System Reliability

1 Theoretical Background

1.1. Applicability

There at several architectures that could be used to prevent a fault within a single component from producing a system failure. A reduction in system failures results in increased reliability. High reliability is normally a necessary, but not sufficient, condition to guarantee safety.

We have seen that systems may fail for a variety of reasons. In particular, faults may be random or systematic in nature. Random component failures can occur at any time, and it is not possible to predict when a particular device will fail. However, by observing a large number of similar devices it may be possible to perform a statistical analysis to allow an estimate to be made of the probability of failure within a certain time period. Failures caused as a result of systematic faults are not random in nature and therefore do not lend themselves to statistical analysis. Such failures may be predictable to some extent. For example, an over-stressed device could fail whenever a particularly high load is applied, or a software fault might manifest itself at a set time. Once a systematic fault has been identified its likely effect on the reliability of the system may be studied, and in most highly critical applications any identified systematic faults would be removed. However, unidentified systematic faults represent a serious problem, as their effects are unpredictable and are not normally susceptible to statistical analysis.

1.2. Reliability

Reliability is perhaps one of the most important attributes of systems. Almost all specifications for systems mandate that certain values for reliability be achieved and in some way proved. Reliability can be determined experimentally if a set of N systems is operated over a period of time and the number of systems that fail during that time period is recorded. One problem with the experimental approach is the number of systems that would be required to achieve a level of confidence in the experimental results. This is particularly a problem when costs limit the number of systems that can be built. For example, the space shuttle program could not afford to build 1000 of its on-board processing systems such that reliability could be experimentally verified. 

A second problem with the experimental approach is the time required run such experiments. Many systems today are being designed to achieve reliability of 0.9, or higher, after ten hours of operation. Using the exponential failure law, a reliability of 0.9 corresponds to a failure rate of l0-8 failures per hour. Therefore, on the average, we would have to wait approximately 100 million hours, or approximately 11,416 years for the first failure occur. Clearly, we need alternatives to the experimental approach. The most popular reliability analysis techniques are the analytical approach. Of the analytical techniques, combinatorial modelling and Markov modelling are the two most commonly used approaches.

Components that fail as a result of non-systematic faults will fail at a random time. For a given device it is not possible to predict the time of failure, but it is possible to quantify the rate at which members of a family of components will fail. Therefore, our definition of reliability is based on the probability of a device functioning correctly for a given period of time. In fact, reliability may be defined in a number of ways, some qualitative and others quantitative. Here we will take reliability to be the probability of a component or system functioning correctly over a given period of time under a given set of operating conditions. Clearly, by this definition reliability is a function of time and it is normally given the symbol R(t).

If we consider a set of N identical components, all of which begin operating at the same time, then at some later time t, the number of components functioning correctly is n(t), where:

� EMBED Equation.2  ���	(1.1)

One may also define the term unreliability, which is the probability that a system will not function correctly over a given period of time. This term is given the symbol Q(t) and is also called the probability of failure.

If the number of components to have failed during a time t is given the symbol nf(t), then

� EMBED Equation.2  ���	(1.2)

and, from the definitions of reliability and unreliability, it is clear that

Q(t) =1-R(t)	(1.3)

1.3. Failure Rate

An important aspect in the analysis of systems is the estimation of failure rate of specific components. The most common technique for estimating the failure rate is the United States Department of Defence MIL-HDBK-217, as well as several revisions, which include for example, MIL-HDBK-217C. In each version of the standard, the objective has been to develop a model for the failure rate of electronic components using experimental data obtained by analysing the failures of actual devices. Here we only summarise the model and the important parameters that are used in calculating the failure rate.

Intuitively, the failure rate is the expected number of failures of ith device or system er a given time period. The failure rate is typically denoted as (. The failure rate is one measure that can be used to compare systems or components.

If redundancy has been incorporated as a means of achieving fault tolerance, the failure rate of the redundant system should be lower than the failure rate of a similar, non-redundant system.

To more clearly understand the mathematical basis for the concept of a failure rate, recall the definition of the reliability function. The reliability R(t) of a component, or a system, is the conditional probability that the component operates correctly throughout the interval �[t0, t] given that it was operating correctly at time t0. Suppose that we test N identical components by placing all N components in operation at time to and recording the number of failed and working components at time t. Let Nf(t) be the number of components that have failed at time t and N0(t) be the number of components that are operating correctly at time t. It is assumed that once a component fails it remains failed indefinitely. The reliability of the components at time t is given by:

� EMBED Equation.2  ���	(1.4)

which is simply the probability that a component has survived the interval [t0, t].

The probability that a component has not survived the time interval called the unreliability and is given by:

� EMBED Equation.2  ���	(1.5)

Note that at any time t, R (t)=1.0 - Q (t) because

� EMBED Equation.2  ���	(1.6)

If we write the reliability function as

� EMBED Equation.2  ���	(1.7)

differentiate R (t) with respect to time, we obtain

� EMBED Equation.2  ���	(1.8)

which can be written as:

� EMBED Equation.2  ���	(1.9)

The derivative of Nf(t), dNf(t)/dt, is simply the instantaneous rate at which components are failing. At time t, there are still N0(t) components operational. Dividing dNf(t)/dt by N0(t) we obtain

� EMBED Equation.2  ���	(1.10)

z (t) is called the failure rate function or hazard function, hazard rate. The units for the failure rate function are failures per unit of time.

