
 

   

 

 

 

 

 

 

 

PARSING THE SPECTRAL ENVELOPE: 

TOWARD A GENERAL THEORY OF VOCAL TONE COLOR 

 

 

 

Ian Howell 

Doctor of Musical Arts Thesis 

The New England Conservatory of Music 

Submitted: 18 May 2016 

Corrected: 26 October 2016 

Advisors: Katarina Markovic & Alan Karass 

DMA Committee Readers: Matthias Truniger & Thomas Novak 

 

 



Howell: Parsing the Spectral Envelope 2 

Contents 

Abstract ..................................................................................................................................................................... 4 

Acknowledgements ............................................................................................................................................... 5 

Foreword .................................................................................................................................................................. 6 

1. How We Draw Vowels: An Introduction to Current Models .............................................................. 8 

2. What are Timbre and Tone Color? ........................................................................................................... 20 

3. Exploring the Special Psychoacoustics of Sung Vowels .................................................................... 27 

Absolute Spectral Tone Color ............................................................................................................................................... 29 

The Multiple Missing Fundamentals ................................................................................................................................. 32 

Local Spectral Coherence ....................................................................................................................................................... 35 

Weak Tone Color Bridging ..................................................................................................................................................... 40 

The Obvious True Fundamental .......................................................................................................................................... 41 

4. Analysis.............................................................................................................................................................. 44 

Parsing the Spectral Envelope: A Model for Aurally Locating Vocal Tone Colors ....................................... 46 

The Classical Female (and Countertenor) Voice above the Treble Staff .......................................................... 50 

The Classical Female (and Countertenor) Voice on the Treble Staff.................................................................. 54 

Conclusions ........................................................................................................................................................... 57 

Appendices ............................................................................................................................................................ 58 

Appendix A: International Phonetics Alphabet Symbols .......................................................................................... 58 

Figures .................................................................................................................................................................... 59 

Bibliography ......................................................................................................................................................... 97 

 



Howell: Parsing the Spectral Envelope 3 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Except where noted, Copyright © 2016 Ian Howell, all rights reserved 
  



Howell: Parsing the Spectral Envelope 4 

Abstract 

The purpose of this study is to identify issues with the visual models of sung vowels 

currently used within singing voice pedagogy and voice science texts, and to propose a 

conceptual framework and new visual models that may more accurately characterize objective 

elements of timbre present in the singing voice. The timbre of the classical female (and 

countertenor) voice exposes blind spots in these spectrographic and schematic models, notably 

that they accommodate certain ambiguities present in speech, but problematic when applied to 

singing (especially high-pitched, melismatic singing). Essentially, above the treble staff, vowel 

clarity disappears entirely not because of vowel substitutions or modifications, but because the 

simplicity of the listener’s percept is too distant from the timbral complexity of speech. The 

manner in which this vowel clarity changes as pitch ascends informs a meaningful discussion of 

the psychoacoustics of sung pitches throughout the range of both male and female voices, and 

suggests locating the source of timbre not within the singing body (at the point of production), 

but rather within the listener’s paradoxically limited hearing mechanism (at the point of 

perception). The author hopes to point toward a still elusive general theory of vocal tone color by 

proposing the following five principles of singing voice perception currently absent in the voice 

science and vocal pedagogy literature: absolute spectral tone color, the multiple missing 

fundamentals, local spectral coherence, weak tone color bridging, and the obvious true 

fundamental. This thesis explores both immediate pedagogical implications of this framework 

for singers and voice teachers, and also points to substantial revisions to the models used in the 

singing voice pedagogy and voice science literature. 

 



Howell: Parsing the Spectral Envelope 5 

Acknowledgements 

 This thesis would not have been possible without the support (both material and 

intellectual) and guidance of many people within the New England Conservatory of Music 

community, including Tom Novak, Karen Holvik, Bradley Williams, Carole Haber, Robert 

Cogan, Matthias Truniger, Helen Greenwald, Katarina Markovic, Alan Karass, and Jason 

Coleman. I have received encouragement along the way from many within the field of singing 

voice pedagogy and voice science, including Kenneth Bozeman, Margaret Baroody, Linda 

Carroll, Karen Brunssen, Allen Henderson, and Scott McCoy. I offer additional thanks to Dann 

Mitton at the University of Toronto for a close, final read; Bodo Maass of Sygyt Software for 

both authoring the powerful spectrograph Overtone Analyzer, and also quickly responding to my 

numerous questions and feature requests; and to all the students who have gone through my 

vocal pedagogy classes at the New England Conservatory. My greatest thanks is reserved for my 

wonderful and supportive wife and partner, Virginia Pierce, and for my daughter Leah, whose 

remarkably high frequency spectral peaks have been fascinating to study over the first two years 

of her life.  

