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Chapter 3

SIGNAL AND IMAGE 

PROCESSING 

ALGORITHMS

3.1
Introduction

Before engaging in data parallel special purpose array processor architecture and implementation, the properties and classifications of algorithms must be understood. This chapter stresses the basic background for algorithmic understanding.

An algorithm  is a set of rules for solving a problem in a finite number of steps. There is extensive literature exploring the computational aspects of signal/image processing, and also considerable numbers of software packages are available.

Some basic algorithms used in signal and image processing are listed next:

(a) Matrix Operations

Matrix-vector multiplications, solution of linear systems, singular value decomposition, etc.

(b) Basic DSP Operations

Filtering: FIR, IIR, convolution, resampling, template matching, linear phase filtering, etc.
Transformations: Discrete Fourier, FFT, Walsh-Hadamard, Karhunen-Loeve, etc.

(c) Image Processing Algorithms

Restoration: inverse filtering, pseudo inverse filter by SVD

Reconstruction: Back projection, interpolation, pseudoinverse filter, algebraic reconstruction
Enhancement and smoothing: histogram transforms, noise elimination, median filter, edge- and line preserving smoothing, and so on.

Edge and line detection methods, template matching, Heuckel operator, Hough transform 
Texture analysis: cooccurrence matrix, run-lengths matrix, autocorrelation, texture edge detection, Fourier features, texture edge preserving smoothing, etc.

Geometrical operations: connected components, boundary detection/description, warping, distance transform, projections, cross section, thinning, etc.
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Other algorithms

Searching and sorting (merge sort, bitonic sort, etc.)

Graph and geometrical algorithms: transitive closure, connected components, minimum spanning tree

Polynomial operations: multiplication, division, encoding/decoding for error correction
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Digital signal processing is characterized by large amounts of data, and tremendous computation requirements. The demand for speed and performance is continually growing. These requirements call for revolutionary supercomputing technology.

The algorithmic background provided by this chapter will be essential for the development of VLSI array processors.

3.2
Matrix Algorithms

Matrix operations are very common in digital signal- and image processing operations. An m x n matrix is a square array of m rows and n columns of data items (scalar, vector or matrix). An n-dimensional vector consists of n data items, which could be arranged into a row or column vector.

3.2.1
Basic Matrix Operations

The most common matrix operations prevalent in signal processing are summarized below.
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3.2.1.1
Inner product

3.2.1.2
Outer product




3.2.1.3
Matrix-Vector Multiplication

The n x m matrix A multiplied by an m-element column vector u results in an n-element column vector v. 

v = A u

The ith element of v is




where aij     is the ith element of the jth column of A.

3.2.1.4
Matrix Multiplication




A is of size m x n, that of B is n x p. The product, denoted by C is of size m x p and is given by  C = A B. The ijth element of C has the following form:

3.2.2
Solving Linear Systems

To solve n simultaneous linear equations with n unknowns, is to find n x 1 vector x:
A x =  y

x = A-1 y
The number of computations for A-1 is  high, the procedure unstable.
Triangularize A to get upper triangular matrix  A’:
A’ x = y ’

Where A is an upper triangular matrix. Back substitution provides solution x.

3.2.2.1
Matrix Triangularization

Frequently used methods for matrix triangularization are: 

· Gaussian elimination

· LU decomposition

· QR decomposition

In the following the QR method will be discussed briefly. 

One way the QR decomposition is obtained is via an orthonormal transform, called Given’s rotation (GR): A matrix A can be written as the product of a matrix with orthonormal columns and an invertible upper triangular matrix, i.e. A = Q R, where Q has orthonormal columns and R is an upper triangular matrix. The decomposition of A is obtained as a sequence of GRs. The GR operator performs plane rotations of A, this way annihilating its subdiagonal elements.

For an invertible A, the upper triangular matrix R is obtained as follows:




QT A  =  R A-1



QT =  Q(N-1) Q(N-2)  ( ( (Q(1)  
and


Q(p) =  Q(p,p) Q(p+1,p) . . . Q(N-1,p) 

where  Q(pq)  is the GR operator to nullify matrix element at the (q+1)st  row, and
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pth column, and has the following form:

The matrix product A’ = Q(q,p) then becomes:

a’q,k = aq,k cosaq+1,k sin

a’q+1,k = - aq,k sinaq+1,k cos 

a’jk = ajk     if   j ( q, q + 1

for all k = 1, . . . , N.
where ( = tan-1 [aq+1,p  / aq,p ] is an abbreviation of  ( (p,q). The above operation of creating cos(  and sin( is called Given’s generation (GG).