The failure rate function can be expressed in different ways. For example, z(t) can be written strictly in terms of the reliability function R(t) as

� EMBED Equation.2  ���	(1.11)

Similarly, z(t) can be written in terms of the unreliability Q(t) as

� EMBED Equation.2  ���	(1.12)

Failure rate may represent the frequency of the repeated failure of a single device, or the combined failure rate of a number of units. In the latter case the failure rate is the instantaneous rate at which components are failing, as a fraction of the number of devices still functioning. Thus:

� EMBED Equation.2  ���	(1.13)

Experience shows that the failure rate of electronic components normally exhibits distinctive characteristics, as shown in Figure 1. For obvious reasons, this characteristic is normally described as a ‘bathtub’ curve. Initially, components exhibit high ‘infant mortality’ owing to the presence of manufacturing faults that were not detected during the testing stage of their manufacture. As time passes the number of components containing these defects diminishes and the failure rate drops to a fairly constant level. At some later time the effects of ageing become apparent and the failure rate again rises as the devices ‘wear out’. Manufacturers normally aim to use components only during the relatively constant part of this curve, and this is normally termed their ‘useful life period’. In critical applications extended soak testing is used before systems are installed to catch any early failures. This is often in the form of ‘accelerated life testing’, using a more hostile environment than would be experienced by the unit in service. Such testing is often termed the ‘burn-in’ phase. This aims to produce faults in a few hours or days, that might take years to appear in normal operation. Critical systems would normally be replaced before their reliability falls to unacceptable levels owing to the effects of ageing. The relatively constant failure rate throughout the useful life of the unit is given the symbol (.
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Figure 1: Typical variation of failure rate with time for electronic components

If we assume that the system is in the useful-life sage where the failure rate function has a constant value of (, the solution to the differential equation is well known to be an exponential function of the parameter ( given by:

R(t)=e-(t 	(1.14)

The exponential relationship between reliability and time is known as the exponential failure law. This indicates that for a constant failure rate reliability falls exponentially with time. Thus the probability of a system working correctly throughout a given period of time decreases exponentially with the length of this time period.

1.4. Time-Variant Failure Rates

The exponential failure law described above assumes a constant failure rate. This relationship is widely used and is a good model for the random failure of hardware components. However, software failures are due to design faults and in some circumstances may be located and removed during the lifetime of the product. In this case the number of failures will tend to decrease with time and the constant failure rate model is no longer appropriate. This form of failure behaviour may be modelled by the Weibull distribution (Siewiorek and Swarz, 1982), which results in an expression for reliability of the form

� EMBED Equation.2  ���	(1.15)

where ( is the shape parameter and ( is the characteristic life. It can be seen that for certain values of ( the reliability increases with time, and approaches unity as t tends to infinity.

Although time-variant failure rates are of importance in the modelling of software and other systematic faults, the majority of reliability analysis is based on an assumption of a constant failure rate. For this reason the remainder of this chapter assumes this relationship.

1.5. Mean Time to Failure

Another way of describing the reliability of a system is to give its mean time to failure (MTTF), that is, the expected time that a system will operate before the first failure occurs. In addition to the failure rate, the mean time to failure (MTTF) is a useful parameter to specify the quality of a system. The MTTF is the expected time that a system will operate before the first failure occurs. For example, if we have  N identical systems placed into operation at time t = 0, and we measure the time that each system operates before failing, the average time is the MTTF. If each system i- operates for a time ti before encountering the first failure, the MTTF is given by:

� EMBED Equation.2  ���	(1.16)

It can be shown that

� EMBED Equation.2  ���	(1.17)

and therefore, for the period where the failure rate is constant,

� EMBED Equation.2  ���	(1.18)

This leads to the very simple result that the MTTF is the inverse of the constant failure rate of the system. Thus a system with a constant failure rate of 0.001 failures per hour will have a mean time to failure of 1000 hours. It is important to note that it is not reasonable to assume that such a system will operate correctly for 1000 hours. The reliability of a system at a time t is given by

� EMBED Equation.2  ���	(1.19)

and thus at a time t =1/( (that is, at a time equal to its MTTF), the reliability is

� EMBED Equation.2  ���	(1.20)

Thus any given system has only a 37% chance of functioning correctly for an amount of time equal to the MTTF, or conversely a 63 % chance of failing in this period. However, for a large number of units the MTTF represents the average time for which they would operate before their first failure.

1.6. Mean Time to Repair

The mean time to repair (MTTR) is quite simply the average time taken to repair a system that has failed, and to get it operational. The mean time to repair (MTTR) is simply the average time required to repair a system. The MTTR is extremely difficult to estimate and is often determined experimentally by injecting a set of faults, one at a time, into a system and measuring the time required to repair the system in each case. The measured repair times are averaged to determine an average time to repair. In other words, if the ith of N faults requires a time ti to repair, the MTTR is estimated as:

� EMBED Equation.2  ���	(1.21)

Often the estimate of the MTTR is improved by averaging over several repair personnel to account for the differences in the abilities of these personnel. For example, if the set of N faults is repaired by M personnel, each of the personnel has an average time to repair, say, MTTRi, which is the MTTR for the ith person. The estimate of the overall MTTR is the average of the individual MTTRs. In other terms,

� EMBED Equation.2  ���	(1.22)

The MTTR is normally specified in terms of a repair rate (,, which is the average number of repairs that occur per time period. The units of the repair rate are normally number of repairs per hour. The MTTR and the repair rate ( are related by:

� EMBED Equation.2  ���	(1.23)

Often the MTTR may be estimated during the design stage to allow system performance to be predicted, but may need to be determined experimentally when the system is operational.