  



Howell: Parsing the Spectral Envelope 6 

Foreword 

 This thesis grew out of an attempt to find meaningful connections between the 

spectrographic voice analysis techniques currently used by voice scientists and pedagogues, the 

spectrographic music analysis approach pioneered by Professors Robert Cogan and Pozzi Escot 

at the New England Conservatory of Music in Boston, and the work of numerous psycho-

acousticians and linguists dating back to the 19th century.1 These fields frequently borrow ideas 

and models from one another. At times this brings clarity. At other times the most useful 

approach for one field is problematic when directly applied to another. The manner in which 

singing voice science and pedagogy have embraced the visual models of vowels derived from 

speech science is just such an issue. Linking the objective information captured in a spectrogram 

(or derivative graph) to the perceived tone color of a sung vowel, especially as pitch rises, is 

challenging. Singers frequently vocalize in pitch ranges that produce a far less complex percept 

(the mental impression of the sound perceived) than speech, and the models that describe speech 

lack the specificity needed to describe the timbre of a resonant vowel sung at a high pitch. Those 

of us who study elite singing—and especially those who attempt to teach voice science and 

pedagogy to musicians—would benefit from a singing-specific model devoid of the tolerance for 

timbral variation found in speech. Although my primary audience is those working in singing 

voice science and pedagogy, I hope this thesis inspires further interdisciplinary collaborations 

between these equally valuable approaches. 

                                                 

1 Spectrographic analysis finds a place in almost every modern vocal pedagogy and voice science text, e.g. the 
works of Vennard (1967), Doscher (1994), Coffin (1980, 1987), Donald Miller (2008), Titze (2000, 2009), 
Sundberg (1987), Bozeman (2013), and McCoy (2012). Robert Cogan and Pozzi Escot (1976) and Cogan (1984, 
1998) lean heavily on spectrographic analysis to capture sonic elements of musical structure that elude notation, and 
the work of psychoacousticians like Helmholtz (1877), Mach (1885), Engel (1886), Stumpf (1890), Winckel (1967), 
and Plomp (1966, 2002), and speech scientists like Peterson (1952) to explain the vowel-like registers of all sounds. 
Indeed, Cogan has made the most significant connections between these fields to date.  
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 A few terms to be used throughout bear clarification:  

1. I will use scientific pitch notation, e.g. C4 is middle C, C5 an octave higher, B3 a half-
step lower.  

2. The terms overtone and partial are often used to describe the whole number multiples of 
the fundamental frequency that form the harmonics of a sound with pitch. The former 
refers to those harmonics higher than the fundamental; the latter includes the 
fundamental. I will use the term harmonic(s) (essentially equivalent to partial) to refer to 
these. The lowest frequency harmonic (with the frequency equal to the pitch) will be the 
first harmonic. The second harmonic is an octave higher, the third a further fifth higher, 
and onward through the harmonic series. At times I will also use the term fundamental. 
This is equivalent to the first harmonic.  

3. I will use the International Phonetics Alphabet (IPA) and at times phonetic notation.2 
4. I will use both linear and logarithmic displays of frequency when graphing the harmonics 

in figures, depending on which is more appropriate to the task at hand. 
5. I will avoid the term formant as it currently means contradictory things to different 

parties. Two bedrock concepts of voice science inform the terms I will use. The vocal 
tract has changeable, pitched resonances that filter the harmonics produced by the vocal 
folds. The sound wave that reaches a listener will have high amplitude peaks of these 
harmonics in certain frequency ranges and low amplitude troughs in others (see Figure 
1). Both of these phenomena, vocal tract resonances and the spectral peaks in the radiated 
sound, are currently called formants. I will endeavor to bring clarity by referring to them 
as vocal tract resonances and spectral peaks respectively. This includes clarifying the use 
of the term formant in quoted material. As the voice generally has multiple vocal tract 
resonances and spectral peaks for any one vowel, they will be numbered from lowest to 
highest in frequency, starting with the number one. 

6. I will use the term spectral segment (or just segment if the context makes it clear) to 
mean a notch-filtered band of frequencies that is a contiguous portion of a sound’s total 
spectral envelope. Linguists frequently use the term segment to mean a defined period of 
time of the total spectral envelope. My use of this term implies no temporal aspect. 

7. When appropriate, videos of the samples illustrated in the figures, and special videos 
explaining specific concepts may be found here: <http://goo.gl/Agt4kp> or 
<http://vocped.ianhowell.net/figures>. In some cases, especially in chapter three, the 
reader will benefit significantly from experiencing the phenomena described in the text. 

