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ABSTRACT 

Objective: Soprano singers face a number of specific challenges when singing vowels at high 

frequencies, due to the wide spacing of harmonics in the voice source. The varied and 

complex techniques used to overcome these are still not fully understood. Magnetic 

resonance imaging (MRI) has become increasingly popular in recent years for singing voice 

analysis. This study proposes a new protocol using three-dimensional MRI to investigate the 

articulatory parameters relevant to resonance tuning, a technique whereby singers alter their 

vocal tract to shift its resonances nearer to a voice source harmonic, increasing the amplitude 

of the sound produced. 

 

Methods: The protocol was tested with a single soprano opera singer. Drawing on previous 

MRI studies, articulatory measurements from three-dimensional MRI images were compared 

to vocal tract resonances measured directly using broadband noise excitation. The suitability 

of the protocol was assessed using statistical analysis. 

 

Results: No clear linear relationships were apparent between articulatory characteristics and 

vocal tract resonances. The results were highly vowel dependent, showing different patterns 

of resonance tuning and interactions between variables. This potentially indicates a complex 

interaction between the vocal tract and sung vowels in soprano voices, meriting further 

investigation. 

 

Conclusions: The effective interpretation of MRI data is essential for a deeper understanding 

of soprano voice production and, in particular, the phenomenon of resonance tuning. This 

paper presents a new protocol that contributes toward this aim, and the results suggest that a 

more vowel-specific approach is necessary in the wider investigation of resonance tuning in 

female voices. 
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INTRODUCTION 

Resonance tuning is a technique employed by professional soprano singers (although not 

exclusively [1]) whereby the singers modify the shape of their vocal tract by adjusting its 

movable parts, known as articulators [1,2], which alters the resonances of the vocal tract. 

When a resonance is brought close to a harmonic of the voice source, the amplitude of that 

harmonic, and hence of the overall sound produced, is increased, an important consideration 

for opera singers who must regularly perform without amplification to audiences of hundreds 

or even thousands. Female singers are able to sing at fundamental frequencies in excess of 

1  kHz, which makes analysis of vocal tract resonances from the acoustic spectrum difficult 
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due to the wide spacing of the harmonics. Neither spectral analysis nor linear prediction 

(popular in speech analysis) is reliable for detecting resonances at fundamental frequencies 

above approximately 350  Hz [4]. 

 

To overcome these issues, methods for directly measuring the vocal tract resonances have 

been developed. These methods include excitation of the vocal tract by using an external 

vibrator [2, 5] or by injecting a noise source, either broadband noise [1, 5-9] or swept sine 

[10, 11], at the lips and rerecording this to produce a transfer function of the vocal tract. 

Analysis of vocal fry has also been used to determine the vocal tract resonances [12]. These 

techniques overcome the problem of widely spaced harmonics of the voice source in the high 

soprano range. 

 

To investigate the methods used by singers to produce these vocal tract resonances, the shape 

of the vocal tract can be measured directly using magnetic resonance imaging (MRI). This 

approach is particularly useful in analyzing the female vocal tract as it allows information 

about the articulators to be gathered over the singer's entire voice range. A number of studies 

have used MRI to investigate speech and singing [11, 13-15]; however, there is very little 

research using three-dimensional (3D) imaging to specifically investigate resonance tuning in 

soprano voices. Although research into the effects of various articulators on speech has been 

ongoing for over 40 years, for example [16-18], it cannot be assumed that the same 

articulatory techniques are used in singing, especially considering the specific challenges 

faced by sopranos when singing at very high fundamental frequencies, which lie well beyond 

the range of normal speech. 

 

Two-dimensional (2D) MRI allows images to be captured in real time, which is closer to 

normal voice production; however, images from 3D MRI, although static, allow data in the 

transverse as well as midsagittal plane to be collected over a range of pitches. This 3D data 

can be used to generate more accurate cross-sectional area functions [19], and allows 

information such as the width of the pharynx and other adjustable parts of the vocal tract (e.g. 

tongue) and the volume of the vocal tract to be examined over a singer's entire pitch range. 

With the wealth of information available from MRI, there is a danger of becoming inundated 

with too many variables, which could lead to any trends in the data becoming buried in 

variance. It is crucial therefore, to determine the most useful and meaningful measurements 

in reference to resonance tuning. Combining previous work concerning vocal tract 

characteristics related to fundamental frequency, for example, tongue height and jaw opening 

[20], with newly available measurement techniques could identify useful avenues for 

exploring this type of data. 