Just as we describe the reliability of a system using its failure rate (, we can quantify the reparability of a system using its repair rate (, which is the average time taken to repair the system. It has units of repairs per hour. Just as the MTTF is 1/(, the MTTR is 1/(.

1.7. Mean Time Between Failures

It is very important to understand the difference between the MTTF and the mean time between failure (MTBF). Unfortunately, these two terms are often used interchangeably. Although the numerical difference is small in many cases, the conceptual difference is very important. The MTTF is the average time until the first failure of a system, whereas the MTBF is the average time between failures of a system. As noted in the previous section, we can estimate the MTTF for a system by placing each of a population of N identical systems into operation at time t = 0, measuring the time required for each system to encounter its first failure, and averaging these times over the N systems. The MTBF, however, is calculated by averaging the time between failures, including any time required to repair the system and place back into an operational status. The average number of failures is computed as

� EMBED Equation.2  ���	(1.24)

Finally, the MTBF is

� EMBED Equation.2  ���	(1.25)

In other words, the MTBF is the total operation time T, divided by the navg average number of failures experienced during the time T.

If we assume that all repairs to a system make the system perfect once in just as it was when it was new. Once successfully placed into operation, a system operates, on the average, a time corresponding to the MTTF before encountering the first failure. The system then requires some time, MTTR, to repair the system and place it back into operation once again. The system then is perfect once again and will operate for a time corresponding to the MTTF before encountering its next failure. The time between the two failures is the sum of the MTTF and the MTTR and is the MTBF. Thus, the difference between the MTTF and the MTBF is the MTTR. Specifically, the MTBF is given by

MTBF = MTTF + MTTR	(1.26)

In most cases the time taken to repair the system will be small compared with the time for which the system operates, so in practice the MTBF will be numerically similar to the MTTF.

� EMBED ShapewareVISIO20  ���Figure 2 Relationship between the MTBF and the MTTF

1.8. Availability

The availability of a system is the probability that the system will be functioning correctly at any given time. In other words, it is the fraction of the time for which it is operational. This can be expressed in terms of previously defined terms as:

� EMBED Equation.2  ���	(1.27)

In critical systems the availability will normally be close to unity, and it is sometimes more convenient to describe a system in terms of its unavailability, where

Unavailability =1- Availability	(1.28)

One can say that high availability is of paramount importance in some applications. Its relevance in terms of safety depends on whether safety can be guaranteed when the system is inoperative. In applications that have fail-safe states it may be possible to maintain safety even when the computer-based system is not operating. In such cases availability may not be primary to safety, but will still be of importance to the overall performance of the system.

2. Reliability Modelling

In the previous section we discussed several ways of describing the reliability of individual components. During the design stage of a project it is essential to be able to predict the final reliability of a complete system containing many parts. In this section we look at the use of reliability modelling to estimate the reliability of complex systems. The two most common methods are the ‘combinational modelling’ and the ‘Markov state modelling’ approaches.

2.1. Combinational Models

Combinational reliability models allow the reliability of a system to be calculated from the reliability of its component parts. The components in question could be subsystems or individual devices, components.

The model distinguishes between the situation where failure of any one of a number of components will cause system failure, and the case where several components must fail simultaneously to cause a malfunction. These two situations are modelled by the series and parallel models respectively. The symbols within reliability block diagrams are described within the international standard IEC 1078 (IEC, 1991).

2.2. Series Systems
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Figure 3 A series combination of components.

Within any module that is not itself fault tolerant, it can be assumed that failure of any of its components may cause a system failure. Such an arrangement is represented in Figure 3 Here the components are shown in series, as any failure will prevent input data from correctly reaching the output. It should be noted that this representation is diagrammatic and does not correspond to the physical interconnection of the components. The model simply shows that failure of any of the components implies failure of the complete system.

As failure of any of the components will result in overall failure, the failure rate of a series system is equal to the sum of the failure rates of the individual components. If a system contains N components, and it may be assumed that failures in the various components are independent, then the system’s failure rate (, during its constant failure rate period, is given by

(=(1 + (2 + ... + (N	(2.1)

where (i is the constant failure rate of the i-th component. This may be rewritten as

� EMBED Equation.2  ���	(2.2)

The reliability of the arrangement may also be expressed in terms of the reliability of the components. If Ri (t) is the reliability of the i th component in the system, then the overall system reliability R(t) is given by the expression

R(t) = R1(t)* R2(t) . . . RN(t)	(2.3)

which may be written as

� EMBED Equation.2  ���	(2.4)

It can be seen that in order to achieve very high reliability using a series arrangement of many components, the individual components must themselves be extremely reliable.

2.3. Parallel systems

In systems that contain redundancy, failure of one component or subsystem need not result in failure of the complete system. Such an arrangement is described as a parallel system and is shown diagrammatically in Figure 4 In this arrangement it is assumed that the system will remain operational provided that at least one of the parallel elements is functioning correctly.
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Figure 4 A parallel combination of components

To determine the reliability of a parallel system we start by considering the probability of failure, first of an individual module, and then of the complete system. As the reliability of a component R(t) is the probability of that component functioning correctly for a period of time t, then [1-R(t)] must be the probability of it failing within that time. You will recall that the quantity [1-R(t)] is termed the unreliability of the component and is given the symbol Q(t). If a system contains N parallel modules, then the probability of all the units failing independently will be the product of the probabilities of each unit failing individually. Thus, the probability of failure of the system is given by

Q(t) = [1 ( R1(t)][1 ( R2(t)]. . (1 ( RN(t)]	(2.5)

where Ri(t) is the reliability of the i th module. The reliability of the system is therefore:.