 
 
  

                                                 

2 Please see Appendix A for a list of common IPA symbols (shown by their [  ] brackets), which indicate a 
reasonably specific sound. If a symbol appears between slashes /  /, it is a phoneme, a label applied to a group of 
similar sounds that can have a particular function within a word. 
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1. How We Draw Vowels: An Introduction to Current Models 

Timbre is a slippery concept and a slippery percept, perceptually malleable and 
difficult to define in precisely arranged units. 

Cornelia Fales3 

 More than a generation ago William Vennard (1967) wrote a compendious book on the 

physiology and acoustical science of singing voice technique.4 After outlining the best speech 

science of the day, and graphing the average distribution of spectral energy for the five Italian 

vowels,5 he notes that certain vowels share spectral peaks: “…when one sings Ay [e], he is really 

singing Oh [o] plus a high partial which is not heard in the Oh [o]; and when one sings Ee [i], he 

is really singing Oo [u], plus a still more ringing overtone.”6 By calling attention to the actual 

tone color of an isolated vowel’s separate spectral peaks, rather than their objectively measurable 

frequencies, Vennard threw down a gauntlet that remains on the ground today. Why this may be 

so, why it goes unnoticed, and how one may rise to his challenge are important questions to 

contemplate.  
                                                 

3 Cornelia Fales, “The Paradox of Timbre,” Ethnomusicology 46/1 (2002): 56-95, here 58. 
4 William Vennard, Singing: The Mechanism and the Technic (New York: Carl Fischer, 1967). 
5 Vennard, Singing, 127. 
6 Vennard, Singing, 130. International Phonetics Alphabet (IPA) symbols inserted by author. See Appendix A for a 
list of common IPA symbols and examples. 
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 Vocal pedagogy and voice science texts use several visual models to characterize the 

differences between vowels, notably variations of the spectral envelope and schematics (or 

images) of the vocal tract.7 These types of models display objective, rather than perceptual 

measurements. In the former, spectral peaks—usually representing average frequency centers for 

a large population of speakers—are indicated on an X/Y graph, simultaneously displaying either 

frequency and amplitude or the frequency centers of the two to five lowest spectral peaks. The 

information conveyed in these graphs may be represented on an interval scale by either 

frequency in Hertz (Hz) or musical pitch, with specificity limited only by the resolution of the 

measuring device (examples shown in Figure 2). The latter demonstrates the average position of 

the vocal tract articulators for a given vowel, notably the tongue, jaw, soft palate, and lips. While 

precision is reduced, the general position and range of motion for each articulator are easily 

shown (examples shown in Figure 3). 

 These models do clarify the spectral and physiological elements that differentiate various 

spoken vowel phonemes; however, they accommodate certain ambiguities that are problematic 

when applied to singing. While one might assume that a given vowel would be spectrally 

identical from speaker to speaker, the spectral peak frequency centers for a spoken vowel vary 

across a large population. Two somewhat similar vowels may have near identical peak 

frequencies, and drastically different vowels may share peaks in common. This variability 

suggests that a vowel percept is the result of the total shape (the spectral envelope) rather than 

discrete content of its spectrum. However, intelligibility of familiar words is not significantly 

degraded by filtering only a portion of the spectrum of speech and, with some limitations, it does 

                                                 

7 The spectral envelope is a visualization of the spectral content of a sound, broken up into the distribution of energy 
by frequency. In a sound with a pitch—such as a sung vowel—the spectral energy is generally concentrated most 
strongly in harmonics (whole number multiples of the fundamental frequency). The vocal tract consists of the 
contiguous air containing spaces between the vocal folds and the opening of the mouth and/or nose. 



Howell: Parsing the Spectral Envelope 10 

not matter which portion of the spectrum is filtered.8 Figure 4 spectrographically displays the 

sentence fragment, “…my four little children will one day live in a nation where they will not be 

judged by the color of their skin but by the content of their character, I have a dream today,” 

from Dr. Martin Luther ɜing’s well known speech. 9 This text is presented as originally 

recorded, and then filtered three ways: the spectrum below 2,000Hz, above 2,000Hz, and 

between 300 and 3400Hz (the approximate bandwidth of the analog telephone system).10 The 

text is understandable in all four versions, which supports the idea that speech sounds are 

simultaneously encoded across the entire spectrum. Anyone who has listened to speech through 

an analog telephone or music through a tiny speaker incapable of reproducing the full range of 

human hearing knows that with even a limited amount of the spectrum present, information may 

certainly be conveyed. While spectrograms, power spectrums, and spectral envelope graphs 

(perhaps the most technically accurate models) display the spectral content of a complex sound, 

they offer little in the way of an obvious key to link what one sees to how one perceives it. One 

does not hear a voice as a chord of separate harmonics, though a spectrogram and a power 

spectrum display it as such. Finally, the spectral peak frequency locations of spoken vowels 

conveyed by these models become progressively less useful for sung vowels as pitch rises due to 

the inevitable misalignment of changing voice source harmonics and static vocal tract 

resonances.  

