PARALLEL SOFTWARE ENGINEERING

���������������������Problem

�

�

�

efficient parallel program

�Specification of Parallel Algorithms

� EMBED Word.Picture.6 ���

Implicit parallelism : Parallel code is produced by the compiler from the sequential description of the problem by extracting implicit parallelism automatically (parallelizing compilers

Explicit parallelism: Parallelism is defined explicitly by the programmer (parallel languages

� EMBED Word.Picture.6 ���

�A Visual Parallel Programming Language : GRAPNEL

(Graphical Process Net Language)

Programming Paradigm: message-passing

parallel program consists of individual sequential processes

processes are executed in parallel

processes can interact only by sending and receiving messages (i.e. data) among themselves

]

Process Model:

� EMBED Word.Picture.6 ���

Communication Model:

� EMBED Word.Picture.6 ���

Hybrid approach: graphics are used together with ordinary textual language to define the program.

Parallel activities (e.g. process creation, communication) are defined by graphical symbols.

Program parts not related to parallelism can be defined in C.

�GRAPNEL (Cont.)

Layered design of parallel programs: three hierarchical levels are distinguished.

Application Level: processes and their communication connections are described.

Process Level: graphical outline of process’s code based on the message-passing and process management activities

Textual Code Level: low level semantics of the visual code elements.

�

Application Level:

GRAPNEL (Cont.)

�

Process Level:

�Load Balancing

Problem: load imbalance leads to processor idle times in a distributed parallel computer (high efficiency can only be achieved if the computational load is evenly balanced among the processors.

� EMBED Word.Picture.6 ���

Two kinds of load balancing schemes can be distinguished depending on the knowledge about the application behaviour:

The task-processor assignment is performed before the parallel application initiates its execution.

(

Computational and communication requirements of a problem must be known a priori.�The task-processor assignment is performed and changed dynamically during the actual execution of the application.

(

It must be applied in situations where no a priori estimations of load distribution are possible.

��

�Mapping

Goal: to minimize the execution time of the parallel programs on distributed-memory machines by distributing parallel parts of the program (i.e. tasks) among the different processors in an “optimal” way.

Distributed parallel computer:

a set of processors connected via an interconnection network

each processor has a local memory

communication between two processors is much more time consuming than a local memory access

Description of the problem: A mapping is an application (called alloc) from T (set of tasks) to P (set of processors) which associates to each task t an unique processor q = alloc(t).

In general, the complexity of the mapping operation is exponential (heuristic solutions are proposed.

Quality of the mapping

Solutions of the mapping problem are based on the optimazition of a cost function, denoted z. Many choices have been proposed for z. Two opposite criteria have to be taken into account:

minimization of inter-process communications

load-balancing of computations among processors

For example, to minimize the most loaded processor is a trade-off between these two criteria:

�EMBED Equation.2 ���

where

ext(t) : computation time of task t

comm(t,t’) : the total communication time between t and t’

�Greedy algorithms

The mapping is done without backtracking (a choice already done can never be reconsidered). The allocation of the ith task is based on a criterion depending on the mapping of the (i-1)th first tasks.

Modulo: The ith task is allocated onto the ith modulo m processor. Theoretically, this algorithm has the same behavior as a random mapping algorithm with a great number of tasks.

Largest Processing Time First (LPTF): Tasks are first sorted by decreasing computation cost order, then allocated on the less loaded processor.

Largest Global Cost First (LGCF): Both communication and computation costs are taken into account. Tasks are first sorted according to this order, then allocated on the less globally loaded (communication and computation costs taken into account) processor.

Iterative algorithms

�SYMBOL 183 \f "Symbol" \s 12 \h�	They try to improve an initial solution (usually obtained by greedy algorithm).

�SYMBOL 183 \f "Symbol" \s 12 \h�	Usually tasks are exchanged between processors to improve locally a solution.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Usually random perturbations are used to leave local minima of cost function.