R(t) =1( Q(t) =1( [1 ( R1(t)] [1 ( R2(t)] ... [1- RN(t)]	(2.6)

or simply:

� EMBED Equation.2  ���	(2.7)

If, as is often the case, the parallel modules are identical, each with a reliability of Rm(t), this expression may be simplified. The system reliability then becomes:

� EMBED Equation.2  ���	(2.8)

2.4. Series-Parallel Combinations

In practice, real systems are often more complicated than the simple series and parallel combinations described above. However, all systems may be reduced to some combination of these two forms, which can then be reduced systematically to produce a single equivalent element. This process is illustrated in Figure 5 Figure 5(a) shows a system consisting of a series combination of parallel modules. The reliability of this arrangement can be calculated by first combining the parallel elements into a single module of equivalent reliability and then combining; the resulting series elements into a single module. Figure 5(b) shows the first of these operations. Here module 10 has an equivalent reliability to the parallel combination of modules I, 2 and 3. Similarly, modules 11 and 12 represent the effective reliability of the parallel combinations of modules 4, 5 and 6, and 7, 8 and 9 respectively. The overall reliability of the system is represented by that of module 13. This is determined by evaluating the series combination of modules 10, 11 and 12

Parallel combinations of series elements may be; analysed in a similar manner by first combining the series modules and then combining resulting parallel elements. Using these techniques, any combination of, series and parallel units may be simplified and its reliability assessed
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Figure 5 A series-parallel combination arrangement:

2.5. Triple modular and N-modular redundancy

The voting mechanisms used at several forms of static redundancy may be used to achieve fault tolerance. These arrangements may be represented within reliability block diagrams, as shown in Figure 6.

The simplest of the static configurations, triple modular redundancy (TMR), uses three parallel modules and will function correctly provided that at least two modules are operational. If we ignore the effects of the voting mechanism, the probability of the system working correctly may be expressed in words as follows:

If the probability of a module working correctly is Rm(t), then the probability of it failing is [1 ( Rm(t)], and the system reliability is given by:

RTMR(t) = R1(t)R2(t)R3(t) + [1 ( R1(t)]R2(t)R3(t)+ R1(t)[1 ( R2(t)]R3(t) + 

	+ R1(t)R2(t)[1 ( R3(t)]	(2.9)

where R1(t), R2(t) and R3(t) represent the reliability of modules l, 2 and 3 respectively.

If, as is often the case, the reliability of the three modules is identical [R1(t)=R2(t)=R3(t)] this simplifies to:

RTMR(t) = Rm3(t) + 3Rm2(t)[1 ( Rm(t)]	(2.10)

RTMR(T) = 3Rm2(t) ( 2Rm3(t)	(2.11)
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Figure 6 Representation of voting mechanism within reliability block diagrams:

(a) triple modular redundancy; (b) N-modular redundancy.

Note that in this case the; reliability of the TMR arrangement is lower then that of an individual module. This illustrates that the use of redundancy does not necessarily increase the reliability of a system. It also shows that a system may be fault tolerant without being reliable In a TMR arrangement the resultant reliability is only greater than that of the modules themselves if the module reliability is greater than 0.5. Reliability cannot be produced by combining unreliable modules.

A similar analysis to that given above can be applied to systems with N identical modules in which M modules must function correctly in order to prevent a system failure. This results in an expression for the reliability of the form:

� EMBED Equation.2  ���	(2.12)

Substituting values of 3 and 2 for N and M respectively yields a result equivalent to that derived above for the TMR arrangement.

So far in our discussions of static redundant systems we have ignored the effects of the voting mechanism. As the voter is usually a very simple circuit it is possible that its reliability may be sufficiently high to allow a single, non-redundant voter to be used. Such a system may be modelled as a series combination of the M-of N arrangement described earlier, with a single element representing the reliability of the voter. In more critical applications a fault-tolerant voting arrangement will be needed. Such a voting arrangement will then represent a parallel combination of elements in series with the M-of N network. This series-parallel combination can then be reduced and analysed as discussed earlier.

2.6. Dynamic Redundancy and Fault Coverage

Various forms of dynamic redundancy use some form of fault detection to switch between a number of redundant modules. This arrangement may be modelled as a parallel combination of elements as described above, in which correct operation will be maintained provided that at least one of the modules functions correctly. This may be represented within a reliability block diagram, as shown in Figure 7.

Dynamic systems may function in many ways. In a standby spare configuration a primary module is used exclusively unless fault detection circuitry determines that there is a problem with this unit when control will switch to a standby module. Thus in the arrangement of Figure 7, module 1 would be used exclusively unless a fault were detected, when control would switch to module 2. The success of such an arrangement is critically dependent on the effectiveness of the fault detection circuitry.