 Models of vocal tract shape and articulator position are perhaps more directly helpful for 

speakers and singers as they describe in concrete terms what to do in order to produce a specific 

                                                 

8 See Peter B. Denes and Elliot N. Pinson, The Speech Chain: The Physics and Biology of Spoken Language 2nd 
Edition (New York: W.H. Freeman, 1993, reissued 2015), 140-183 for a thorough description of these paradoxes.  
9 The reader is reminded that videos demonstrating most figures are available online at either <http://goo.gl/Agt4kp> 
or <http://vocped.ianhowell.net/figures>. 
10 See www.telecomabc.com/b/bandwidth.html 
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sound. Government Phonology, a linguistic theory proposed by Kaye, Lowenstamm, & 

Vergnaud (1985), describes vowels by lists of prominent features of the vocal tract. Vowels with 

lists containing only one important feature are called elements, and include [a], [u], and [i], 

which are found in almost all human languages. These vowels are assigned a status not unlike 

primary colors in that they are both autonomous and the building blocks of other vowels. Kaye, 

et al suggest, “an…[a] element may combine with an… [i] element to form a compound vowel 

 In like manner…[a] and…[u] combine to form [ɔ].”11 Story, Titze, and Hoffman (1996) .[ܭ]

tested this approach, “…with magnetic resonance imaging (MRI) of the vocal tract to obtain 

volumetric shape functions of the airway…  [and] found that the airway shape for any vowel in 

the English language can be constructed by taking percentages of  /ɑ/, /u/, and /i/ (and perhaps 

/æ/) shapes and adding them to the neutral shape.”12 However, when Kaye, et al suggest that [ܭ] 

is a combination of [a] and [i], they mean that the vocal tract for [ܭ] is between the shapes for [a] 

and [i], not that the sounds actually combine. If Vennard is correct that [i] contains [u], perhaps 

Government Phonology misses a more autonomous division of these primary vowels. The vocal 

tract shape is very different for [u] and [i] (see Figure 5), and nothing visually suggests their 

common spectral feature. What they share is timbral, not physiological.  

 As with spectral models, vocal tract shapes for spoken vowels break down as pitch rises 

and the harmonics present fall out of alignment with the vocal tract resonances. In order to 

continue singing resonantly as pitch ascends, the singer may have to actively modify their vocal 

tract, generally by opening the jaw, laterally spreading the lips, or raising the larynx (frequently 

                                                 

11 Jonathan Kaye, Jean Lowenstamm, and Jean-Roger Vergnaud, “The Internal Structure of Phonological Elements: 
A Theory of Charm and Government,” Phonology Yearbook 2 (1985): 305-28, here 306. 
12 Ingo Titze and Katherine Verdolini Abbott, Vocology: The Science and Practice of Voice Habilitation, (Salt Lake 
City: National Center for Voice and Speech, 2012): 347, referencing Brad H. Story, Ingo Titze, and Eric A. 
Hoffman, “Vocal tract area functions from magnetic resonance imaging,” Journal of the Acoustical Society of 
America 100/1 (July, 1996): 537-54. 
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discouraged in classical training).13 Doing so changes the vowel’s timbre. Berton Coffin (1980) 

offers fifteen degrees of opening (deviations from the vocal tract shape for speech) for any one 

vowel. However, he does acknowledge that, “…[i] with the 6th degree of opening sounds like [ܭ] 

and [i] with the 11th degree of opening sounds like [æ].”14 This calls into question the utility of 

continuing to conceive of the [i] as an ‘[i] shape’ as pitch rises and the mouth opens. Indeed, 

Coffin suggests that some students will prefer to think of the changing vowel color over the 

degree of opening.15 As a third possibility, perhaps opening vowels in this manner forms vocal 

tract shapes unlike those found in speech, but effective in singing. 