�Boillat method

At each iteration step processes move between neighbour processors to meet one of the two optimizations demands:

�SYMBOL 183 \f "Symbol" \s 12 \h�	minimizing communication cost

�SYMBOL 183 \f "Symbol" \s 12 \h�	minimizing load imbalance

The selection is based on a random number (r). Communication cost is selected with reducing probability.

t:=0

while (t < max_iter) do begin

	r = decrease_random(t);

	for i:=0 to max_processors do

		for k:=0 to max_task_on[i] do

			for j:=0 to max_neighbours[i] do

				if r = TRUE

					communic(k,j);

				else

					load_balance(k,j);

	for i:=0 to max_processors do

		for j:=0 to max_neighbours[i] do

			if r = TRUE

				do_max_communicating_move(alloc(k)=i);

			else

				do_best_improving_allowed_move(alloc(k)=i);

end���Heuristic move-exchange (HME)

Tasks are randomly assigned to the processors. One iteration step consists of:

1.	move tasks while moves decrease the cost function

2.	perform an exchange if possible and try to move again (go step 1)

3.	if there are no proper moves and exchanges then append the current configuration to a queue of fixed length. If the costs in the queue are in descending order and the queue is not full then perform random moves and go step 1. If they are not then stop if the queue is full, otherwise delete all but the last element of the queue, perform random moves and go step 1.

The best configuration is always recorded.

best_config:=init; /* tasks are randomly assigned to processors */

while (loop) do begin

	loop1:=TRUE;

	while (loop1) do begin

			loop2:=TRU;

			while (loop2) do

				if exist_moves_cost_decr() then

					best_move();

				else

					loop2:=FALSE;

			if exist_exchanges_cost-decr() then

				best-exchange();

			else

				loop1=FALSE;

	end

	join_queue(current); /* the current value is appended to a queue */

	if cost(current) < cost(best_config) then

			best_config:=current;

	if queue_IS_descending_order_cost_value() then

			random_moves();

	else

			if queue_IS_full() then

				loop:=FALSE;

			else

				reset_queue(); /* all but the last item in the queue are deleted */

				random_noves();

end���Simulated Annealing

Describes the process of eliminating lattice defects in crystals by heating followed by slow cooling to low temperature.

In mapping a lattice defect corresponds to a mapping M with

CF(M) > optimal value

The system is simulated in thermal equilibrium. As parameter T (a formal analogy of temperature) is decreasing, the system is frozen to a state with the current value CF(M) low.

If the mapping M is transformed onto another mapping Mnew, then the resulting mapping is accepted if it gives the lower value of CF:

CF(Mnew) < CF(M)

Else, the new mapping is accepted with probability

exp{ (CF(M) - CF(Mnew)) / T }

In each temperature step a pool N of mappings can be examined.

Initialization: The procedure is initialized by random generation of N mappings. Starting temperature Tmax must be chosen so that the initial percentage of succesful mappings should be about 50% =>

Parameter setting requires some experimentation !

best_config = init

T = Tmax

while T > Tmin do begin

	while (moves < hw*sw*Npool) do begin

		move_task

		delta = CostFnew - CostF

		if delta < 0 then

			accept_configuration()

		else begin

			r = random();

			if r < exp(-delta/T) then

				accept_configuration()

		end

		T = decrease.T()

end��

�Dynamic Load Balancing

(DLB)

DLB is needed when the communication and/or computational costs of tasks can not be estimated properly before the execution of the parallel program.

The general DLB process can be divided into four phases:

Processor Load Evaluation: A load value is estimated for each processor in the system to detect load imbalances and make load migration decisions.

Load Balancing Profitability Determination: Potential speedup obtainable through load balancing and is weighed against the load balancing overhead to determine whether or not load balancing is profitable at that time.

Task Migration Strategy: Sources and destinations for task migration are determined.

Task Selection Strategy: Source processors select the most suitable tasks for efficient and effective load balancing and send them to the appropriate destinations.

�Application Dependent�Distributed��Processor Load Evaluation�YES�YES��Load Balancing Profitability Determination�NO�NO: large overhead�more accurate

YES: low overhead�less accurate��Task Migration Strategy�NO�YES or NO��Task Selection Strategy�YES�YES��

�Dynamic Load Balancing

(DLB)

The main issue in any load balancing scheme is to find a tradeoff between knowledge and overhead.