The system will function correctly if module 1 is fault-free. Alternatively, it will function correctly if module 1 fails provided that the fault circuitry detects this fault and module 2 is fault-free. This may be expressed in probability terms as:

R(t) = R1(t) + [1(R1 (t)]C1 R2(t)	(2.13)

where R(t) is the system reliability, R1(t) and R2(t) represent the reliability of module 1 and module 2 respectively, and C1 is the fault coverage of module l. The fault coverage represents the probability of a fault within the module being detected. For modules with identical reliability Rm(t) and fault coverage Cm, this becomes:

R(t)= Rm(t)+[1( Rm(t)]Cm Rm(t)	(2.14)

If we assume perfect fault coverage, that is Cm =1, this reduces to:

R(t)=1 ( [1 ( Rm(t)]2	(2.15)
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Figure 7 A simple dynamic redundant system.

It is interesting to note that if we assume a fault coverage of 0, the expression of equation 2.14 reduces to Rm(t) and the reliability of the system becomes simply the reliability of the primary module. Clearly nothing is gained by having redundant modules if faults are never detected to bring them into service.

Alternative dynamic configurations, such as the use of self-checking pairs, use different methods of fault detection, resulting in slightly different reliability models. Hybrid systems combine the features of static and dynamic systems and again result in variations on the models given above.

2.7. Cut and Tie Sets

Networks that consist entirely of active elements arranged without feedback may be analysed using cut and tie sets (Bansal et al., 1982). These methods do not give an exact value for the reliability of the system, but give upper and lower bounds for its value. This is often useful when dealing with complex arrangements where exact calculation would be difficult.

Cut sets are formed by drawing lines through the reliability block diagram to represent combinations of elements in which simultaneous failure would lead to system failure. Of particular interest are minimal cut sets, which represent cut sets in which no subset will result in system failure. Examples of minimal cut sets are shown in Figure 8a. Here it can be seen that failure of component 1 will result in a system failure, whereas failure of component 2 must be accompanied by failure of either 3 or 4 to affect the overall system.

The overall reliability of the complete system may be approximated by considering the influence of each of the minimal cut sets separately.
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Figure 8 Minimal cut and tie sets: (a) minimal cut sets; (b) minimal tie sets.

Each cut set represents a parallel combination of components, and from equation 2.7 we know that the reliability of this combination is given by:

R(t) =1 ( Q(t) =1 ( [1 ( R1(t)][1( R2(t)] . . . [1( RN(t)]	(2.16)

or simply:

� EMBED Equation.2  ���	(2.17)

By combining the influences of all the minimal cut sets it can be shown that the overall reliability must be greater than a value given by the expression:

� EMBED Equation.2  ���	(2.18)

where Nc is the number of minimal cut sets and nj is the number of elements in the �j-th cut set.

Tie sets (or path sets) are formed by drawing lines through the reliability block diagram to represent groups which, if all the elements were working, would guarantee the functioning of the system. Minimal tie sets represent tie sets in which no subset will perform this function. Figure 8b illustrates the concept of minimal tie sets.

By combining the effects of all the minimal tie sets it is possible to place a maximum value on system reliability. This is given by the expression

� EMBED Equation.2  ���	(2.19)

where NT is the number of minimal tie sets and nj is the number of elements in the jth tie set.

By combining the use of cut sets and tie sets it is possible to place bounds on the possible value of the reliability of a system.

Cut and tie set analyses would not normally be used for arrangements as simple as that in the above example. However, in complex systems the calculation of an exact value for the reliability may be impractical. In such cases, an estimate based on cut and tie sets may represent a sufficient and efficient method of assessing reliability. As the complexity of the arrangement increases, the values obtained from the two approaches tend to converge, this convergence being more rapid when the reliability of the individual blocks is high. In practice, analysis often uses only a cut set approach to obtain a lower limit on system reliability.

Although cut and tie set methods are usually simpler than obtaining an exact value for system reliability, they may themselves involve a considerable amount of calculation. A system of moderate complexity may result in a reliability block diagram containing several millions of minimal cut and tie sets. Such complexity inevitably requires the use of computer-based tools to perform the analyses. The estimations of reliability produced may be improved by systematic removal of the multiple counting of elements. This is a process ideally suited to automation, making this approach particularly suitable for computer-based tools.

Minimal cut sets that contain only a single element represent potential sites for single-point failure of the system. Such sets are referred to as ‘first order’ cut sets. If the failure of two components can result in system failure this will be represented by a cut set containing two elements - a second-order cut set. Analysis of the system can be simplified by considering only certain low order cut sets. This simplification is based on the assumption that simultaneous failure of a large number of components is unlikely and can therefore be neglected. The validity of this assumption will depend on the reliability of the components concerned.

In addition to their use with reliability block diagrams, cut and tie sets may also be used in the analysis of fault trees. Here minimal cut sets represent combinations of events that can result in the top event of the tree.

2.8. Reliability and MTTF

It is important to remember that reliability is a function of time, and that these figures depend on the time for which the system must operate. Different applications place varying constraints on the system designer in terms of reliability and length of service. In some military situations mission duration might be measured in hours, whereas in other situations equipment might have to operate dependably for several decades. Thus one designer might be looking for a reliability of 0.999 for a period of only 24 hours, whereas another might require a reliability of 0.99 for 10 years.

By contrast, the mean time to failure (MTTF) of a system is a fixed characteristic that does not change with time. It might seem logical that reliability and a high MTTF would go hand in hand, but this is not necessarily true. Adding redundancy to a system may increase its reliability over a given time period, but by increasing its complexity it may also reduce its MTTF. As the period of service of a module approaches its MTTF its reliability falls. We noted earlier in the case of a TMR system that adding redundancy only increases the system’s reliability if the module reliability is greater then 0.5. In Section 1 we saw, in Equation 1.2, that the reliability of a system at a time equal to its MTTF is only about 0.37. Therefore, when the; period of service of a unit is comparable with its MTTF, adding redundancy will not increase the overall reliability.