As Kenneth Bozeman (2013) explores, the converse is also true: changing the pitch while 

retaining vocal tract shape sometimes passively modifies the vowel. As pitch rises while the 

vocal tract remains the same (meaning the pitches of the vocal tract resonances remain the same), 

harmonics of the voice cross the resonances. Each time this occurs, but especially when the 

second harmonic crosses the lowest pitched vocal tract resonance, the vowel color shifts in a 

predictable way. This is the basis of the “pitch of turning” found in Bozeman’s (2013) 

registration framework.16 These two approaches are complementary and solve resonance issues 

in different pitch ranges for different vowels. Both push back against the idea that a single vocal 

tract shape will consistently produce the same vowel as pitch changes.  

 If I may generalize, spectrographic and vocal tract shape models work well to describe 

speech specifically because of qualities found in speech, yet frequently absent in singing. The 

                                                 

13 The term resonance, when applied to singing, implies not just that the sound wave created by the vocal folds finds 
a compliant response in some portion of the spaces comprising the vocal tract; in practice a resonant voice also 
exhibits a degree of perceptible ease. So resonant singing implies a high gain for a low effort.  
14 Berton Coffin, Overtones of Bel Canto (Metuchen: Scarecrow Press, 1980), 25. 
15 Coffin, Overtones, 25. 
16 See Kenneth Bozeman, Practical Vocal Acoustics: Pedagogical Applications for Teachers and Singers (Hillsdale, 
New York: Pendragon, 2013), 26, for both a discussion of the pitch of turning, and the concept of passive versus 
active vowel modification.  
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relatively low, constantly fluctuating pitch of speech creates a rich spectrum of harmonics in an 

otherwise healthy voice, obviating the need to fine tune vocal tract resonances to match voice 

source harmonics. As Titze (2000) writes, 

Regulation of intensity by… [vocal tract resonance] tuning is not relevant for 
conversational speech and for low-pitched singing. For fundamental frequency on 
the order of 100-200 Hz [about G2 to G3], the harmonics of the source are spaced 
close enough so that the… [vocal tract resonances] are energized at all times. 
Usually more than one harmonic resides in a… [vocal tract resonance] region, 
making the total output less dependent on a single harmonic of the source.17 
 

Slight variations in the frequency centers of the spectral peaks of speech rarely cause significant 

changes in the density or general timbre of harmonic information. Keeping in mind that spectral 

peaks are caused by harmonics profitably interacting with vocal tract resonances, by raising the 

pitch and removing the bulk of the harmonics, one also removes the ability to create the subtle 

spectral variations that characterize speech. Figure 6 demonstrates how quickly harmonics shed 

this quality as pitch rises (here a comparison of the linear spacing of harmonics at five pitches 

from C3 to F6).  

Indeed, ongoing timbral variation is characteristic of, rather than incidental to speech. 

Spoken phonemes are not static, isolated units.18 Imagine the difference between the /k/ sounds 

in keep and cool to get a sense of how the vocal tract shape of the vowels [i] and [u] change the 

tone color of the initial consonant. Now compare the [i] in tea and peep to notice how the /i/ is 

subtly changed by the initial consonant. In speech, the vocal tract shape of a given phoneme 

affects the motion and position of the articulators for the phonemes that precede and follow, a 

                                                 

17 Ingo Titze, Principles of Voice Production, 2nd Edition (Iowa City: National Center for Voice and Speech, 2000), 
258. 
18 See Denes, 143, “…the speech wave has very few segments whose principal features remain even approximately 
static.”  
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process called coarticulation.19 See Figure 7 for an example of a single female subject speaking 

the text “Oh what a lovely day” in three pitch ranges. Note that the higher the pitch, the less 

dense the harmonic information available to create subtle variations in the spectral envelope; e.g. 

the diminishing detail of the glide from /l/ to /i/ in “lovely” from top to bottom. If timbre 

encompasses changes in the spectrum over time, there is simply less potential for timbral 

variation at higher pitches. I have carried out informal experiments playing the bottom (around 

the pitch D6) and top (a comfortable speaking pitch) samples of Figure 7 for subjects with no 

knowledge of the text. Subjects cannot comprehend the words in the high-pitched sample the 

first time. However, after hearing the text as regular speech, they can understand the bottom 

sample the second time. 

 For musicians, the most troubling issue may be that these models do not describe aspects 

of tone color, timbre, or the harmonic complexity20 of vowels with any degree of specificity. 