Load balancing overhead includes:

comm. cost of acquiring info on load

processing costs of evaluating profitability

informing nodes of load migration decisions

Profitability Determination

Load imbalance factor ((t) is an estimate of the potential speedup obtainable through load balancing at time t:

 ((t) = Lmax - Lbalanced

where 	Lmax : max processor loads before balanicing

	Lbalanced : max processor loads after balancing

Load balancing is profitable if:

((t) > Loverhead

where 	Loverhead : balancing overhead

Simplification: setting Loverhead to a constant value:

((t) > Koverhead

Further simplification: once a node’s load (Lp) drops below a preset threshold (Kunderload) balancing is needed anyway:

Lp < Kunderload

�The Gradient Model (GM)

� EMBED Word.Picture.6 ���

Based on two threshold parameters:

A nodes’s proximity is the shortest distance from the node to the nearest lightly loaded node.

proximity(p) = 0 	if p becomes light

All other nodes p with near-neighbours ni compute:

�EMBED Equation.2 ���

All nodes are initiated with:

proximity(p) = Wmax	(diameter of the system)

Load balancing is initiated if a node becomes light (demand driven approach

If a processor’s state is heavy and any of its near-neighbours report a proximity less than Wmax, it sends a load unit to its neighbour with lowest proximity.

Tasks are routed in the direction of the nearest light node.

A task continues to migrate until it reaches

a light node or

a node for which no neighbours report lower proximity

Disadvantage: It may work inefficiently if the load unit is either too small or too large.

�Sender Initiated Diffusion (SID)

Purely distributed and asynchronous

Overlapping balancing domains are applied to achieve global balancing.

A balancing domain consists of a node and its immediate neighbours (near-neighbour oriented method.

All processors inform their near-neighbours of their load levels throughout program execution.

Balancing is performed by each processor whenever it receives a load update message indicating that a neighbor’s' load li < LLOW where LLOW is a preset threshold.

Profitability determination and task migration

Compute the average load in the domain:

�EMBED Equation.2 ���

K: number of neighbouring processors

lk : their respective loads

Task migration is initiated by a processor if its load exceeds the average load by a prespecified amount, Lthreshold.

Task migration is performed by apportioning excess load to deficient neighbors. Each neighbor k is assigned a weight hk according to the following formula,

�EMBED Equation.2 ���

These weights are summed to determine the total deficiency,

�EMBED Equation.2 ���

The portion of processor p’s excess load that is assigned to neighbor k:

�EMBED Equation.2 ���

�Hierarchical Balancing Method (HBM)

Hierarchy of balancing domains (decentralized balancing scheme

� EMBED Word.Picture.6 ���

Hierarchical organization of an 8-processors hypercube system:

Level li receives load info from both lower level li-1

Global balancing is achieved by balancing the load between adjacent domains at each level of the hierarchy.

(

asynchronous activity

Profitability criterion (evaluated at each level):

�EMBED Equation.2 ���

Processors within the overloaded branch transfer a designated amount of their load to their "matching" neighbor in the adjacent underloaded subtree.

Given an imbalance,(i, at a level i in the hierarchy, each processor p in the overloaded subtree transfers a load amount (i to its corresponding neighbor q in the underloaded subtree, where

�EMBED Equation.2 ���

Reason: at level i-1 all processors have equal loads.

�The Load Update Strategy

Quality of load information depends on:

accuracy of load estimates

application dependent

tradeoff between quality of estimate and complexity of estimation. Examples:

rough estimation: length of processor’s queue

more accurate: distinguish the type of tasks in the queue

aging of information

machine architecture

dependent load balancing strategy dependent

frequency of load update messages

The interval between update messages can be computed as a function of time or as a function of load level.

function of load level

The updates may be sent at constant intervals, (L, of a processor's load, Lp or, the intervals may vary as a function of the load level.

constant intervals: processor p must send on the order of Lp/(L update messages. The error percentage increases when Lp decreases (100% when Lp ((L).

variable update intervals: constant error percentage in the load info and less update messages.

E.g.: a processor must send update messages whenever its load relative to that sent in its last update message has doubled or cut in half (.i.e. load update factor is 1/2).

The frequency of messages will increase as the processor loads decrease (accuracy of load info does not degrade.

function of time: time intervals need to be adjusted for different applications

�DEBUGGING SEQUENTAL PROGRAMS

Deterministic behaviour

(

applicable techniques

���

���

DEBUGGING CONCURRENT AND PARALLEL

 PROGRAMS IN MULTIPROCESSOR

 ENVIRONMENT

PROBLEMS;

1. Concurrent programs are nondeterministic

(

breakpoints, step-by-step execution are not applicable

2. Observibility in multiprocessor environment

a./ report messages from different processors are mixed in time

b./ correct log messages can be lost due to the error of a processor within the communication chain

�THE BASIC OF REPLAY TECHNIQUE

�

��������

��

�

If the - value and

- order

of the inputs are the same at each run, then the process will work deterministically, i.e. generates:

- the same values

- in the same order

at each run.