In highly critical systems we normally wish to achieve high levels of reliability. This is usually achieved by using redundant, fault-tolerant designs, with modules that are operated for periods which are short compared with their MTTF.

2.9. Independence of Failures

In the analysis of series and parallel systems given above it has been assumed that all failures are independent. This assumption is normally valid in the case of random component failures, but is not so for systematic faults. Consider, for example, the case of a parallel system consisting of three identical modules each containing a software fault. In this situation, because each module receives the same input data, it is likely that all the modules would fail simultaneously, thereby removing any benefit from the redundancy. Design faults of other kinds are also likely to produce correlated faults in different modules, resulting in common failures. Similarly, intermittent faults may be caused by interference or other transient events that affect more than one module, leading to simultaneous failures.

Because faults of these kinds produce correlated errors in a number of modules, the assumptions made in the analysis within this section are invalid. For these reasons the combinational modelling techniques described above are frequently restricted to the analysis of random component failures.

3. Markov Models

The combinational modelling techniques described above determine the overall reliability of a system by using measured or predicted values for the reliability of its constituent parts.

The primary difficulty with the combinatorial models is that many complex systems cannot be modelled easily in a combinatorial fashion. The reliability block diagrams can be extremely difficult to construct, and the resulting reliability expressions are often very complex. In addition, the fault coverage that we have seen to be extremely important in the reliability of a system is sometimes difficult to incorporate into the reliability expression combinatorial model. Finally, the process of repair that occurs in many systems is very difficult to model in a combinatorial fashion. For these reasons we often use Markov models. An alternative approach is to assign various states to a system and to determine the probability of being in any of these states. This is termed Markov modelling (Lewis, 1996). As an example, one might assign two possible states to a system, representing the working and not working conditions. The probability of being in either state would then indicate the availability of the system. One of the advantages of this approach is that it provides a more powerful way of modelling systems that are repairable, allowing variables such as the time taken to repair a system to be incorporated.

3.1. Discrete Markov modelling

Consider a simple two-state system as shown in Figure 9. In this system the two states are assigned the designations 1 and 2, and the model assumes that the probabilities of leaving or remaining in a particular state are constant for all time. Transitions between states occur in discrete steps, and thus this is termed a discrete Markov model of the system.

� EMBED ShapewareVISIO20  ���

Figure 9: A two-state system.

The two states could represent any aspects of the system and could, for example, represent working and non-working states.

If we assume that the system is initially in state l, the diagram shows that at the end of the first time interval it has a probability of 0.9 of remaining in state 1 and a probability of 0.1 of leaving state 1 and entering state 2. Note that the sum of these probabilities is unity, as the system must follow one of these courses of action. Therefore, at the beginning of the second time interval it has a probability of 0.9 of being in state 1 and of 0.1 of being in state 2. At the end of the second time interval the probabilities of leaving or remaining in its current state are again defined by the diagram, and this process continues for successive time steps. The possible sequences of transitions taken by the system, together with the probabilities of following each route, can be represented in a tree diagram.

It was suggested earlier that the two states of our simple system could represent the working and failed states. In this case the probability of being in either state is clearly related to the reliability of the system and to its availability.

The two main concepts in the Markov model are the system state and the state transition. The state of a system represents all that must be know to describe the system at any given instant of time. For reliability mode each state of the Markov model represents a distinct combination of fault and fault-free modules. 

The state transitions govern the changes of state that occur within a system. As time passes and failures and reconfigurations occur, the system goes from one state to another. The state transitions are characterised by probability such as the probability of failure, fault coverage, and the probability repair.

First, we assume that the system does contain repair. In other words, once a module has failed, it remains fail permanently. Second, we assume that only one failure will occur at a time In other words, no single failure can cause the complete system to fail. Final we assume that the system starts in the perfect state where all of the system's modules are operating correctly.

When some event, a module failure in the case of reliability model occurs, the system transitions from one state to another.

If we assume that each module in the system obeys the exponential failure law and has a constant failure rate of (, the probability of a module being failed at some time t+(t, given that the module was operational at time t, is given by 1-e-((t.

For small values of (t, the expression reduces to simply 1-e-((t(((t. In the other words, the probability that a module will fail within the time period (t is approximately ((t.
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Figure 10 Reduced Markov model of the TMR system with a minimal number os states

The probability of the system being in any given state S at some time t + (t depends on the probability that the system was in a state from which it could transition to state S and the probability of that transition occurring. For example in a 3 state system, the probability that the system was in state 3 at time t + (t is p3(t)

In mathematical terms, we have

p3(t + (t) = (1 - 3((t)p3(t)	(3.1)

In a similar fashion, the equations for the remaining S-1 states can be written as:

p2(t + (t) = 3((tpS(t)+ [1 - (2)((t)p2(t)	(3.2)

pF(t + (t) = (2)((tp2(t)+ pF(t)	(3.3)

The resulting matrix equation can be written in matrix form as:

� EMBED Equation.2  ���	(3.4)

in a condensed form:

P(t+(t)=AP	(3.5)

where:
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P(t) is the probability state vector at time t, P(t + (t) is the probability state vector at time t+(t, and A is the transition matrix.