Indeed, Robert Cogan and Pozzi Escot (1976) lament that, “A theory of musical tone color has 

yet to be created.”21 Though the voice science and pedagogy communities know that the lowest 

two (or three) spectral peaks play a significant role in vowel identification,22 the models explored 

above offer no mechanism to confront the timbral role of an individual singer’s specific spectral 

peaks. If a vowel’s spectral peaks each have multiple harmonics in speech, but fewer when sung 

at a higher pitch, how might this change be characterized? If a singer wants to sing a pitch higher 

than the spectral envelope for the vowel suggests is possible, what is the resulting tone color (see 

                                                 

19 See Mark H. Ashcraft, Cognition (Upper Saddle River, NJ: Pearson Prentice Hall, 2006), 382-3, for a discussion 
of coarticulation. See also Terrance M. Nearey, “Static, dynamic, and relational properties in vowel perception,” 
Journal of the Acoustical Society of America 85/5 (May 1989): 2088-2113, for a discussion of conflicts between the 
context effect and inherent quality in current speech research. 
20 In this context, harmonic complexity refers to the number of harmonics that constitute each spectral peak. 
21 Robert Cogan and Pozzi Escot, Sonic Design: The Nature of Sound and Music (Englewood Cliffs, New Jersey: 
Prentice-Hall, 1976), 328. 
22 See Bozeman, 12 and Denes, 142-3.  
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again Figure 6)? If the ideally resonant vocal tract shape for a pitch and vowel produces a 

different vowel as pitch changes (Bozeman’s passive modification), how should one explain the 

difference? Nor do these models represent the energy of higher harmonics—which certainly 

shape timbre, but also define the pitch and complexity of the sound wave—in a manner 

consistent with human perception. As I will demonstrate, the pitch one perceives is not governed 

solely by the energy of the harmonic that appears to be the fundamental on a spectrogram 

(furthest to the left in Figure 6).   

 The psychoacoustics literature that addresses the question is unambiguous that simple 

tones, “…are characterized by a typical frequency-dependent timbre.”23 Reinier Plomp (1966) 

argues that the prevailing view of late 19th and early 20th century researchers was that not only 

did simple sounds, “…have some resemblance, depending upon frequency, with particular 

speech vowels,” but that the timbre of complex sounds can only be understood based on this 

assumption.24 Psychoacoustics labels this quality (somewhat unimaginatively) brightness.25 Much 

later in his career, Plomp (2002) warns against the bias of describing, “…the timbre of a complex 

tone…simply as the sum of the timbre of its sinusoidal components.”26 Indeed, one does not hear 

a sung vowel as a chord of sinusoidal tones; it resolves into a single percept. It is logical that the 

timbre of each sinusoidal harmonic also resolves in some manner.  

It is not a conceptual leap for singers to notice that a vowel has multiple colors. Classical 

singers frequently discuss the chiaroscuro—or bright/dark quality—of the ideal voice, recognize 

                                                 

23 Reinier Plomp, Experiments on Tone Perception (Soesterberg: Institute for Perception RVO-TNO, 1966), 131-2. 
24 Plomp, Experiments, 132. See also Robert Cogan, Music Seen, Music Heard: a picture book of musical design. 
(Cambridge: Publication Contact International, 1998), 110, for another history of this line of thought. 
25 Plomp, Experiments, 132. 
26 Reinier Plomp, The Intelligent Ear: On the Nature of Sound Perception (London: Lawrence Erlbaum, 2002), 133. 
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that the ring of the singer’s formant27 is distinct from the vowel (i.e. a vowel can have or lack the 

singer’s formant), and do not expect that a soprano’s C6 will exhibit the same richness and 

complexity as a bass’ G2. However, our teaching models currently lack objective language to 

describe this, and discourse usually devolves into metaphors. Critically, a new model must 

accommodate the difference between the inherent experience of tone color and the phonetic 

context that allows one to understand words when spoken or sung. Plomp (2002) terms this 

audition (“…the ways in which the sound stimulus is processed… so that its specific 

characteristics are preserved,”) and cognition (“…the way in which our previous experience with 

speech is used to interpret the new signals”).28 Clearly speech engages both phenomena in a 

manner that wordless, high-pitched, melismatic singing does not.  

 Returning to Vennard’s challenge, I will demonstrate that the spectral region shared by 

[u] and [i] (the first spectral peak of both vowels) indeed sounds like [u]. These vowels do not 

just share an objectively measurable portion of the spectrum, they share a tone color. The [i] 

vowel is at minimum timbrally dualistic. However, there is almost always spectral energy in the 

range characteristic of [i] present in the [u] as well, albeit at a much lower relative amplitude. 