(

Reproducible behaviour

��

��

Reducing data to be collected

�

�

�

�

If the outputs of A are inputs of B and C, there is no need to collect values (data) on this arcs, since they will be reproduced by A during the Replay Phase.

�REPLAY TECHNIQUE APPROACHES

�

�

�

Information that must be collected for replay depends on the particular language (i.e. depends on synchronisation and communication constructs).

Example: Language based replay for monitors

The types of synchronization events that occur during an execution of a concurrent program consisting of processes and monitors include

·	the start of execution of a monitor procedure by a process,

·	the completion of execution of a monitor procedure by a process,

·	the execution of a Wait(condition) operation in a monitor procedure,

·	the execution of a Signal(condition) operation in a monitor procedure.

Thus, the execution of such a program can be characterized as a sequence of synchronization events called M sequence:

((C1,H1,D1,N1),(C2,H2,D2,N2),...)

where Ci: the calling process

Hi: type of the event

Di: the called monitor procedure

Ni: the condition variable (in case of Wait and Signal)

The execution of a monitor based program can be determined by the M sequence and the input data.

Simplification of M sequence (SM sequence:

(C1,C2,...)

As the sequence of synchronization events inside a monitor can be determined from the sequence in which processes enter the monitor and the values of the parameters of these monitor calls (the SM sequence and the input data determines the execution of a monitor based program.

�Example: Language based replay for monitors (Cont.)

�������original monitor

program

monitor: buffer

procedure put (item: char)

begin

if (count > size) wait (not_full)

end;

procedure get (varitem:char)

begin

if(count=0) wait (not_empty);

end;

begin

end;

��transformed monitor program

monitor: buffer

procedure put (item: char)

begin

release_m_permit;

if(count>size) wait(not_full);

end;

procedure get (varitem:char)

begin

release_m_permit;

if(count=0) wait(not_empty);

end;

begin

end;

�����original call sequence

process producer

begin

put (item);

put (item);

end;

��transformed call sequence

process producer

const id = 1;

begin

request_m_permit (id);

put (item);

request_m_permit (id);

put (item);

end;

���Example: Language based replay for monitors (Cont.)

����process consumer

begin

get (item);

end;

��processor consumer

const id = xx;

begin

request_m_permit (id);

get (item);

end;

��

monitor control;

var sm_seq : array [1...MAX_Length] of integer;

process_queue : array [1...MAX_ID] of condition;

index : integer;

sm_length : integer (*actual length of SM-sequence*)

procedure request_m_permit (ID : integer);

begin

if (ID<>sm_seq [index] wait (process_queue [ID])

end;

procedure release_m_permit;

begin

index ++;

if(index<=sm_length) signal (process_queue[sm_seq[index]])

end;

begin

index = 1;

read (sm_length);

(*read in the elements of array sm_seq[1...sm_ length]*)

end;

��

Possible SM sequences:

��

�[1, 1. 2]

[1, 2, 2]

[2, 1. 1]

�

�Example: Implementation based replay for message-passing

synchronous message-passing communication primitives

(

replay can be implemented by forcing on each process pi the same order of message receptions.

(

trace information for pi, recorded during execution phase, is thus simply a sequence of message identifiers.

non-blocking primitives (situation is more complicated

Non-blocking primitives are used to overlap communication and computation:

give_buffer(buf): gives a buffer (in the process space) to the operating system, into which a message is to be stored;

message_arrived(buf): returns true if the process buffer contains a message;

give_mess(dest,buf): gives to the operating system the destination process and the buffer containing a message to send;

message_sent(buf): returns true if the buffer can be reused (i.e. the message has already been sent by the message passing system).

Typical use of such primitives:

		process P1

. . .�give_message(P2, buf1);�. . .�if message_sent(buf1) then�	"buf1 can be reused"�else�	. . .�		process P2

. . .�give_buffer(buf2);�. . .�if message_arrived(buf2) then�	"access to buf2"�else�	. . .��

�Example: Implementation based replay for message-passing (cont.)