The matrix equations for the Markov model can be viewed as a difference equation for the purpose of obtaining a solution. By assuming some initial value of the probability state vector, P(0), the value of P((t), can be obtained as P((t) = AP(0). Similarly, the value of the probability state vector at time 2 (t can be written as P(2 (t) = AP((t) = A2P(0). In general the  solution is given as:

P(n (t) = An P(0)	(3.9)

The probability of the system failing is given by the probability of the system being in the failed state.

Markov models considered thus far have been discrete-time models in which state state transitions occur at fixed intervals (t. It is possible to model systems using continuous-time Markov models in which state transitions can occur at any point in time. The �continuous-time equations can be derived from the discrete-time equations by allowing the time interval (t to approach zero.

3.2. Continuous Markov modelling

In many cases it is more sensible to consider a system in a continuous time domain rather than as a series of discrete time intervals. This can be done using continuous Markov modelling, where the probabilities of state transitions are replaced by transition rates. Let us again consider our simple two-state system, where one state corresponds to the system working correctly and the other to its having failed. Here the rates of transition between the two states represent the failure rate ( and the repair rate. The resulting model is shown in Figure 11.
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Figure 11 A continuous Markov model of the two-state system

It can be shown that the limiting probabilities of being in each state are given by:

� EMBED Equation.2  ���	(3.10)

and:
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You might like to compare these results with the limiting values obtained for the discrete Markov model obtained earlier.

As the MTTF of the system is 1/( and the MTTR is 1/(, P1 represents the availability of the system; P2 its unavailability.

4. Reliability assessment

Any safety-critical system will have a certain requirement for reliability, and there are a range of system architectures that can be used to increase a system’s tolerance of faults. In the previous section we show how the reliability of a system may be modelled, and how this is related to the reliability of its component parts. Clearly, it would be useful to be able to predict the reliability of a system at the design stage. Unfortunately, reliability prediction is not a straightforward process. We have seen that system failure can be caused by various types of fault. Some of these, such as hardware component failures, have a random nature and may be subjected to some form of statistical analysis. Others, such as design and specification faults, are systematic and analysis - and therefore prediction - is much harder.

Once a system has been designed and a prototype system produced it is necessary to demonstrate that it meets its reliability requirements. During the development phase predictions will have been made concerning failure rates and availability, but these will need to be confirmed by testing. The testing phase of product development it is not discussed in here, but there are, however, some aspects of testing specifically related to reliability, which will be discussed here.

Once a unit has been constructed its reliability may be investigated experimentally. This could make use of a single unit by measuring the times between successive failures to determine the failure rate or the availability. Although this approach is feasible, unless the unit fails very frequently it will take an inordinate amount of time to gather sufficient data for meaningful analysis. As the goal of most projects is to produce systems that fail infrequently, this method is rarely attractive. An alternative approach is to construct a large number of identical units and to determine the mean failure rate for the group. This will allow a meaningful estimate of the failure rate to be made in a time comparable to the MTTF. In low-cost applications requiring a relatively low reliability such an approach is quite feasible, particularly if accelerated life testing is used to reduce the testing times required. However, in critical systems this approach is rarely possible. Such systems are often very expensive and the production of large numbers would be prohibitive. Also, because such systems require very low failure rates, the necessary testing times would be long. Some very high-integrity avionics equipment is required to fail less than once in every 109 hours of operation. This represents a time to failure of over 100 000 years.

One of the implications of having a requirement for a very long MTTF is that it is generally impossible to demonstrate by testing that this requirement has been achieved. In such systems acceptance and certification are often based on reliability models for the hardware and the use of appropriate development techniques for the software. This situation is accepted within several standards governing the development of high-integrity systems in areas such as aeronautics. At present highly critical systems are specified to require a reliability that is several orders of magnitude better than can be demonstrated by testing.

5. Safety Modelling

The safety of a system, is the probability that the system will either perform correctly or will fail in a safe manner. The concepts of safe and unsafe are highly dependent upon the application. In many cases, for example, a safe course of action is to simply turn the system off after a failure occurs. In some applications, however, turning the system off can be a disastrous course of action. In any case, however, the fundamental concept of safety analysis is that a system will possess two different ways in which it can fail: one system failure is defined as safe, and the other is categorised as unsafe. The definition of safe and unsafe failures must be created uniquely for each application.

Safety can be modelled using Markov models by splitting the system failed state into two separate states. One failed state is normally labelled FS for failed safe, and the other failed state is labelled as FU for failed unsafe. Safe failures are defined as those that are detected by the self-diagnostics. Consequently, unsafe failures are defined as those that are not detected by the self-diagnostics. If a failure occurs, the system transitions to either state FS or FU depending on whether or not the condition is detected.

The safety of the system can described by:

S(t)=p0(t)+pFS(t)	(5.1)

where S(t)is the safety, p0(t) id the probability of being in the operational state at time t, pFS(t) id the probability of being in the failed safe state at time t.

The complete equations of the discrete-time Markov model can be written as:

p0(t+(t)=(1-((t)p0(t)	(5.2)

pFS(t+(t)=((tCp0(t)+pFS(t)	(5.3)

pFU(t+(t)=((t(1-CE)p0(t)+pFU(t)	(5.4)

As we have done previously, the differential equations of the corresponding continuous-time Markov model can be written as:
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The Laplace transform results in:
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where p0(0), pFS(0), and pFU(0) are the initial values of the respective state probabilities. 