3.2.2.2
Back substitution

Find an n x 1 vector x such that 

A’(x = y’
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where A’ is an upper triangular matrix. The example to follow makes the operation easy to understand:

x1, x2 and  x3  can be easily obtained from the equations on the right hand side.

3.2.3
 Iterative Method

When large, sparse matrices (e.g. 105 x 105 ) are involved, the iterative method may be more efficient:

 g =  H f

g represents physical measurements, H is the sparse matrix.

By splitting the A matrix into S and T such that

A = S + T

Then starting with an initial guess  x0,  the iteration:

S x k+1 = -Txk + y

Sequence of vectors xk+1  are expected to converge to x.

3.2.4.
Eigenvalue and Singular Value Decomposition

Let A be of size n x n. If there exists a vector e  such that 

A e = e

is called eigenvalue, e is eigenvector. is obtained by solving  the characteristic equation 

|A -  0




For distinct eigenvalues:





                          A E = E





 



The matrix E  is invertible, and hence A = E  E-1     If the matrix A is an n x n normal matrix, (i.e. AH A = A AH),  it can be factored

A = U  UT
where U is an  n x n unitary matrix and  is a diagonal matrix that has all the eigenvalues of A in its diagonal. This decomposition is very common in control and image processing. The Karhunen-Loeve or KL transform is based on the decomposition of the covariance matrix.

Another important decomposition of matrices is the Singular Value Decomposition or SVD. It is of considerable interest in digital image processing, e.g. in image coding, enhancement and reconstruction. 

It can be shown that any n x m matrix A can be factored into 

A = Q1 Q2T

where
Q1  : m x m unitary matrix



Q2  : n x n unitary matrix, and 


  has the special form:





where
D =  diag(, ,. . ., r),    r, > 0,  r  is the rank of A.

The SVD formulation can also be written as:

A = Q1  Q = ri=1i ui viT

where
ui  is the column vector of matrix Q1, and vi is the column vector of matrix Q.

The singular values of A:  , , . . ., r  are square roots of the eigenvalues of 

AT A  (or A AT)

The column vectors of Q1, Q2 are the singular vectors of  A, and are eigenvectors of

AT A  and A AT  respectively.

SVD is also used to

· solve the least squares problem

· determine the rank of a matrix

· find good low-rank approximation to the original matrix.

3.2.5
Solving the Least Squares Problem

The well known linear least squares technique is useful in control, communication, signal processing. The technique is applied to

· equalization

· spectral analysis

· adaptive arrays

· digital speech processing

Problem formulation:


Given
A , an n x p ( n > p, rank = p ) observation matrix, and


y, an n-element desired data vector.

Find w, a  p-element weight vector, which minimizes the Euclidean norm of the residual vector, e, defined by

e = y - A w

Unconstrained least squares algorithm

The Euclidean norm of a vector remains unchanged if it is premultiplied by an orthonormal matrix. This way orthonormal matrices can be used to reduce A to triangular form, by using a sequence of GR matrices to premultiply the residual vector e resulting in the transformed vector:
Q e = Q y - [Q A ] = y’ - A’ w





where 
Q is an n x n orthonormal matrix, and A’ is an n x p matrix, i.e. A’ is reduced to an upper triangular matrix, represented as

To minimize the Euclidean norm of  y’ - A’ w,   wopt  is easily obtained, since w has no influence on the lower parts of the difference.  Therefore

R  wopt  =  y’ 

wopt  is obtained by back-substitution (R  is  an upper triangular matrix).

3.3
Digital Signal Processing Algorithms

In this section the basic signal processing operations, such as convolution, correlation and digital transforms will be introduced.

3.3.1
Discrete Time Systems and the Z-transform

Discrete time signals may arise naturally or are sampled versions of continuous time signals.