��������������������

�����

�

�

�

�

Initial Execution

 a./ Sensitive events (communication primitives): no recorded event, only increment Counter

	give_mess(Pi , Mj):	inc(Counter)

					call $GIVE_MESS(dest, buf);

						/*effective system call*/

	give_buffer(bi):		inc(counter);

					call $GIVE_BUFFER(buf);

	message_arrived(bi):	inc(counter);

					call $MESSAGE_ARRIVED(buf);

b./ Implicit events (message arrival and buffer release): increment event counter + record event

	message_arrival:		inc(Counter)

					SaveInLogFile (Counter, sender_proc,

								ARRIVAL);

	buffer_release:		inc(Counter);

					SaveInLogFile (Counter, dest_proc,

								DEPARTURE)

					�SYMBOL 223 \f "Symbol"�

P1's trace			P2's trace			P3's trace

(2, P2, DEPARTURE)	(2, P1, ARRIVAL)		(5, P2, DEPARTURE)

				(4, P3, ARRIVAL)

Implementation based replay for message-passing (cont.)

Replay Execution Phase

a./ Sensitive events

The replay is forced (when sensitive events are executed) by calling the procedure before_sensitive_event.

For example:

function message_arrived (buf: buffer type) : boolean;

begin

		inc (counter);�	if MODE = REPLAY then�		before_sensitive_event;�	end if;�	return $MESSAGE_ARRIVED (buf);

						/* effective system call */�end

procedure before_sensitive _event;

	/* only called during execution replay */

begin

	while Counter = next_recorded_event.FIELD_1 do

		if next_recorded_event.FIELD_3 = ARRIVAL

		then

			wait until a message sent by 							"next_recorded_event.FIELD.2" is 						available, and put it into the first empty buffer

			specified by the process;

		else	/*DEPARTURE*/

			sent the first available message destinated to 				"next_recorded_event.FIELD_2";

		end if

		next_recorded_event: = getFromLogFile();

		inc(counter);

	end while

end

b./ Implicit event is allowed to take place only if it corresponds to the next awaited event of the process. Otherwise, the arrived message or the buffer release information are put into a temporary wait queue, to be handled later on.

�Performance Analysis

Basic steps of the performance analysis process:

data collection: data about program performance are obtained from an executing program.

Three basic data collection techniques can be distinguished:

�Profiles record the amount of time spent in different parts of the program. Gathered automatically with sampling technique.

E.g.: they can help to identify program parts that are taking the most time and that hence require further investigations.

�Counters record either frequencies of events or cumulative times. The insertion of counters may require some programmer intervention.

E.g.: they can record number of procedure calls, total number/volume of messages.

Event traces record each occurrence of various specified events, thus typically producing a large amount of data. Traces can be produced either automatically or with programmer intervention.

E.g.: they can be used to determine casual relationships between communications, to localize idle times and hot spots. A trace can be postprocessed to obtain profile or count info or higher order statistics.

data transformation: reducing total data volume, computing mean values or other higher-order statistics, etc.

data visualization: performance data are inherently multi-dimensional consisting of execution times, communication costs, and so on, for multiple program components, on different processors => visualisation is needed to explore it.

Data can often be reduced to one, two or three dimensions and displayed using various histograms techniques, e.g.:

Gantt chart is a horizontal bar chart in which each bar represents the status (computing, communicating, or idling) of each processor as a function of time. It can highlight unexpected dependencies between program components.

Space-time diagram is a Gantt chart augmented by drawing lines to connect corresponding send and receive events on different processors. It can make it easier to infer temporal dependencies.

�Example visualization tool: Paragraph

Paragraph is a portable trace analysis and visualization package developed at Oak Ridge National Laboratory for message-passing programs.

Trace file:

Originally was designed to analyze traces generated by the PICL message-passing library.

PICL can generate traces automatically.

Traces are time-stamped events for every communication operation (by default).

Displays:

Large number of detailed or synthetic views.

Processor utilization displays: allow the user to distinguish time spent computing, communicating, and idling. They can be used to identify load imbalances and communication hot spots (e.g.: Gantt chart).

Communication displays: present more detailed information on communication volumes/patterns and on causal relationships.

For example, the communication matrix display indicates, by different colors, the communication volume between all pairs of processes.

Advantages:

PICL trace format is de facto standard.

Large number of particularly intuitive displays.

Widely distributed, pioneer visualization tool.

Disadvantages:

The relationship between performance data and program source is not always clear.

