







MPI: The Message-Passing�Interface 

�Sequential Programming Paradigm:

�





The Message-Passing Paradigm:

�





Simplicity

Efficient match to many parallel hardware

Performance 

�What Is MPI ?

A proposed standard message-passing library specification

message-passing model

not a compiler specification

not a specific product



For parallel computers and heterogeneous networks







Why Is A Standard Needed ?

Portability and ease-of-use,

Provides hardware vendors with a well-defined set of routine to implement efficiently,

Pre-requisite for development of concurrent software industry,

Will lead to more widespread use of concurrent computers.

�History

Broad participation

Vendors 

IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

Library writers

PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda

May 1994.  Final MPI specification released.





What Is In MPI ?

Point-to-point message message-passing

Collective communication

Support for process groups

Support for communication contexts

Support for application topologies

Profiling interface

�Process Model and Groups



Fundamental computational unit is the process. Each process has:

an independent thread of control, 

a separate address space





MPI processes execute in MIMD style, but:

No mechanism for loading code onto processors, or assigning processes to processors

No mechanism for creating or destroying processes





MPI processes belong to groups

Process groups can be created and destroyed

Membership is static

Groups may overlap

�Communication Scope



In MPI, a process is specified by:

a group

a rank relative to the group (0, 1, 2, ..., N-1)

A message label is specified by:

a message context

a message tag relative to the context

Groups are used to partition process space

Contexts are used to partition “message label space”'

Groups and contexts are bound together to form a communicator object. Contexts are not visible at the application level. 

A communicator defines the scope of a communication operation

�A simple MPI program

#include <stdio.h>

#include "mpi.h"



int main(argc,argv)

int argc;

char *argv[];

{

  int myrank;	/* Rank of process */ 

  int numprocs;	/* Number of processes */



  MPI_Init(&argc,&argv);

  MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

  MPI_Comm_rank(MPI_COMM_WORLD,&myrank);



  printf(	"Process %d of %d says Hello!\n", �	myrank, numprocs);



  MPI_Finalize();

}



Must be compiled with C compiler

Must be linked with the MPI library

Command to run depends on the MPI implementation

hello -np 4



Process 1 of 4 says Hello!

Process 2 of 4 says Hello!

Process 0 of 4 says Hello!

Process 3 of 4 says Hello!

�Point-to-point Communication



Always involves exactly two processes (sender-receiver).

Message selectivity is by rank and message tag.

Rank and tag are interpreted relative to the scope of the communication. 

The scope is specified by the communicator.

Rank and tag may be wildcarded.

The communicator may not be wildcarded



�

�Basic Send/Receive





The standard MPI send routine:



int MPI_Send(	void*	start_of_buffer,�	int	number_of_items,�	MPI_Datatype	datatype,�	int	destination_rank,�	int	message_tag,�	MPI_Comm	communicator)







The standard MPI receive routine:



int MPI_Recv(	void*	start_of_buffer,�	int	max_number_of_items, �	MPI_Datatype	datatype, �	int	source_rank�	int	message_tag, �	MPI_Comm	communicator, �	MPI_Satus*	return_status) 



�

Message buffer is always described by a triple:	�	(address, number_of_items, datatype).

datatype may either be basic MPI datatype (e.g.    MPI_INT, MPI_CHAR, ...) or derived MPI type.

the corresponding send and receive datatypes must match

source_rank and tag may be wildcarded in the receive routine (MPI_ANY_SOURCE, MPI_ANY_TAG).

there is no wildcard for the communicator (i.e. the actual value must be the same at the corresponding sender and receiver sides).

The return status object is used after completion of a receive to find the actual ength, source, and tag of the message.

�Return Status Object

satus is a structure.

status.source gives source process

status.tag gives the message tag

number of elements in message is given by:

int MPI_Get_count(	MPI_Status	status, �	MPI_Datatype	datatype,�	int*	number_of_items) 







Communication Completion

A send operation is complete if the buffer can safely be reused.

A receive operation is complete if the buffer is ready for use.

MPI_Send and MPI_Recv do not return until the communication operation is complete, i.e. they are blocking operations. 

�Example : Basic Send/Receive

#include <stdio.h>

#include "mpi.h"



int main(argc,argv)

int argc;

char *argv[];

{

  int myrank;	/* Rank of process     */ 

  int numprocs;	/* Number of processes */

  int source,dest;	/* Ranks of sender and receiver */

  char message[100];	/* Storage for the message      */

  MPI_Status status;	/* Return status for receive    */



  MPI_Init(&argc,&argv);

  MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

  MPI_Comm_rank(MPI_COMM_WORLD,&myrank);



  if (myrank != 0) 

    { sprintf(message, "Greetings from process %d!",myrank);

      dest = 0;

      /* Use strlen(message)+1 to include `\0` */

      MPI_Send(	message, strlen(message)+1, MPI_CHAR,�	dest, 15, MPI_COMM_WORLD);

    } else { 

      for (source = 1; source < numprocs; source++) 

        { MPI_Recv(	message, 100, MPI_CHAR, �	source, 15, MPI_COMM_WORLD, &status);

           printf("%s\n", message);