Linear Time Invariant (LTI) systems are characterized by h(n),  the response to the sampling sequence, (n), where
 




Here, h(n) is called the unit sample response or impulse response of the system. The output, y(n)  of an LTI system is given by




This is the convolution operation. LTI systems are of two types: finite impulse response (FIR) and infinite impulse response (IIR), depending on whether h(n) has finite or infinite duration.

In addition to the time domain representation, systems can also be represented in the transform domain. Analogous to the Laplace transform for continuous signals, the Z-transform is used in connection with discrete time signals.

The definition of the Z-transform  is the following:





where z  is a complex number in a region of the z-plane.

Example: Z-transform

Let

x(n) = ( 1/2)n( s(n),

where s(n) is the unit sample function defined as

s(n) = {1 if  n ( 0, and 0 otherwise

Then



   X(z)
= Z[x(n)]




    (



= ( ( 1/2 )n z-n

                                                     n=0




= 1 / ( 1 - 0.5z-1 ) = z / ( z - 0.5 ),  for |z| > 0.5

Useful properties of the Z-transform that will be used later:




Note also that the Fourier transform X(j) of the discrete sequence x(n) can be obtained by evaluating the Z-transform on the unit circle

X(j) = X(z)|z = exp( j
The convolution operation reduces to multiplication in the Z-domain. Taking the Z-transform of y(n), it can be shown that

Y(z) = H(z) X(z)

where H(z)  and X(z) are Z-transforms of h(n)  and  x(n)  respectively.

3.3.2
 Convolution


[image: image4.wmf]y

n

u

k

w

n

k

u

n

w

n

y

n

u

k

w

n

k

k

k

N

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

=

-

=

*

=

-

=

-¥

¥

=

-

å

å

computatio

n:

0

1


The convolution of two discrete sequences u(n) and  w(n) of finite lengths N is defined as

where  n = 0, 1, 2, . . ., 2N-2

In digital filtering u(n) denotes the input sequence and w(n) represents the impulse response function of the filter. These two sequences are usually of different lengths. y(n) represents the processed (filtered) signal.

An efficient way of computation is first to transform the sequences into an other domain where the operations are simpler, and then to apply the inverse transform.

Using the FFT transform method, the order of computation is reduced

from O( N2 )  to  O( N log N ).

Recursive equations – for convolution of two casual sequences:

yjk =  yjk-1 + uk  wj-k



k = 0, 1, ..., j  when  j = 0, 1, ..., N-1,  and



k = j - N + 1,  j - N + 2, ..., N - 1, when  j = N, N + 1, ...,2N-2

3.3.3
 Correlation

Correlation, another useful operation, often arises in connection with random processes and has a similar formula to convolution:
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where  n = -N + 1, -N + 2, . . ., -1, 0, 1, . . ., N - 2, N - 1.

3.3.4
Digital FIR and IIR Filters

Digital filters are LTI systems designed to meet specific design requirements. They are often specified by a transfer function defined on the unit circle:

H(e j) = | H(e j)| e j()


where  | H(e j)| is the magnitude,  () is the phase response.

Two kinds of digital filters are:

· 
Finite Impulse Response    (FIR)

·   Infinite Impulse Response (IIR)

Representation of digital filters, in a linear, time invariant discrete system:  pth order difference equation:




Taking the Z-transform and applying the shift property yields:




There are three classes of basic digital filters:

(1)  Moving average (MA) filter
A special case of the general filter, where in the definition of H(z),   A(z) = 1. Here, each output point is a weighted average of the input data. This filter is an FIR filter and the output sequence is the convolution of the input sequence and the impulse response of the filter.

(2)  Autoregressive (AR) filter

A special case of the general filter, where in the definition of H(z),   B(z) = 1. Here the output y(n) is generated as a linear regression of its past values, and hence the AR filter is an IIR filter.

(3)  Autoregressive moving average (ARMA) filter

A more general filter, which is a composite of MA and AR filters. The ARMA filter is an IIR filter.

3.3.5
Linear Phase Filter

In many applications it is desirable that the filter has a linear phase, i.e.  This way, signals in the passband are exactly reproduced at the output, except for a time delay, corresponding to the slope of the phase. The impulse response function h(n) has the property:

h(n) = h(N -1 - n),   n = 0, 1, . . ., N - 1.