 

Previous studies on the singing voice using MRI include Echternach et al's study [21], which 

used real-time 2D MRI to investigate registers in the female singing voice, considering 

factors including lip opening, jaw opening, tongue height, jaw protrusion, oropharynx width, 

and uvula elevation. In a subsequent study, Echternach et al [22]  also used a combination of 

real-time 2D and static 3D MRI to investigate 3D factors including the tongue shape, the size 

of the piriform sinuses, and the lip and jaw opening at very high fundamental frequencies. 

Bresch and Narayanan [23] used real-time 2D MRI to investigate resonance tuning in five 

sopranos, and although subjects generally showed a more open-mouth shape with increasing 

fundamental frequency, it was suggested that sopranos might not all employ the same 

generalizable strategies for resonance tuning as previously thought. Studies on resonance 

tuning, but not involving MRI, have also considered lip opening and lip spreading [24], 

whereas other studies on soprano singing have also considered larynx height [25, 26]. 
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There is a precedent in this research area for studies with limited subject numbers; for 

example, in Sundberg [2] and Carlsson and Sundberg's [3] early work identifying resonance 

tuning, only one soprano was considered. Similarly, Echternach et al. used MRI to study the 

vocal tract of a single soprano singing at very high frequencies [22] and register changes in 

one tenor and one baritone [27]. Miller et al. [12] used a bass-baritone singer to compare 

methods of locating formant frequencies, and Delvaux and Howard [11] used one female and 

two male singers to investigate the impact of the piriform fossae on the singing voice. 

Similarly, in studies on speech, Sulter et al. [28] used a single male subject to compare 

predicted resonances with measured values, and Clément et al. [29] used one male speaker to 

compare vocal tract resonances obtained from recorded speech with those calculated from an 

area function of the vocal tract acquired using MRI. 

 

Following on from the practices established in previous studies involving soprano singing 

and MRI methods, the principal aim of the present study was to design and test a novel 

protocol to investigate the vocal tract characteristics that result in resonance tuning (rather 

than to determine exactly how resonance tuning is affected by articulatory parameters). 

Measurements were taken from a single subject to test the practicalities and usefulness of this 

protocol, which combines direct measurements of vocal tract resonances with 3D MRI 

imaging, drawing on parameters identified in previous studies [21, 23-25].  Another 

contribution of the present study is that by using 3D MRI, it obtains transverse measurements 

in addition to the midsagittal plane information reported in previous studies and provides 

methods for quantitative analysis using these data. 

 

METHOD 

In this study, one professional singer was asked to phonate vowel sounds across her entire 

vocal range, both in an MRI machine and in an anechoic chamber, where the MRI tasks were 

repeated and measurements of her vocal tract resonances were taken. 

 

SUBJECT 

The singer used in the present study was a mezzo-soprano International Opera Principal, 

scoring 2.1 on the Bunch-Chapman scale [30]. She was 57 years old, and indicated a normal 

singing range of approximately two and a half octaves, from G3 to D6. 

 

RESONANCE DETECTION 

A method initially developed by Epps et al. [6] and used by others including Henrich et al. 

[1], Dowd et al. [7], Joliveau et al. [8] and Garnier et al. [9] was used to measure the 

resonances of the vocal tract. This consisted of exciting the vocal tract at the mouth with a 

synthesized broadband signal while also recording the response with a lavalier microphone 

placed at the subject's mouth (see Figure 1). The experimental setup for the present study is 

identical to that presented in Vos et al. [31] (see Figure 1). 
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Figure  1: The equipment used to simultaneously play and record a signal at the 

subject's mouth using a 3D-printed impedance-matching horn and a 

microphone (A - calibration, B - recording). The impedance-matching horn is 

encased in a wooden enclosure filled with sand. The flexible tubing allows the 

subjects to position the acoustic source and microphone on their bottom lip. 

 

 

The equipment used to simultaneously play and record a signal at the subject's mouth using a 

3D-printed impedance-matching horn and a microphone (A - calibration, B - recording). The 

impedance-matching horn is encased in a wooden enclosure filled with sand. The flexible 

tubing allows the subjects to position the acoustic source and microphone on their bottom lip. 

 

The device was held by the subjects, touching their bottom lip. The excitation signal used 

consisted of harmonics spaced 5.38  Hz apart, from 250 to 3500  Hz, with phases adjusted to 

improve the signal-to-noise ratio [32]. 

 

First, a calibration procedure was carried out. This procedure involved measuring the 

pressure response at the mouth with the subject's mouth closed (Pclosed), and adjusting the 

amplitudes of the frequency components to make the signal strength of the microphone at the 

subject's mouth independent of frequency. The amplitude of each frequency component in 

the input signal was adjusted so that when the signal was recorded with the subject's mouth 

closed, the amplitudes of each frequency component became equal. 