If we assume that the system begins in state 0 such that p0(0)=1, pFS(0)=0, and pFU(0)=0 we obtain:
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The time domain solutions can now be written as
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Intuitively, the equations are as expected. For example, the reliability of the system is

R(t) = p0(t) = e-(t	(5.17)

and the probability of being in one of the two failed states is

pFS(t) +pFU(t)=1- e-(t=1-R(t)	(5.18)

The safety of the system is written as

S(t) = p0(t) + pFS(t) = C + (1 - C) e-(t 	(5.19)

At time t = 0, the safety of the system is 1, as expected. As time approaches infinity, however, the safety approaches

S (() = C	(5.20)

In other words, if the fault detection coverage is perfect (C = 1 ), the system has perfect safety. However, if the fault detection coverage is non-existent (C = 0), the system will eventually fail in an unsafe manner. The safety of the system, in this example, is directly dependent upon the fault detection coverage. In subsequent sections, we investigate the safety of more complex systems.

�6. Availability Models

Thus far, we have considered only the modelling of the reliability of a system. However parameters such as availability and maintainability are also important in analysis of �fault-tolerant systems. As a result, the rate at which a system can be repaired becomes a critical part of the design. The repair rate can dramatically affect the availability of a system.

Recall that the availability A(t) of a system is defined as the probability that a system will be available to perform its tasks at the instant of time t. Intuitively, we can see that the availability can be approximated as the total time that a system has been operational divided by the total time elapsed since the system was initially placed into operation. In other words, the availability is the percentage of time that the system is available to perform its expected tasks. Suppose that we place a system into operation at time t = 0. As time moves along, the system performs its functions, perhaps fails, and is repaired. At some time t = tcurrent, suppose that the system has operated correctly for a total of top hours and has been in the process of repair or waiting for repair to begin for a total of trepair hours. The time tcurrent is then the sum of top and trepair. The availability can be determined as:

� EMBED Equation.2  ���	(6.1)

where A(tcurrent) is the availability at time tcurrent·

The preceding expression lends itself well to the experimental evaluation of the availability of a system; we can simply place the system into operation and measure the appropriate times required to calculate the availability of the system at a number of points in time. Unfortunately, the experimental evaluation of the availability is often not possible because of the time and expense involved.

We have seen that availability is basically the percentage of time that a system is operational. Using knowledge of the statistical interpretation of the MTTF and the MTTR, we expect that, on the average, a system will operate for MTTF hours and then encounter its first failure. Once the failure has occurred, the system will then, again on the average, require MTTR hours to be repaired and placed into operation once again. The system will then operate for another MTTF hours before encountering its second failure.

If the average system experiences N failures during its lifetime, the total time that the system is operational is N (MTTF) hours and the total time that the system is in the repairing time is N(MTTF) hours. The operational time top isN(MTTF) hours and the repair time trepair is N(MTTR) hours. the average, or steady-state, availability is
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We know, that the MTTF  and the MTTR of a simple system are related to the failure rate and the repair rate, respectively is
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Therefore, the steady-state availability of a simplex system is given by
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7 Maintainability Models

As defined , the maintainability is the probability that a failed system will be restored to working order within a specified time. We will use the notation that M(t) is the maintainability for time t. In other words, M(t) is the probability that a system will be repaired in a time less than or equal to t.

An important parameter in maintainability modelling is the repair rate (. The repair rate is the average number of repairs that can be performed per time unit. The inverse of the repair rate is the MTTR, which is the average time required to perform a single repair. Mathematically, the relationship between the repair rate and the MTTR is given by
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In industry, the MTTR, and as a result ( is usually derived in an experimental fashion. A system can be constructed and faults injected; the average time required to repair the system is measured and recorded as the MTTR. A good estimate of the MTTR can be obtained only if a sufficient number of different faults are injected and repair personnel with a variety of skill levels are used.

An expression for the maintainability of a system can be derived in a manner similar to that used to develop the exponential failure law for the reliability function. Suppose that we have N systems. We inject one unique fault into each of the systems, and we allow one maintenance person to repair each system. We begin this experiment by injecting the faults into the systems at time t = 0. Later, at some time t, we determine that Nr(t) of the systems have been repaired and Nnr(t) have not been repaired. Since the maintainability of a system at time t is the probability that the system can be repaired by time t, an estimate of the maintainability can be computed as:
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If we differentiate M(t) with respect to time, we obtain:
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which can also be written as:
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The derivative of Nr(t) is simply the rate at which components are repaired at the instant of time t. At time t, we have Nnr(t) systems that have not been repaired. If we divide dNr(t)/dt by Nnr(t), we obtain:
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which is called the repair rate function and is assumed to have a constant value of (, the repair rate; (, has the units of repairs per unit of time.

Using the expression for the repair rate and the expression for the derivative of Nr(t), we can write
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which yields a differential equation of the form 
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We know, however, that Nnr(t)/N is 1 - M(t), so we can write
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The solution to the differential equation is well known and is given by

M(t) = 1 - e-(t	(7.9)

The relationship developed for M(t) has the desired characteristics. First, if the repair rate is zero, the maintainability is also zero since the system cannot be repaired in any length of time. Second, if the repair rate is infinite, the maintainability is one since repair can be performed in zero time. A final interesting feature of the maintainability function is its value at time corresponding to the MTTR. At t = MTTR, the maintainability function will be

M (t =MTTR) = 1 - e-(1/( = 1 - e-1 = 0.632	(7.10)

which implies that there is a probability of 0.632 that a system will be repaired in a time less than or equal to its MTTR.
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