Taking advantage of the symmetry, the realization only requires half number of multiplications.  If N is odd, then


[image: image6.wmf][

]

          

let 

          

          

        

H

z

h

n

z

h

n

z

h

n

z

n

N

n

H

z

h

n

z

h

n

z

h

n

z

z

n

n

N

n

n

N

n

N

N

n

n

N

n

N

N

n

n

N

n

n

N

(

)

(

)

(

)

(

)

'

(

)

(

)

(

)

(

'

)

(

)

(

)

/

(

)

/

(

)

/

'

(

)

/

(

'

)

(

)

(

)

/

=

=

+

=

-

-

=

+

=

=

+

-

=

-

-

=

-

-

=

+

-

-

=

-

=

-

-

-

-

-

-

-

-

=

-

å

å

å

å

å

å

0

1

0

1

2

1

1

2

1

0

1

2

0

1

2

1

1

0

1

2

1


A realization of this filter will be shown later.

3.3.6
Discrete Fourier Transform (DFT)
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The DFT of a finite lengths sequence {x(n)} is defined as

where  k = 0, 1, 2, . . ., N - 1  and WN  =  e-j2/ N .

The DFT is efficiently computed using the Fast Fourier Transform (FFT). It has the following two properties:

(1) The DFT is obtained by uniformly sampling the Fourier transform of a sequence at the following N points:




The inverse DFT is defined as:




(2) The multiplication of two N-point DFTs is equivalent to the circular convolution of the two sequences in the time domain (or space domain). Mathematically, if

X1 (k) = DFT of [x1 (n)]

X2 (k) = DFT of [x2 (n)]

Then  X3 (k) = X​1 (k)X2 (k), is the DFT of  [x3 (n)], where






and  n = 0, 1, . . ., N -1.

3.3.7
 Fast Fourier Transform (FFT)

We will first examine the computational complexity of DFT(direct method):



each x(n)Wnk requires 1 complex multiplication



X(k) {k = 0, 1, ..., N -1} requires N2 complex multiplications + N(N-1) additions, roughly N 2 operations.

DFT computational complexity using FFT (N = 2m case):



Utilizing symmetry + periodicity of  W nk , operation count  is reduced from N2  to  N log2 N.
Take the following example. If one complex multiplication takes 0.5 sec:

N
TDFT
TFFT

212
8 sec.
0.013 sec.

216
0.6 hour
0.26 sec.

220
6 days
5 sec

There are two kinds of FFT algorithms, the decimation in time (DIT) FFT and the decimation in frequency (DIF) FFT, both with the same complexity of computation. Only the DIT FFT is discussed here, the DIF FFT is left as a problem.







DIT FFT
In the last equation G(k) and H(k) can be obtained via an  N /2-point FFT. Thus an N-point FFT is achieved by using two N /2-point FFTs and combining the results. By recursively applying this decomposition, we may use a number of 2-point FFTs and combine their results. An 8-point FFT computed this way is shown in Figure 1. below:
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Figure 1.  DIT FFT (N = 8)
As it is obvious from the above figure, the FFT computation consists of a sequence of  “butterfly” operations, each consisting of one addition, one subtraction and one multiplication.

The FFT algorithm has very versatile applications. The procedure of applying the transformation to linear convolution is outlined below


(1)
Append zeros to the two sequences of lengths N and M, to make them of 


lengths, an integer power of two, that is larger than or equal to M+N-1.


(2)
Apply FFT to both zero appended sequences


(3)
Multiply the two transformed domain sequences


(4)
Apply inverse FFT to the new multiplied sequence

3.3.8
 Discrete Walsh-Hadamard Transform (WHT)

The basic functions are binary valued with { +1, -1 }. Therefore the generation and implementation is simple, the operations consisting of only additions and subtractions.




The Hadamard matrix has orthogonal rows and columns, and is a square array of +1s and -1s. It is defined iteratively, as

A Hadamard matrix of size eight is shown below




If we have an input data vector x of lengths  N   (N=2n), the transformed data becomes y = HN x.

The WHT has been applied to a number of image and speech processing operations, to pattern recognition, spectral analysis of linear systems, correlation and convolution, filtering, data compression, coding, detection, spectroscopy, etc. The WHT, just like other transforms, has a fast algorithm.