No scroll and zoom mechanisms are provided to focus on particular parts of display windows.

�Example visualization tool: Paragraph

�

(cont.)

�Example visualization tool: Prove

Prove is a performance visualization tool developed at KFKI-MSZKI Research Institute of the Hungarian Academy of Sciences. The tool is part of the GRADE integrated program development environment for message passing programs.

Trace file:

Prove can analyze event traces generated by the Tape/PVM monitoring system.

Traces can be generated automatically.

Tape/PVM trace format is similar to that of PICL but the event records contain source code info as well.

Displays:

Gantt chart

Space-time diagram

Communication displays: show the volume and distribution of communication among processes or hosts (processors).

Advantages:

Zoom and scroll mechanisms are provided to investigate any parts of the views in details.

Particular processes and/or communication paths can be filtered out by the user interactively.

Tight integration with the graphical program editor of the GRADE environment (the correspondence between the source code and the events visualized in the displays are always straightforward.

Disadvantage:

Small number of different displays (comparing to Paragraph).

Example visualization tool: Prove

(Cont.)

�

�MONITORING

Collection of execution information of a program (i.e. monitoring) is fundamental to both debugging and performance analysis.

MONITORING

���

���

Software hooks:

�

�

���

��

�

��

Probe effect

program behaviour is affected by the time spent on monitoring instructions

(

monitored program runs differently from unmonitored one

Objective: To reduce probe-effect as much as possible.

(In practice probe-effect cannot be reduced to zero.)

PROBE EFFECT

1. Without monitoring

����������������

�

�

�

�

		p1 (q2	AND		r1 �symbol 124 \f "Symbol"���symbol 124 \f "Symbol"�� q2

��2.With monitoring

�

�

�

�

	r1 (q2		and		p1 �symbol 124 \f "Symbol"���symbol 124 \f "Symbol"�� q2

To avoid this probe-effect the execution of processes q and r must also be artificially delayed for the amount of time D.

A possible solution: Logical Clock Approach

�THE LOGICAL CLOCK APPROACH

Features

1. Distributed Concept: a logical clock monitor is applied on each processor

2. The logical clock is stopped during monitoring actions

	�symbol 223 \f "Symbol" \s 14��

The logical clock shows the time that is equivalent with real-time at execution without monitoring

3. communication ordering unchanged

- sender processes time-stamp messages by their logical clock value

- receiver process accepts the message with lowest time-stamp

Example:

������

�����������������������

�

��

���

�

���

��

���

��

�

�

	p1(q2					r1 �symbol 124 \f "Symbol"���symbol 124 \f "Symbol"�� q2

�Consequence: Although, interactive monitoring may slow down the program's execution by several orders of magnitude, there is very little disturbance of the execution time if it is measured using logical time

TEMPUS S-JEP-8333-94	Parallel Programming

Specification of

parallel algorithm

Mapping parallel

algorithms into

parallel machines

Load

balancing

Testing &

debugging

Monitoring

Performance

analysis

(visualization)

breakpoints

trace

by log file

step-by step

execution

process

as

blackbox

outputs

inputs

ReplayPhase

Replay based on collected data

Execution Phase

Collecting data

B

process

A

C

Implementation based

support is provided by modifying the language implementation (i.e. compiler, run-time system, operating system)

Language based

The program is transformed into a new form in the same language containing all necessary auxiliary code for data collection and replay.

should be generated by a systematic

test program

give_buffer(b1)

message arrival

message_arrived(b1)

 message arrival

give_buffer(b2)

message_arrived(b2)

give_message(P2,m2)

buffer release

P1

P2

P3

1

2

3

4

5

6

give_mess(P2,m1)

buffer release

1

2

1

2

amount of data

to be collected

by hw/sw

difficult to implement

low intrusion

by softwarehooks

easy to implement

high intrusion

by hardware

difficult to implement

no intrusion

Process P

extract_trace_info

event E;

Process P

event E;

transformed

(

results

 in

probe

effect

r

q

p

r1

r2

q1

q2

q3

Tp2

Tr2

p2

p1

r

q

p

r1

r2

q2

q3

T’p2

Tr2

q1

p1

p2’

monitoring

delay

D

RTr

LTr

LTq

RTq

LTp

RTp

Tp2

p2

p1

q1

q2

T’p2

q3

r2

D

Tr2

Tp2

r1