 

This calibrated signal was then used as the excitation signal for the measurements taken 

while the subject sang the required note (Popen). Because the source approximates an ideal 

current source [6], the ratio of (Popen/Pclosed) therefore measures the ratio of the impedance of 

the vocal tract to that of the radiation field [1]. The spectrum of the signal recorded at the 

subject's mouth therefore shows the harmonics of the voice source superimposed on an 

approximate transfer function of the vocal tract. An advantage of this method is that, in 
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addition to being reliable for measuring vocal tract resonances, it also allows the subject to 

sing normally while the measurement is taken. The average amplitude of the excitation signal 

was 84.75  dB, which introduced sufficient acoustic energy to get a reliable resonance 

measurement while still being low enough to allow the subjects to hear themselves, to cause 

minimal interference. 

 

EXPERIMENT 

Before the experiment, the singer was asked to answer a questionnaire concerning details of 

their singing experience and training. The singer was also asked to describe the technique she 

employed to sing vowels at the top of her range, and if she were aware of any differences in 

technique or performance when singing in a supine position. 

 

The subject was also asked to complete consent forms for all parts of the experiment, and a 

safety checklist for the MRI scan. Prior ethical approval was gained from the Physical 

Sciences Ethics Committee at the University of York. 

 

Vowel /a:/ /u:/ /i:/ 

C4 P P P 

E4 P P P 

G4 P P P 

C5 P P P 

E5 P P P 

G5 P P P 

A#5 P P P 

C6 P (poor quality) P P 

Table 1: The fundamental frequencies for each vowel investigated. 

 

The first part of the procedure involved taking MRI scans of the subject. Once positioned in 

the MRI machine, the vocal tract was first scanned as the subject maintained a neutral vocal 

tract shape, described as “a relaxed neutral shape, with your mouth slightly open, breathing 

normally.” The subject was then asked to phonate notes on three different vowels at seven 

pitches (see table 1). Before each scan, a recording of the target note played on a piano was 

played over the intercom. The scan duration was 16 seconds per note, which required the 

singer to maintain the shape of her vocal tract during this time, with a target phonation time 

of 16 seconds. The MRI machine used was a GE 3-Tesla HDx Excite MRI scanner (GE, 

Boston, MA), based at York Neuroimaging Centre. After the MRI scan, the subject was 

encouraged to take a break with food and drink as required, before proceeding to the second 

part. 

 

The highest fundamental frequency investigated for the /α/ vowel (C6) was discarded due to 

poor quality. The G4 measurement for the same vowel was initially thought to be of poor 

quality and was repeated, but was later found to be adequate and was included in the study. 

 

The second part of the procedure was carried out in a fully anechoic chamber, to obtain clean 

audio recordings of the same sounds over a greater range of pitches, without the presence of 

MRI noise. The singer was asked to lie supine on a foam-covered board and wear 

headphones playing recorded MRI noise while singing (not audible on the recording), to 

simulate the conditions in the MRI machine. The singer was first asked to sing individual 

notes, each on one breath, in an ascending chromatic sequence (12 notes per octave) from C4 

to the top of their range, singing into the wide-band vocal tract measuring device (see 
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Resonance Detection). The singer was required to hold each note for approximately 6 

seconds, and each note was given on an electric piano before it was sung. This was then 

repeated on each vowel sound (/a:/, /u:/, and /i:/). The subjects were asked to sing in their 

“normal performance voice,” keeping their mouth shape constant for the duration of each 

measurement and at a medium level. The subjects were reminded if necessary during the 

tasks. Notes were only repeated if the measurement was insufficient or if the subject failed to 

maintain the note until the end of the measurement. 

 

ANALYSIS 

The images obtained by MRI were imported into ITK-SNAP [33], and the “annotation” tool 

was used to directly measure the dimensions of the vocal tract in the midsagittal plane. After 

Echternach et al. [21] the parameters measured were the (a) lip opening, (b) jaw opening, (c) 

height of the tongue dorsum, (d) jaw protrusion, (e) oropharynx width, and (f) uvula 

elevation; in addition to these, the (g) oropharynx breadth (perpendicular to the oropharynx 

width), (h) larynx height, (i) lip spreading, and (j) vocal tract length (the length of the midline 

of the vocal tract calculated with the area function—see Generation of 3D Area Function) 

were measured. The larynx height was measured by taking the distance of the larynx to a 

fixed point (the collarbone) for all sung notes and the “neutral” position, then subtracting the 

distance for the neutral position. The midsagittal measurements are shown in Figure 2. 