3.3.9
Solving Toeplitz System (Schur Algorithm)

We attempt to determine x when  

R x  =  y,

and R has Toeplitz structure, i.e. r( i,j ) =  r( | i - j| ). 
This system of equations can be solved using the procedures on solving general linear systems. However, they don’t exploit the Toeplitz structure. The well established serial algorithm to solve Toeplitz system is the Levinson algorithm, which - because it requires inner product operations - is not well suited to parallel implementation. The Schur algorithm avoids inner product computations, and is more suitable for parallel processing. 

The major function in solving the Toeplitz system is to perform triangular decomposition of the matrix R, i.e.

R = UT D U = UT U  (U = D U)


where D is a diagonal matrix and U is an upper triangular matrix. Then the solution x becomes: 

x = R-1 y = U-1 (UT )-1 y

which can be separated into a forward substitution step: x = U-1 g.

3.4.
Image Processing Algorithms

Most of the one-dimensional signal processing algorithms presented so far can be naturally expanded into two- or multidimensional processing applications. Some of them are discussed next.

3.4.1
Two-dimensional Convolution and Correlation

Image data are two-dimensional (2-D), with two space indices. Convolution and correlation will also be 2-D. The formulation of the 2-D convolution is as follows:





where   n1 , n2 ({ 0, 1, ..., 2N-2 }

The 2-D correlation formula reads:





where  n1 , n2 ({ -N+1, -N+2, ..., -1,0,1, ..., 2N-2 }
The number of computations needed for these operations is usually very large. For this sake transform methods are usually used for efficient computation. The method is similar to the 1-D case.

3.4.2
Two-dimensional Filtering 

The 2-D filter operation can be represented by any one of two methods

· 2-D difference equation in the space domain

· transfer function  in the frequency domain

Computation of a 2-D filter can be done by successively using 1-D filtering. In general, the computation involves

· Fast 2D convolution, via 2-D FFT

· 2D difference equation directly

· Occasionally,  successive 1-D filtering

3.4.3
 2-D DFT, FFT, and Hadamard Transform







The two-dimensional DFT is  similar to 1D case, and is defined as follows:

Two important  properties  of the 2-D DFT:

(1) Using 1-D FFT 2N times, the 2-D DFT can be calculated in O ( 2N 2 log2  N ) time. This is done by first applying 1-D FFT row-wise N times and then 1-D FFT column-wise N times on the transformed sequence.
(2) The 2-D counterpart of the 1-D convolution can be fast computed using transform methods, e.g. by using 2-D FFT, multiplying the transforms and applying inverse 2-D FFT.

The 2-D Hadamard transform is defined in a similar way.

3.5
Advanced Algorithms and Applications

The classes of algorithm we are going to discuss next are worthy of further exploration, since they share two desirable features: (1) they belong to an important application domain, and (2) they are potentially suitable for VLSI array processors.

3.5.1
 Divide-and-Conquer Techniques

The idea of the divide-and-conquer techniques is to decompose the large size problem into smaller ones and combine the solution for the whole. Since the subproblems are formulated like smaller versions of the original one, the same routine can be used in different partitions of the problem. This way, the divide-and-conquer approach is a top down approach, that can be used recursively and yields efficient solutions (see Figure 2.).
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Figure 2.  Schematic, Divide-and-Conquer techniques

As an example, consider finding the maximum element of a set S containing n elements, where n is a power of two. We first divide S into two subsets S1  and S2 , each consisting of n/2 elements. The algorithm would find  max{ S1  } and  max{ S2 }, and the maximum of  S could be calculated as the larger of max{ S1  } and  max{ S2 }. The efficient solution is realized by recursive application of the algorithm.

An important research topic on array architectures is the design of interconnection networks for certain classes of divide-and-conquer algorithms. Prominent examples are sorting and FFT.

3.5.2
 Dynamic Programming Model

Dynamic programming techniques are extensively used in optimization problems to minimize or maximize an objective function, subject to a set of constraints. In essence, it is a bottom up procedure, in which the solutions to all subproblems are calculated first and the results used to solve the whole problem. The results of a stage are later used to solve the problems of the stage above. The intermediate results are stored and utilized in later stages. As opposed to divide-and-conquer techniques, here there is only one subproblem to solve in any one stage. The solutions to these subproblems are linked by the recurrence relation.