Figure 8 demonstrates how quickly this can become confusing. In these examples of a 

synthesized sung voice, [u] shares a second spectral peak with [ɔ], [i]’s second peak is the same 

as [y]’s third, and [a] and [ʌ] differ only in first peaks. A chart like this—that excludes both the 

relative amplitudes and spectral complexity of each peak—leaves one with few clues to decipher 

how these vowels objectively differ. Given that speech is comprehensible with only a narrow 
                                                 

27 The singer’s formant is a clustering of vocal tract resonances in the region centered on 3kHz that powerfully 
amplifies harmonics. Its frequency center varies with voice type (generally falling between 2kHz and 4kHz), and its 
presence (especially in male voices and in female voices on and below the staff) is generally accepted as an 
indication of a cultivated classical singing voice. See Sundberg, The Science of the Singing Voice, 123-4, Donald 
Miller, Resonance in Singing, 120 and ɜoichi Omori, et al, “Singing power ration: Quantitative evaluation of 
singing voice quality,” Journal of Voice 10/3 (1996): 228-235 for further information.  
28 Plomp, The Intelligent Ear, 104.  
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part of the spectrum present, and that vowels apparently share spectral characteristics in a yet 

unclear way, while one can say that this chart illustrates something true about the physical 

properties of these sound waves, it describes neither how one perceives them, nor what would be 

lost as specific peaks change due to a rise in pitch.  

 Perhaps a modification to Vennard’s analogy is appropriate: all tone colors exist in 

varying proportions in all vowels. A given spectral peak will always exhibit a dependable timbre 

related to the frequencies of its constituent harmonics; vowels are the complex combination of 

the timbres of these peaks. Indeed, all tone colors (and thus all vowels) could be said to be 

present in the buzzy sound that the vocal folds make prior to the spectral transformation of the 

vocal tract (see again Figure 1). One does not notice this because they are all happening at the 

same time! For that matter, they exist in every sound, regardless of its source; perhaps devoid of 

the additional sonic structures that differentiate a voice from a chainsaw, but present nonetheless. 

Imagine the low ‘oooooo oooooo’ of a foghorn or brilliant ‘eeeeeeeeeee’ of squealing car 

brakes.29 These onomatopoeic labels are both intuitive and inseparable from a human’s 

perception of the physical properties of each sound wave. 

 The singing voice (especially in the classical style) is in many ways the opposite of 

speech. Singing frequently demands a higher fundamental pitch, vowel durations augmented 

beyond the cadence of speech (and often extended over changes in pitch), a minimization of 

resonance-inhibiting coarticulation, and a reduced palette of vowel colors as pitch ascends. 

Coarticulation certainly exists in classical singing, however singers frequently modify 

consonants to be as non-disruptive to vowel resonance (and modify vowels to remain as 

constantly resonant) as possible. This aesthetic result is driven by the acoustical demands of the 

                                                 

29 As addressed in Robert Cogan’s register based system of tone color, found in Robert Cogan, New Images of 
Musical Sounds (Cambridge: Harvard University Press, 1984), 7 and 12, (see Figure 18).  
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workplace, which values voices capable of being heard unamplified over orchestral instruments. 

In contrast to speech, a singing-specific analytical model must order tone color on an objective 

scale, rather than a subjective scale of relative brightness. It must also explain how a given 

segment of the spectrum30 (whether a peak or not) contributes its tone color to the vowel. This 

will depend on the shape, complexity, and amplitude of the segment relative to the rest of the 

spectrum. Any model capable of accommodating this must explain the way in which each sung 

spectral peak comes to have its specific tone color, and how the tone colors of the multiple 

spectral peaks present in almost all vowels relate to one another.  

 I heed Plomp’s (2002) warnings, who in criticizing the limitations of the microscopic, 

sonically sterile study of sound that characterizes much 20th century research, instead pushes us 

to observe sound in its natural (chaotic) environment.31 Cogan and Escot similarly suggest that 

tone color analysis must focus on the relationships between subsequent sounds, and that, 

“…analysis cannot limit itself merely to the description of single sounds, no matter how 

technically sophisticated that description may be.”32 François-Joseph Fétis perhaps best summed 

up these concerns in 1878: that Helmholtz wanted to, “…annul the delicate sensations of the 

artistic ear for the benefit of essentially brutal calculations.”33 However, one must recognize that 

an analytical middle ground exists, especially for an instrument capable of both cognition-

dependent speech and audition-dependent melismatic singing. One should strive to find ever 

more meaningful ways to understand the tone colors of the sounds that combine in music; 

indeed, the timbre of a voice transmits significant information regarding vocal technique. To say 

                                                 

30 Again, here the term ‘segment’ refers to a frequency range of the spectrum, not a period of time of the total 
spectrum. 
31 Plomp, The Intelligent Ear, 132-137. 
32 Cogan and Escot, Sonic Design, 328. 
33 Benjamin Steege, Helmholtz and the Modern Listener (Cambridge: Cambridge University Press, 2012), 80. 
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that nothing remains to be learned about an individual sound’s timbre is to discount our ability to 

learn, not to discount the potentially meaningful hidden properties of that sound or its intrinsic 

characteristics relative to its musical context.  