 

 
Figure 2: Two-dimensional	magnetic	resonance	imaging	measurements:	(a)	lip	

opening,	(b)	jaw	opening,	(c)	height	of	the	tongue	dorsum,	(d)	jaw	protrusion,	

(e)	oropharynx	width,	(f)	uvula	elevation,	and	(h)	larynx	height.	(g)	

Oropharynx	breadth,	(i)	lip	spreading,	and	(j)	vocal	tract	length	are	not	

shown.	

 

Using ITK-SNAP, the airway was segmented to produce a 3D vocal tract volume, and the 

radiation dome was removed. This segmentation was then imported into ParaView [34] and 
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exported as a list of 3D points on the surface of the vocal tract, as well as connectivity data 

for the points to be loaded into MATLAG [35] (The MathWorks Inc., Natick, Massachusetts) 

for analysis. The x-direction was defined as transverse (left-right), the y-direction as anterior-

posterior (front-back), and the z-direction as superior-inferior (up-down). All measurements 

were taken in millimeters. 

 

 
Figure 3: Illustration of the algorithm to determine the slicing of the vocal tract. 

 

The start (glottis) and end (mouth) of the vocal tract were manually defined by the researcher, 

labeled as (1) in Figure 3, and then following an algorithm originally developed to analyze 

upper airway geometry and volume with regard to sleep disorders [36] and adapted to 

generate a 2D area function from a midsagittal slice [37], the area function was calculated 

using an iterative bisection algorithm: first, the line joining the start and the end of the vocal 

tract was calculated (2), and then a plane was defined at the midpoint of this line, normal to it 

(3). The intersection of this plane with the vocal tract was found, and its area and center were 

then calculated (4), and the center was stored as a point on the midline of the vocal tract. This 

process was then repeated between the start of the vocal tract and the midpoint, and between 

the midpoint and the end, “slicing” the vocal tract into quarters (5), and again finding the 

areas and midpoints of these intersections (6). 
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Figure 4: An	example	of	an	area	function	generated	(A)	and	the	planes	used	to	

generate	it	(B).	

 

 

 

This slicing could then be repeated (slicing into 8ths, 16ths, etc) to produce a vocal tract cut 

into 2n parts. The areas of the start and end points were also included, with the first slicing 

plane defined as horizontal (x  −  y) and the last as vertical (x  −  z). This yielded an area 

function of 2n  +  1 slices; in the present study, n was chosen to be 5, giving 33 slices in 

total. This was found to provide a sufficient level of detail for analysis while not taking an 

excessively long time to calculate. An example of the 3D vocal tract mesh, with the planes 

used to slice it, is shown in Figure 4A, and the area function generated by this is shown 

in Figure 4B . 

 

A number of restrictions were implemented in this procedure to make the process more 

reliable; first, the x-component of the center of each area slice was restricted to the midpoint 

of the previous and following x-components. In addition to this, the slicing plane was forced 

to face forward (x-component of the normal made zero) to reduce the likelihood of areas 

overlapping with the previous or following ones. 

 

 
Figure 5: An example of two slices through the vocal tract used to generate the area 

function: the 4th (A) and the 6th (B) slices. 
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Some difficulty was encountered in analysis due to the piriform fossae, as in some cases, the 

intersection of the vocal tract with the “slicing plane” produced more than one area. If there 

was more than one separate area identified, then the most central one was chosen, and its area 

was calculated. Due to the slight asymmetry of the piriform fossae, however, this meant that 

occasionally one (or part of one) of them was included in the area (as it was not quite 

separate from the main area of the vocal tract), whereas the other one was discarded. This led 

to some error in the measurements of the cross-sectional area, in the region around 1–2  cm 

from the glottis. An example of this is shown in Figure 5. With the same measurement 

as Figure 4, the fourth plane from the glottis slices through three separate areas (Figure 5A); 

however, the sixth plane (Figure 5B) only identifies two areas. 

 

Although the resonances of the vocal tract could be calculated directly from the area 

functions generated from MRI images, this would not take into account effects such as the 

radiation impedance at the subject's mouth, or the wall compliance within the vocal tract. 

Since the resonance measurements made in this experiment (using broadband noise 

excitation) measure the resonances directly, they can be assumed to be taking these effects 

into account. 

 

RESONANCE TUNING MEASUREMENTS 

The lead author manually determined the frequencies of the vocal tract resonances, from the 

broad peaks in the plots of Popen/Pclosed against frequency. An example plot 

of Popen/Pclosed against frequency is shown in Figure 6. As in previous studies [1, 9, 31], these 

measurements were then cross-checked by another researcher. In some cases, it was not 

possible to accurately identify the vocal tract resonances, especially for closed vowels or 

when the subject did not remain completely still while singing1 and these measurements were 

omitted from the results. 