This recursive formulation is important in mapping algorithms to arrays with local interconnect. Examples are: Finding the shortest path problem in a graph, and the minimum cost path finding problem., which finds applications in digital speech processing in compensating the variation of speaking rates.

3.5.3
 Relaxation Techniques

A very promising algorithm class from the array processing perspective is that, based on the relaxation techniques. This in an iterative approach, which makes updating at each point in parallel. Each iteration uses data from most recent updating (in most cases neighboring data elements). Computationally more powerful than the one-shot methods, because here the initial choices are successively refined, based on newly available information. The relaxation techniques are very suitable for array processors, because they are order independent and can be speeded up by parallel processing. This is because updating at each data point at each iteration is executed in parallel.

Examples are: image reconstruction, restoration from blurring, and solving partial differential equations.

3.5.4
Simulated Annealing via Stochastic Relaxation

For certain optimization problems The computation complexity may be too large to solve exactly. To these problems iterative improvement methods can be successfully applied. One disadvantage of this method is that the solution may only be locally and not globally optimal. This deficiency is common to many optimization problems, where once a state is in local optimum, it may be trapped there forever.

Simulated annealing is a search technique that allows the possibility of getting out of the locally optimal trap by using a trap ‘flattening’ approach, based on stochastic decision of temporarily accepting a worse solution.

Suppose that an energy function, E is introduced on a finite set of states S. The task is to find a state s* , that would minimize E(s). For each state s ( S, a transition probability R(s,s’) is introduced as the probability of making a state transition  from s to s’. Now a stochastic scheme can be described for constructing a sequence of states s0, s1, s2, . . ., (the initial state is set to be s0). Transition from sk to sk’  is chosen with probability distribution

P[sk’ | sk  ] = R(sk,sk’)




By setting 



where
(E = E (sk’ ) - E (sk ), and { Tk } is the control parameter (called 



“temperature” for flattening the trap.

This process of slow cooling is analogous to slow annealing of metal, in order to crystallize it in its lowest energy state. Convergence can be guarantied if the system has certain properties and a suitable temperature sequence is defined.

At the beginning of the process, probability of moving out a local optimum region is high. During the iteration process (when the temperature parameter is lowered) the system will arrive at a  global minimum, and the probability of getting out of it is low.

Examples are: Image restoration and reconstruction, optimization, certain aspects of artificial intelligence, and code design for communication systems.

3.5.5
 Associative Retrieval

Retrieving data by association is a powerful solution to many high-volume information processing problems. Such a system is very adept at recognition and recall from partial information. A popular associative processing model is based on the content addressable memory (CAM), which represents the simplest property of a simple neuron system. The CAM-type memory is also closely related to how the human brain functions. 

Data stored in an associative memory are addressed by their contents and, in this sense associative memory and CAM can be considered to be equivalent. A CAM can perform parallel search and comparison, as opposed to RAM. These operations are frequently needed in storage and retrieval of rapidly changing database, i.e. radar signal tracking, image processing, computer vision, etc.
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Hopfield networks  The original Hopfield model uses two-state threshold neurons that follow a stochastic algorithm. Each neuron i has two states, characterized by the output Vi  of the neuron, with values: Vi0 and Vi1. The input of each neuron comes from two sources: (1) external input Ii , and (2) states of fellow neurons. Hopfield defined an energy function for symmetrically connected networks, which, for any state is given by



where
Tij  can be biologically viewed as a description of the synaptic inter-


connection strength from neuron i to j. 



The difference energy function between two different levels of neuron i, given the state of the other neuron is

If the energy difference Ei  is negative, the unit should turn (stay) on, otherwise it should turn (stay) off.
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The model also behaves like an associative memory. With reference to the Figure 3., each local minimum corresponds to a stored target pattern. The memory is content addressable, because if it is started anywhere close to a particular stable state (local energy minimum) and far from all others, it then would converge to that state. In the given state space, if the position of a stable point is considered the information of a specific memory, then the states in close proximity include partial information about that memory. A final stable state containing all information can be found from a consideration of an initial state of partial information concerning a memory. By supplying some subpart of the memory in the initial state, the memory can be reached, as opposed to using an address.

