Shared-Memory Models

�

�

�
Parallel Programming Under DYNIX

SEQUENT C

The DYNIX operating system provides a set of routines to facilitate parallel processing.

The commercial parallel programming languages the Sequent hardware uses are simple extensions of sequential languages that allow programmers to declare shared variables that interact via mutual exclusion and barrier synchronisation.

Shared Data

Parallel processes on the Sequent coordinate their activities by accessing shared data structures.

The keyword, shared, placed before a global variable declaration, indicates that all processes are to share a single instance of that variable, and changes made by one process can be detected by the other processes.

	shared int a[10]

On the other hand, if the array is declared

	int a[10]

then every active process has its own copy of the array; if one process modifies a value in its copy of a, no other process's value will change.

The existence of a shared memory means that all process interactions can be performed through variables accessible to all the processes.

�
Parallel Processing Functions

A program begins execution as a single process. This process is responsible for executing those parts of the program that are inherently sequential.

When control reaches a part of the computation that may be performed in parallel, the original process forks a number of other processes, each process performing its share of the work.

The total number of processes accessing shared data cannot exceed the number of physical processors less one hence, each process may execute on its own CPU.

When control reaches an inherently sequential portion of the computation, only the original process executes the code; the remaining processes wait until control reaches another portion of the computation that can be executed concurrently. The program cycles through these two modes until termination.

���������������

�

�

�

�

�

�

�

�

The transition from parallel to sequential execution is always delimited by a barrier synchronisation. No process may proceed beyond a barrier synchronisation point until every process has reached the barrier.

�
Sequent's multitasking library

Two new types are needed for locking and setting up barriers. Variables of type slock_t are used to set and clear access locks, and variables of type sbarrier_t are used to set and clear barriers. The appropriate operations for objects of these types are listed below.

Operations on variables of type slock_t:

s_init_lock(): 	initialise a lock variable

s_lock(): 	set the lock

s_unlock():	clear the lock

Operations on variables of type sbarrier_t:

s_init_barrier(): 	initialise the barrier variable

s_wait_barrier(): 	wait for all multitasks to reach barrier

The usual fork() and cpus_online() routines are used to create a multitask and query the system for the number of processors, respectively.

�
Sequent's microtasking library

m_set_procs(p): By calling m_set_procs with argument p, the parent process initialises to value p a shared variable that controls the number of processes created by a subsequent call to m_fork. The value of p cannot exceed the number of physical processors in the system minus one. The function also initialises barriers and locks.

m_fork(name [,arg,...]): The parent process creates a number of child processes, then the parent process and the child processes begin executing function name with the arguments (if any) also specified by the call to m_fork. After all the processes (the parent and all the children) have completed execution of function name, the parent process resumes execution with the code after m_fork, while the child processes busy wait until the next call to m fork. Therefore, the first call to m fork is more expensive than subsequent calls, because only the first call entails process creation.

m_get_myid: A process calls function m_get_myid to get its unique process number. If the total number of active processes is p, then the process number of the parent is 0, while the process numbers of the child processes range from 1 to p-l.

m_get_numprocs: Function m_get_numprocs returns the number of processes executing in parallel. Given the total number of processes and its own process number, a process can determine which portion of a computation is its responsibility.

m_lock, m_unlock: Functions m_lock and m_unlock ensure mutually exclusive execution of the code that the two calls surround. Once a process has entered a block of code delimited by m_lock and m_unlock, no other process may enter until the first process has left.

m_kill_procs: Function m_kill_procs kills the child processes created by the first call to m_fork.

Operations on variables of type sbarrier_t:

m_sync():	wait for all microtasks to arrive

m_single():	wait for supervisor thread to call m_multi()

m_multi():	resume all workers in parallel

�
 Illustrating example

The program creates one supervisor, and nprocs-1 workers. The code for each worker is given as function work(). The example illustrates both methods of synchronising access to a shared variable.

/* Global declarations */

shared int x;

shared struct y_struct {

	int state;

	slock_t lp; 		/* primitive lock */

	} y;

/* Supervisor microtask */

main() {

	s_init_lock