 

 
                                                
1 In some cases, this could be identified by observing the subject; however, movement of the 

subject also produced a characteristic error in the measurement, which allowed this to be 

detected. 
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Figure 6: A plot of Popen/Pclosed against frequency for an /u:/ vowel. The first five 

harmonics are marked with asterisks, and the first three resonances are marked 

with arrows. 
 

 

RESULTS 

All the MRI measurements, fundamental frequencies, and the measurements of the first and 

second resonances of the vocal tract (R1 and R2, respectively) while the singer was singing in 

a supine position in the anechoic chamber were imported into MATLAB [35] for statistical 

analysis. The linear correlations between all the MRI measurements and R1 and R2 were 

calculated, and a correlation matrix was generated (see Figure 7). The results that were not 

significant at the 5% level were omitted from the matrix. Significant positive correlations are 

represented as striped, whereas significant negative correlations are represented as dark gray. 

The raw data (MRI measurements) associated with this experiment are available online [38]. 
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Figure 7: Correlation matrices for all variables, with nonsignificant results (at 5% 

level) removed. Positive correlations are represented as striped, whereas 

negative correlations are represented as dark gray. (A) /a:/ vowel, (B) /u:/ 

vowel, (C) /i:/ vowel. 
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The correlation matrix showing the correlation between all the MRI measurements and R1 

and R2 can be seen in Figure 7. The only correlation consistent across all three vowels is a 

significant positive correlation between (a) the lip opening and (b) the jaw opening, which is 

expected, as both of these measures describe the degree of openness of the singer's mouth. 

 

For the /a:/ vowel, there were no significant correlations between the fundamental frequency 

and any of the other measurements. The first and second resonances only showed a 

significant correlation with each other and not with any of the other variables. The only other 

significant correlations were between the (c) tongue dorsum and (i) lip spreading, and 

between (e) oropharynx width and (g) oropharynx breadth. 

 

For the /u:/ vowel, a great deal more correlation between the variables was seen than for 

either of the other two vowels (45/78 significant correlations, compared to 4/78 for /α/, and 

12/78 for /i:/). The fundamental frequency showed a positive correlation with the (a) lips, (b) 

jaw opening, (f) uvula elevation, (i) lip spreading, and R1 and R2. A negative correlation was 

seen between fundamental frequency and (d) jaw protrusion, (g) oropharynx breadth, and (j) 

vocal tract length. 

 

Although the tongue position is generally accepted to affect the position of R2 [20], for this 

subject there was no linear correlation between the tongue dorsum and any other variable. 

R1 and R2 both showed a correlation with several other variables, which were the same except 

for the addition of (d) jaw protrusion for R1. Not surprisingly, both resonance measurements 

showed a negative correlation with the (j) vocal tract length, supporting the acoustic principle 

that shortening a pipe raises the frequencies of its resonances. 

The /i:/ vowel showed less correlation overall than the /u:/ vowel, but a little more than the 

/a:/ vowel. Contradictory to the results for the /u:/ vowel, the R1 and R2 measurements showed 

completely different correlations, although they both correlated with fundamental frequency, 

which was positive for R1 and negative for R2. 

 

R1 and R2 showed a correlation with several variables for both /u:/ and /i:/ vowels, but not 

always in the same way. For example, for the /u/ vowel, R2 showed a positive correlation 

with lip spreading, whereas for the /i:/ vowel, R2 had a negative correlation with this variable. 

 

AREA FUNCTIONS 

The area functions were grouped by vowel and then plotted on the same axes (see Figure 8) 

to allow patterns in the data to be seen. 
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Figure 8: Area functions for all pitches, for (A) the /a:/ vowel, (B) the /u:/ vowel, and 

(C) the /i:/ vowel. 
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The area function for the /a:/ vowel was characterized by an approximately bell-shaped vocal 

tract: narrowing to approximately 1  cm2 around 6–7  cm from the glottis (around the back 

of the tongue), then opening out around 13  cm, before narrowing at the mouth. Although the 

extent of the mouth opening varied for different fundamental frequencies (between 4 and 

12  cm2), there did not appear to be any relationship between fundamental frequency and 

mouth opening. 

 

Interestingly, for the /u:/ vowel, the lower pitches showed a large space of about 

8  cm2 around the pharynx (approx. 5  cm from the glottis), which then decreased to a very 

small cross-sectional area around 12  cm from the glottis, and then opened up a little before a 

final restriction at the mouth. For the higher fundamental frequencies, the shape was very 

similar to the /a:/ vowel, with a narrowing around 6  cm, then a large opening up to 

approximately 14  cm2, before a slightly smaller mouth area. At certain points along the 

vocal tract, there appeared to be a relationship between the cross-sectional area and the 

fundamental frequency. For example, at around 5  cm from the glottis, the lowest 

fundamental frequency had the highest area, and the highest fundamental frequency had the 

lowest area. The opposite effect was seen at 13  cm from the glottis, where the highest 

fundamental frequency had the lowest area and vice versa. A noticeable shortening of the 

vocal tract was also seen with increasing fundamental frequency, possibly due to the corners 

of the mouth being pulled back, changing its effective length. 