        }

    }

  MPI_Finalize();

}



�Six Function MPI





These six function allow you to write many programs:





MPI_Init	(Initialize MPI)

MPI_Comm_size	(Find out how many processes�	there are)

MPI_Comm_rank	(Find out which process I am)

MPI_Send	(Send a message)

MPI_Recv	(Receive a message)

MPI_Finalize	(Terminate MPI)

�

Blocking Behaviour



Blocking send: 

returns when send is locally complete

message buffer can be written to after return

Non-blocking send: 

returns ``immidiately''

message buffer should not be written to after return

must check for local completion

Blocking receive: 

returns when receive is locally complete

message buffer can be read from after return

Non-blocking receive: 

returns ``immidiately''

message buffer should not be read from after return

must check for local completion

�Non-blocking Send/Receive



The standard non-blocking send routine 

int MPI_Isend(	void*	start_of_buffer,�	int	number_of_items, �	MPI_Datatype	datatype, �	int	destination_rank, �	int	message_tag,�	MPI_Comm	communicator,�	MPI_Request*	request)



The standad non-blocking receive routine: 

int MPI_Recv(	void*	start_of_buffer,�	int	max_number_of_items, �	MPI_Datatype	datatype, �	int	source_rank,�	int	message_tag,�	MPI_Comm	communicator,�	MPI_Request*	request)



Receive does not pass a return status object.

�Completion Routines

Two basic ways of checking on non-blocking sends and receives:



call a wait routine that blocks until completion

int MPI_Wait(	MPI_Request	*request,�	MPI_Status	*status)



MPI_Wait blocks until the communication is complete





call a test routine that returns a flag to indicate if complete

int MPI_Test(	MPI_Request	*request, �	int	*flag, �	MPI_Status	*status)



MPI_Test returns “immidiately”, and sets the flag to true if the communication is complete







Use of non-blocking and completion routines allow computation and communication to be overlapped.

�“Unsafe” Communication



Standard blocking send and receive are simple, but can be “unsafe”:



Process 0�Process 1��Send(1)�Send(0)��Recv(1)�Recv(0)��



Completion depends in general on size of message and amount of system buffering. However, system buffering is not in the scope of MPI.

�Some Solutions to the “Unsafe” problem

Order the operations more carefully:

Process 0�Process 1��Send(1)�Send(0)��Recv(1)�Recv(0)��



Supply receive buffer at same time as send, with MPI_Sendrecv:

Process 0�Process 1��Sendrecv(1,1)�Sendrecv(0,0)��



Use non-blocking operations:

Process 0�Process 1��Isend(1)�Isend(0)��Irecv(1)�Irecv(0)��Waitall�Waitall��



Provide the necessery amount of buffer explicitly and use MPI_Bsend 

Process 0�Process 1��Attach_buffer()�Attach_buffer()��Bsend(1)�Bsend(0)��Recv(1)�Recv(0)���Communication Modes

MPI provides multiple modes for sending messages:



Synchronous mode (MPI_Ssend): the send does not complete until a matching receive has begun.

Buffered mode (MPI_Bsend): the user supplies the buffer to system for its use: 

int MPI_Buffer_attach( void* buffer, int size)



Ready mode (MPI_Rsend): user guarantees that matching receive has been posted.

allows access to fast protocols

undefined behaviour if the matching receive is not posted



They differ only in one respect: how completion of the send depends on the receipt of the message.



Non-blocking versions:



MPI_Issend, MPI_Ibsend, MPI_Irsend



Note that any MPI_Recv (or MPI_Irecv) may receive messages sent with any send mode.

Flavors of Communication

For send operation there are:

4 communication modes

2 blocking modes

( 4 ( 2 = 8 types of send



SEND mode�Blocking�Non-blocking��Standard�MPI_Send�MPI_Isend��Buffered�MPI_Bsend�MPI_Ibsend��Synchronous�MPI_Ssend�MPI_Issend��Ready�MPI_Rsend�MPI_Irsend��



For receive operation there are:

1 communication mode

2 blocking modes

( 1 ( 2 = 2 types of receive



Mode�Blocking�Non-blocking��Standard�MPI_Recv�MPI_Irecv��

�Derived Datatypes

In MPI, the communication buffer is defined by a starting address and a datatype. The datatype may be:

Basic type (e.g. MPI_INT, MPI_CHAR, MPI_LONG, MPI_DOUBLE... etc.

Derived type

A general datatype is a sequence of primitive types and integer byte displacements

Typemap = {(type0, disp0), ..., (typen-1, dispn-1)}



E.g.: MPI_INT ( (int,0)

Displacements are relatives to the starting address of the buffer

Extent of a datatype : the span from the first byte to the last byte, rounded up to satisfy alignment requirements.

E.g. {(int, 0),(char, 4)} ( extent: 8 - 0 = 8.  



�

int MPI_Type_extent(	MPI_Datatype	datatype,�	int	*extent)

�Creating Derived Datatypes

Derived datatypes are created at run-time. This is done in two stages:

Construct the datatype. New datatypes are built up from existing ones.