3.6
VLSI  Array  Algorithms

An array algorithm is a set of rules for solving a problem in a finite number of steps by a multiple number of interconnected processors. Now we will focus on the interconnection issue.

Concurrency is important to achieve high throughput using VLSI array technology. In general, concurrency is achieved by decomposing the problem into independent subtasks executable in parallel, or into dependent subtasks executable in a pipelined fashion. 

The most crucial issue regarding efficiency is communication, i.e. a scheme of moving data among  processing elements (PEs). VLSI  technology constrains recursive and locally dependent  algorithms. [In a recursive algorithm all processors perform nearly identical tasks, and each processor repeatedly executes a fixed set of subtasks on sequentially available data.]

An effective algorithm design must start with a full understanding of the problem specification, and the mathematical / algorithmic analysis. The dependence graph provides an effective tool, since it exhibits the full dependencies incurred during the execution of the algorithm. New algorithmic design methodologies may exploit potential concurrency available in array processor environment

3.6.1
Algorithm Design Criteria for VLSI Array Processors

The effectiveness of mapping an algorithm onto a processor array heavily depends on the way the algorithm is decomposed. Two dissimilar algorithms with equivalent performance in a sequential computer may perform very differently in an array processor environment.

On sequential machines complexity depends on computation count and storage requirement. Because a large number of PEs are involved, the overhead in an array processor environment critically depends on the availability of processors, and is therefore not uniform. Computation count is no longer an effective measure of processor performance.

3.6.1.1
Area-Time Complexity Theory

Complexity theory attempts to provide systematic information about algorithmic complexity to allow an educated choice to be made between two algorithms. For VLSI computation models area-time complexity measures have received special attention. They depend on two factors: on computation time (T) and on chip area (A). In particular, complexity measure is computed as AT2.  This measure will not be emphasized here, because is not a recognized and good design criteria, it offers little practical implication in VLSI system design. Practically any cost effectiveness measure f(A,T), a function of speed and chip area depends strongly on the particular application. In any event, little relationship has been established between the special measure AT2 (used mainly in the academic community) and a practical measure f(A,T), which always can be tailored to special needs.

3.6.1.2
Design Criteria for VLSI Array Algorithms

It is clear that a new criteria are needed to determine algorithm efficiency to include

· stringent communication problems, associated with VLSI technology

· communication costs 

· additional influential factors, like parallelism and pipelining rate
Generally speaking, in designing array algorithms for array processing, the design criteria should comprise computation, communication, memory and I/O. Their key aspects are:

(1) Maximum parallelism.  The favorable algorithm expresses higher degree of parallelism, which is exploitable by the computing arrays.

(2) Maximum pipelineability.  The exploitation of pipelining is essential for regular and locally connected networks. The best among all algorithms and arrays must be selected to maximize throughput rate. Unpredictable data dependency may jeopardize efficiency. Iterative methods, dynamic, data-dependent branching are less well suited to pipelined architectures. Well-structured algorithms with dependable data movements are required.

(3) Balance among computations, communications and memory.  A good array algorithm should offer a good balance between different bandwidths incurred in different communication hierarchies to avoid bottlenecks and data draining. Balancing of computations and communications is critical to the effectiveness of array computing. Pipelining is suitable for balancing computations and I/O.

(4) Trade-off between computation and communication.  For a practical and efficient interconnection network regular communication should be encouraged. Key issues affecting communication regularity include: local / global, static / dynamic, data dependent / data independent interconnection modules. The trade-off between interconnection cost and throughput should be maximized. Recently a lot of emphasis has been placed on local and recursive algorithms.

(5) Numerical performance, quantization effects.  Numerical behavior depends on many factors, including word lengths and algorithms used. To improve precision, ad​ditional computation may be necessary. This is a heavily  ‘problem dependent’ issue, no general rule could be given. A prominent example is that of the FFT algo​rithm, which is computationally cost effective and at the same time numerically well be​haved.

3.6.2
 Locally Versus Globally Recursive Algorithms

The basic question now is, how do signal- and image processing applications dictate the design of array processors, and how these algorithms can be implemented in VLSI hard​ware.