 

The same patterns between the cross-sectional area and fundamental frequency were also 

seen for the /i:/ vowel: at the mouth, where the lowest fundamental frequencies had the 

lowest cross-sectional areas; 4–6  cm from the glottis (pharynx), where the lowest 

fundamental frequencies had the highest areas (approximately 6  cm2); and with the 

shortening of the vocal tract with increasing fundamental frequency. 

 

RESONANCE MEASUREMENTS 
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Figure 9: Measurements of R1 (filled circles) and R2 (open circles) against 

fundamental frequency for all pitches, sung in the anechoic chamber, in the 

supine position, for the (A) /a:/ vowel, (B) /u:/ vowel, and (C) /i:/ vowel. The 

solid lines show the first and second harmonics. 
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A plot of the measured resonances for each vowel is shown in Figure 9, with R1 represented 

as filled circles and R2 as open circles. These results are summarized in Figure 10, which 

shows the range and extent of both R1  :  foand R2  :  2fo tuning over the range of 

fundamental frequencies investigated, to within 70  Hz (in gray, after Vos et al31), and 

“tighter” resonance tuning, to within 25  Hz (in black, after Henrich et al1 and Garnier et al9). 

 

 
Figure 10: Shaded	boxes	show	resonance	tuning	for	each	vowel (/a:/, /i:/ and /u:/),	to	

within	70 Hz	(gray)	or	25 Hz	(black).	The	top	line	for	each	vowel	

shows	R1 :  fo	tuning,	bottom	line	R2 : 2fo.	

 

The measurements of R1 appear very scattered for the /a:/ vowel, especially toward the 

bottom of the singer's range, with R1  :  fo tuning only seen in approximately the top third of 

fundamental frequencies investigated. R2  :  2fotuning was observed only briefly, just below 

the middle of the range of fundamental frequencies investigated. 

 

For the /u:/ vowel, R1  :  fo tuning was seen over nearly the entire range of fundamental 

frequencies investigated, albeit only “loosely” (to within 70  Hz of fo). Over some of this 

range, R2  :  2fo tuning was observed in conjunction with R1  :  fo tuning, ceasing at 

approximately D#5 (622  Hz). 

 

The resonance measurements for the /i:/ vowel appear to follow very clear 

patterns; R1  :  fo tuning was seen over the entire fundamental frequency range, 

and R2 descended as the fundamental frequency increased. The resonance measurements for 

this vowel showed the least scattering of all three vowels investigated. 

 

 

 

 

 

 

 

Analysis /a:/ /u:/ /i:/ 
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2d MRI 

measurements. 

Little correlation seen 

(4/78 pairings), no 

correlations 

with R1 or R2. 

Great deal of 

correlation (45/78 

pairings), correlations 

with R1 and R2 similar. 

 

Some correlation seen 

(12/78 pairings), 

different correlations 

with R1 and R2. 

Area functions. Bell-shaped curve, no 

pattern with 

fundamental 

frequency. 

Higher fundamental frequencies show larger 

mouth opening, smaller pharynx space, and 

shortening of the vocal tract. 

 

Resonance 

measurements. 

R1  :  fo tuning seen at 

the top of the 

range, R2  :  2fotuning 

in the middle of the 

range. 

 

R1  :  fo across most of 

the range, small 

amount 

of R2  :  2fo tuning in 

the middle of the 

range. 

R1  :  fo tuning across 

a wide range, 

no R2  :  2fo tuning, 

but R2 showed a 

strong negative 

correlation with fo. 

 

Table 2: Summary of the 2D MRI Measurements, Area Functions, and Resonance 

Measurements 

 

 

A summary of the 2D measurements and their correlations, area functions, and resonance 

measurements for each vowel is shown in Table 2. 

 

DISCUSSION 

Different levels of correlation between variables (none for the /a:/ vowel, many for the /u:/ 

vowel, and fo, (d) jaw protrusion, and (i:) lip spreading for the /i:/ vowel) with R1 and R2 

indicate not only that this singer used different techniques to produce different vowels but 

also that the effect of changing one variable would depend on the vowel sung. For instance, 

for the /u:/ vowel, R2 showed a positive correlation with lip spreading; however, for the /i:/ 

vowel, R2 had a negative correlation with this variable. 

