEN Equation.2  ��� or � EINBETTEN Equation.2  ����



(2.5.2.4.)�
�
The linearization coefficients :are 


� EINBETTEN Equation.2  ����



(2.5.2.5.)�
�
(i) For � EINBETTEN Equation.2  ��� we have .


� EINBETTEN Equation.2  ���, where time constant is 2.�
(2.5.2.6.)�
�
(ii) For � EINBETTEN Equation.2  ���we have :








� EINBETTEN Equation.2  ���, where time constant is 6.�
(2.5.2.7.)�
�
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Figure 2.5.1.1.
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Figure 2.5.1.2.
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Figure 2.5.1.3.