Commit the datatype. The new datatype is “committed” with a call to:

int MPI_Type_commit(MPI_Datatype *datatype)

After being committed, it can be used in any number of communications.



�Datatype Constructors

Contignuous Replicates a datatype into contignuous locations.

int MPI_Type_contiguous(	int	count, �	MPI_Datatype	oldtype, �	MPI_Datatype	*newtype)

newtype: concatenation of count copies of oldtype

Vector Replicates  a datatype into locations that consist of equally spaced blocks.

int MPI_Type_vector(	int	count, �	int	blocklength, �	int	stride,�	MPI_Datatype	oldtype, �	MPI_Datatype	*newtype)

E.g. count=3, blocklength=2, stride=5 :



�

�Datatype Constructors (Cont.)

Indexed. Replicates a datatype, taking blocks at fixed offsets. Each block may have different length.

int MPI_Type_indexed(	int	count,�	int	*array_of_blocklengths, �	int	*array_of_displacements, �	MPI_Datatype	oldtype, �	MPI_Datatype	*newtype)

count=3

array_of_blocklengths=(3,1,4) 

array_of_displacements=(0,5,9)



�

�Datatype Constructors (Cont.)

Struct. Generalizes the indexed datatype by allowing each block to be of a different datatype.

int MPI_Type_struct(	int	count,� 	int	*array_of_blocklengths, �	MPI_Aint	*array_of_displacements, �	MPI_Datatype	*array_of_types, �	MPI_Datatype	*newtype)

Displacements are given in bytes. 

count=3

array_of_blocklengths=(1,3,2) 

array_of_displacements=(0,10,16)

array_of_types=(MPI_DOUBLE, MPI_CHAR, MPI_INT)



�

�Collective Communication

Involves coordinated communication within a group of processes

No message tags are used

The amount of data sent must exactly match the amount of data specified by the receiver.

All collective routines block until they are locally complete

All members of the group must call the same routine, with matching arguments 

Two  broad classes:

data movement routines

global computation routines



�Collective Data Movement

Simple example: broadcast

�



int MPI_Bcast(	void*	buf, �	int	count,�	MPI_Datatype	datatype, �	int	root, �	MPI_Comm	comm )



the contents of root's communication buffer is to be copied to all processes

comm and root must be the same at all members of the group 



�Collective Data Movement



�



Schematic representation of collective data movement in MPI



�Global Computation

�



Schematic representation of global computation in MPI

The function passed to a global computation routine is either:

a predefined MPI function, e.g., mpi_sum

a user supplied function



�Application Topologies

Mechanism for naming processes in a way that fits the communication pattern better

Proceses may be configured into one of two topology types:

Cartesian topologies

General Graph topologies

Creating Cartesian grid topologies:

int MPI_Cart_create(	MPI_Comm	comm_old, �	int	ndims, �	int*	dims, �	int*	periods, �	int	reorder, �	MPI_Comm*	comm_cart)















�

ndims=2

dims=(4,3)

periods=(1,0)



�Uses of Topologies

Knowledge of application topology can be used to efficiently assign processes to processors (reorder argument).

MPI provides support for shifting data along a specified dimension of a Cartesian grid.

MPI provides support for performing collective operations along a specified grid direction.



Rank (( Coordinates

Mapping of rank to coordinate position in Cartesian topology:

int MPI_Cart_coords(	MPI_Comm	comm,�	int	rank, �	int	maxdims, �	int*	coords)



Mapping of coordinate position to rank:

int MPI_Cart_rank(	MPI_Comm	comm,�	int*	coords, �	int*	rank)



�Topologies and Data Shifts

�

Ranks of the processes that a process must send to and receive from when performing a shift:

int MPI_Cart_shift(	MPI_Comm	comm, �	int	direction, �	int	disp, �	int*	rank_source, �	int*	rank_dest)

( process (x, y) is to 

send to (x, y+1)

receive from (x, y-1)

direction=1 

disp=1 







Shift operations are performed using MPI_Sendrecv



�Partitioning Cartesian Topologies

A Cartesian topology can be partitioned into a set of Cartesian topologies of lower dimension using:

int MPI_Cart_sub(	MPI_Comm	comm, �	int*	remain_dims,�	 MPI_Comm*	newcomm)

remain_dims[i] is true if the ith dimension is retained, and is false if it is discarded.

Suppose we want to perform a collective communication along a dimension of a Cartesian grid, e.g., a multicast:

�



We can call MPI_Cart_sub with remain_dims=(false, true) to generate row subcommunicators for first case.

If  remain_dims=(true, false) we get the subcommunicators for the second case.

�Final Comments

Additional features of MPI not covered in this tutorial

Persistent commmunication

Tools for writing libraries

Inter-communicators

Profiling interface

Error handling

The MPI forum (with old and new participants) has begun a follow-on series of meetings to address advanced features such as:

dynamic process management

client/server

“one-sided” communication (put/get, active messages)

real-time extensions

language bindings for C++ and Fortran-90

Several implementations of MPI exist.
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