 

Considering the other correlations for the /a:/ vowel, a correlation between the width and 

breadth of the oropharynx may imply a causal relationship. However, the correlation between 

lip spreading and the tongue dorsum seems less likely to be due to a causal relationship 

between these two variables, and these factors may both be dependent on a third factor. 

 

The only variables that did not show a correlation with resonances for any vowels were the 

(c) tongue dorsum, (e) oropharynx width, and (h) larynx height, which could suggest that 

these variables are not of interest when considering resonance tuning in one of the three 

vowels investigated; however, data from additional subjects would be required to verify this. 

 

It has been noted [39] that singers generally find the /a:/ vowel the easiest and most natural to 

sing, as it does not require the extreme vocal tract adaptations required for the /i:/ vowel 

(which is generally found difficult to sing, especially at high pitches), and this may be a 

reason for the lack of correlation between variables seen for the /a:/ vowel. 

 

The singer commented before the experiment that she used “the same technique for all 

vowels but /i:/ was the hardest,” whereas after the experiment, she said that she “found /a:/ 

the hardest to sing high up, whereas it would normally be /i;/.” This theory is supported by 

the area functions for the /a:/ vowel; there may be no clear dependence of mouth opening on 

pitch seen for the /a:/ vowel because the singer does not need to make a special effort to 
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produce this vowel, unlike for the more difficult vowels, /u:/ and /i:/, which showed a clear 

pattern. 

 

The pattern in resonance measurements for the /i:/ vowel could also be linked to difficulty. 

Even though R2 is not strictly tuned, it shows a clear relationship with fundamental 

frequency; the resonance measurements for the /i:/ vowel show the least variation out of all 

three vowels. Singers typically find an intelligible /i:/ at a high fundamental frequency very 

difficult to sing as it requires a very closed mouth shape, which limits the amplitude of the 

sound produced. Producing a loud but intelligible /i:/ must therefore be a trade-off between 

these two perceptual attributes. This could mean that the stricter acoustic requirements for 

producing an /i:/ vowel mean that there is less room for variation in technique, so unlike the 

/a:/ vowel, even when in an unusual situation, the vowel is still produced in a very consistent 

fashion. 

 

Jaw and Tongue 

R1  :  fo tuning was seen over a wide range of fundamental frequencies for the /u:/ and /i:/ 

vowels, which may be due to the larger mouth area observed with increasing pitch, 

supporting the theory that jaw opening lowers R1 [20]. Surprisingly, however, the correlation 

matrices did not show a correlation between fundamental frequency and jaw opening for the 

/i:/ vowel, which is suggested from the area functions. This may be due to insufficient data to 

produce statistical significance, or a nonlinear relationship (see Nonlinear Effects). 

 

Before the experiment, the singer said she was unaware of changing her technique when 

lying down, and described her technique for singing high notes as “relaxed jaw and lifted 

palate. Firm support from pelvic area (tilt pelvis forward and unlock knees).” This suggests 

that there should be a correlation between fundamental frequency and jaw opening; however, 

this was seen only for the /u:/ vowel and not for the other two vowels investigated. When 

asked if she was aware that she made changes to the shape of her vocal tract when singing 

high notes, the singer said that she also “brought her tongue forward and down as she sung 

higher.” However, no correlation between the fundamental frequency and the tongue dorsum 

was seen for any of the vowels. 

 

Although the tongue position is generally accepted to affect the position of R2 [20], for this 

subject for the /u:/ and /i:/ vowels, there was no significant correlation (at the 5% level) 

between the tongue dorsum and any other variable. This finding suggests that this particular 

singer did not make use of this technique during this experiment; however, it cannot be 

known whether this reflects her usual technique, only her performance during this 

investigation. After the experiment, the singer commented that in the MRI scanner, she was 

very aware of her jaw being “tense” and that she felt her tongue “was further back than 

normal.” It is possible that the effects of lying down in the scanner due to the altered effects 

of gravity [40, 41], and the restrictive position, impeded the singer's normal vocal tract 

adjustments, possibly stopping her from using her tongue to tune her second resonance where 

she would normally have employed this technique. 

 

The area functions of the highest fundamental frequencies are similar for all three vowels, 

which agree with the idea that singers make use of similar vocal tract positions across vowels 

at the top of their range [39]. 

 

The area functions for these two vowels also suggest a relationship between space around the 

oropharynx and fundamental frequency; however, the only correlation between oropharynx 
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measurements and fundamental frequency occurs for the /u:/ vowel, when it correlated with 

oropharynx breadth and also R2. 

 

Results for /u:/ and /i:/ vowels agree with the findings by Bresch and Narayanan [23], who 

observed (from midsagittal images) that “the front cavity opens more widely as the singer 

goes to higher fundamental frequencies.” 