Common features of signal / image processing algorithms:

· intensive computation

· matrix operations

· localized or perfect-shuffle operations

These all point to promising systematic design methods for array architectures.

For proper communication, in an interconnected network each PE should know when, where and how to send / fetch data.

· where?  In locally recursive algorithms, data movements are confined to nearest neighbor PEs. Therefore locally interconnected network will suffice to execute the algorithm at high performance.

· when?  The conventional approach to send data is to use a globally synchronous scheme. Here, timing is controlled by a sequence of ‘beats’ (see systolic array).

· how?  To the question of how to communicate, it depends very much on the interconnection network adopted in the system.

3.6.2.1
Local and Global Communications in Algorithms

Concurrent processing performance critically depends on the communication cost for data transactions. It is therefore necessary to formally characterize the communication requirement and to evaluate the costs incurred.

Each PE will be assigned a location index, and their distance will be defined as the difference of their location indices. The communication cost is characterized by the distance between PEs involved in the data transaction.
To fully describe the recursive activities, time index, spatial index are also needed to show when and where computation takes place. The two major classes of recursive algorithms with local or global interconnections are:

· Local type recursive algorithm: index separations are within a certain limit. The majority of signal processing algorithms shares this locally data-dependent property. (e.g. matrix multiplication, convolution, etc.)

· Global type recursive algorithm: recursion involves separated space indices. Calls for globally interconnected structures (e.g. FFT and sorting)

3.6.2.2
Locally Recursive Algorithms

Majority of algorithms used in signal and image processing share the common traits of localized operations, intensive computation (as compared with I/O) and matrix operations. When these algorithms are mapped onto an array structure only local communications are required. This feature can be exploited to simplify architectural and software requirements. 

Another subject will be entirely devoted to the locally recursive algorithms. In the meantime a short digression is made to explore the class of globally recursive algorithms.

3.6.2.3
Globally Recursive Algorithms:  An FFT example
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A typical example for this class of globally recursive algorithms is the FFT. The perfect shuffle in FFT inherently requires global communication to support data shuffling among stages of computation. The basic array configurations for FFT computation are shown in Figure 4.  Note, that in the FFT, the  total number of butterfly operations is (N/2)log2N.  For each butterfly four real multiplications and four real additions needed. In the single state configuration a linear array of N/2 PEs and log2N time units are needed to complete an FFT of N points. In this example we use the decimation in time FFT algorithm.
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Perfect Shuffle Permutation  The permutation here corresponds to a single bit left shift of the binary representation of index x:

x = { bn,, bn-1, ..., b1 }
  (x) = {bn-1, bn-2,, ..., b1, bn }
Exchange permutation The exchange permutation can be defined as follows:

k(x) = { bn, ..., bk’, ..., b1 }


where bk’  denotes the complement of the kth bit. Figure 5. compares perfect shuffle permutation and exchange permutation networks. 


FFT via Shuffle-Exchange Network Interconnection network for in-place computation has to provide

· exchange permutation ((k))

· bit-reversal permutation  ()

For an 8-point DIT FFT the interconnection network can be represented as follows
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The sequence of operations is to apply (3)  first, (2)  next, etc.  We can consider computing X(k) by separating x(k) into even and odd N/2-point sequences.





where k = 0, 1, . . . , 7.  Both n and k are represented by 3-bit binary numbers:

n = ( n3 n2n1) = 4n3 + 2n2 + n1
k = ( k3 k2 k1)  = 4k3 + 2k2 + k1

The result of the operation is shown in the following table:




Due to in-place replacement (i.e. input and output data share storage):




n1  is replaced by  k3 ,



n3  is replaced by  k1 , etc.



x ( n3 n2 n1 ) is stored in the array position X ( k1 k2 k3 )

In other words, to determine the position of x ( n3 n2 n1 ) in the input, the bits of index n have to be reversed.
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Figure 4b.  Array configuration for FFT computation


Multi-stage array








Figure 4a.  Array configuration for FFT computation
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Figure 5.  (a) Perfect shuffle permutation. (b) Exchange permutation





Figure 3.  The Hopfield model behaves as an associative memory. The local minimum (p1, p2, p3, and p4) correspond to stored target patterns
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