 

However, Bresch and Narayanan observed this behavior across all five vowels investigated 

(/a:/, /e/, /i:/, /o/, and /u:/), which may suggest that the singer in the current study is exhibiting 

atypical behavior; either she has an unusual technique or she was unable to use her normal 

techniques due to the restrictions of the MRI machine. 

 

 
Figure 11: Larynx heights against fundamental frequency for each vowel. 

 

The present study has only examined linear correlations between variables, and nonlinear 

relationships may exist. Based on the acoustic properties of standing waves in tubes, it was 

expected that a simple linear relationship would be seen between the vocal tract resonances 

and factors that cause shortening or lengthening, or constriction or expansion of the vocal 

tract, such as the jaw opening, tongue height, or larynx height. The larynx height, however, 

followed a similar pattern for all three vowels (see Figure 11), increasing at first with 

fundamental frequency but then remaining approximately constant across the top half of the 

fundamental frequency range investigated. This does not agree with previous studies [25, 26], 

which found that for sopranos, the larynx generally rose with fundamental frequency in the 

upper or top part of the range, although differences were seen between individual singers. 

 

It may be necessary to consider the interplay between variables more carefully. For example, 

the vocal tract length depends on both the larynx height, as a higher larynx shortens the vocal 

tract, and the lip spreading, as when the corners of the mouth are pulled back; this also 

effectively shortens the vocal tract. 

 

There are a number of limitations to be considered in the present study, which mostly arise 

from the conditions necessary for MRI; first, the singer must be supine, and was strapped to a 

board and unable to move for the duration of each measurement, and was required to sustain 
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each note for an unnaturally long time. All of these factors are unnatural for the singer and 

could possibly have an unknown effect on the measurements obtained. 

Only a single subject was used in the present study, which makes it difficult to separate 

individual habits from general trends. However, choosing a highly trained professional singer 

alleviates some of these concerns; professional singers are likely to be very reliable in their 

technique, so repeat measurements may not be necessary. It should also be remembered that 

opera involves acting as well as singing, so professional opera singers are also used to 

singing in unusual situations, including a supine position, so although this is not standard 

practice, it may not be entirely unusual. 

 

Although the present study used a single subject, to test a suitable protocol for identifying 

resonance tuning techniques using 3D MRI measurements, the results from this one subject 

are interesting in themselves, as they provide a detailed insight into the movement of the 

articulators of a very high-quality singer (2.1 on the Bunch-Chapman taxonomy [30]). It is 

not uncommon for studies on the singing voice to use very few subjects [2, 21, 27, 28]; 

however, future work will expand the present study to include more singers of similar voice 

type and experience, which will allow more robust statistical analysis and investigation into 

the similarities between individuals. 

 

To more completely identify the relevant parameters for vocal tract characterization, in 

reference to resonance tuning, it may be necessary to introduce more variables such as the 

volumes of particular parts of the vocal tract (e.g. the pharynx) or more measurements in the 

transverse plane. It should also be noted that the resonance frequencies may be influenced by 

other factors not considered in this study, such as the wall compliance of the vocal tract; 

however, it is the large articulators such as the jaw and tongue that have the greatest effect on 

vocal tract shape, so these are the parameters focused on in the present study. It has therefore 

been assumed that factors such as wall compliance have remained approximately constant 

across all measurements. 

 

CONCLUSIONS 

The present study has presented a new protocol for investigating the parameters affecting 

resonance tuning in soprano singers. Good-quality measurements were obtained from a single 

subject, allowing area functions to be generated and the positions of the vocal tract 

articulators to be monitored and compared to the vocal tract resonances. Upon analysis, a 

highly complex interplay between variables was observed; there did not appear to be any 

clear linear relationship between the parameters extracted from MRI data and measurements 

of resonance tuning across all vowels. 

 

It is not possible to generalize the results from this single singer; however, the different 

relationships between articulators and resonances observed for the three vowels investigated 

in this study support the ideas of Bresch and Narayanan [23], who suggested that sopranos 

might not all employ the same generalizable strategies for resonance tuning, as has been 

previously thought. 

 

With the increased availability of MRI, it is crucial to understand exactly which 

measurements are the most relevant when considering resonance tuning in soprano singing. 

The detailed (3D) measurements and statistical analysis presented in this paper demonstrate a 

more rigorous, quantitative approach to these types of data. The present study therefore 

provides a baseline protocol for investigation of soprano singing using 3D MRI, with specific 

quantitative analyses, in consideration of the female singing voice. In particular, this has 
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implications on future research in terms of generalizing findings across vowels, as well as 

informing the development of more accurate acoustic models of the singing voice. 
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