To best understand the whole of a sung vowel’s timbre, and to engage and analyze it 

according to its inherent properties, I believe we must break it apart into conceptual and 

perceptual units smaller than common sense suggests exist. Graphical timbre analysis of the 

singing voice is currently problematic because of the shortcomings of the models themselves. 

New models ought be created and incorporated into the vocal pedagogy literature. Such models 

stand to significantly improve our understanding of singing registration choices (regardless of 

genre), and clarify the actual sounds of formant tuning and acoustic resonance strategies 

commonly discussed in the vocal pedagogy literature.34 This thesis is an exploration of natural 

phenomena as they arise in music and an attempt to offer new language to bring clarity to the 

percept of singing. What follows is both a challenge to our assumptions about sound, timbre, and 

vowels, and also a prescriptive framework for thinking about which vowel timbres the human 

singing voice is capable of healthily producing as pitch changes. When one considers that this 

material has the potential to fundamentally change the way singers and voice teachers hear 

technical deficiencies, the practical applications are near limitless. While the complexity of 

speech introduces elements not present in singing—and is thus incompletely described by a 

singing-centric model—my hope is that this exploration will favorably impact the study of all 

sound perception, speech included. 
                                                 

34 Here formant tuning refers to the practice of adjusting the vocal tract to raise or lower the pitch of the vocal tract 
resonances to better agree with the frequencies of certain voice source harmonics. See Donald Miller, Resonance in 
Singing (Princeton: Inside View Press, 2008), Bozeman, Practical Vocal Acoustics, and Scott McCoy, Your Voice: 
An Inside View (Delaware: Inside View Press, 2012), Barbara M. Doscher, The Functional Unity of the Singing 
Voice (London: Scarecrow, 1994), Berton Coffin, Coffin’s Sounds of Singing (Lanham: Scarecrow Press, 1987), and 
Coffin, Overtones of Bel Canto (Metuchen: Scarecrow Press, 1980) as examples of commonly referenced texts 
suggesting this approach. 
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2. What are Timbre and Tone Color? 

Timbre, of all the parameters of music, is the one least considered. It lacks not 
only an adequate theory, but even an inadequate one. 

Robert Cogan35 

Those who study timbre frequently criticize its definition: “Timbre is that attribute of 

auditory sensation in terms of which a listener can judge that two sounds similarly presented and 

having the same loudness and pitch are dissimilar.”36 According to this definition, timbre is a 

way to characterize the differences between the spectro-temporal character of one sound and 

another (e.g. from different sources or the same source but different mechanical or acoustical 

adjustments). Patterson (2010) writes,  

Informally, the standard definition of timbre is regarded with considerable 
amusement. You might expect the definition of timbre to tell you something about 
what timbre is, but all the definition tells you is that there are a few things that 
timbre is not. It is not pitch, it is not loudness, and it is not duration. It is 
everything else.37 

                                                 

35 Robert Cogan, “Toward a Theory of Timbre: Verbal Timbre and Musical Line in Purcell, Sessions, and 
Stravinsky,” Perspectives of New Music 8/1 (Autumn - Winter, 1969): 75-81, here 75. 
36 The 1999 American National Standards Institute’s definition of timbre as found in Roy D. Patterson, et al, 
“Reviewing the Definition of Timbre as it Pertains to the Perception of Speech and Musical Sounds,” In 
Neurophysiological Bases of Auditory Perception, edited by Enrique A. Lopez-Poveda, Alan R. Palmer, and Ray 
Meddis, 223-233, (New York: Springer, 2010), here 223. 
37 Patternson, 223. 
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Musical timbre has no fixed form of notation. Cogan and Escot (1976) suggest that 

composers do not, “…notate a tone color,” rather they notate, “…the instrumental means by 

which it is produced.”38 This certainly describes the way a vocal tract shape represents the 

physical means of vowel production. The catch-all nature of this definition allows researchers to 

follow different lines of thought according to their goals. In linguistics the role of timbre may 

relate to the creation of meaning in a listener’s mind. In music analysis the study of timbre may 

center on difficult to notate, yet sonically crucial elements of musical structure. In audiology 

timbre may be an interesting byproduct of the mechanical function of the ear. In artificial 

intelligence, timbre may be a means to allow computers to identify meaningful patterns in a 

sound wave.39 In classical singing, timbre may relate to overall brightness, darkness, and ring 

(essentially aesthetic concerns), as well as effective registration, carrying power, and amplitude 

(workplace requirements). All of these approaches explore timbre for different reasons.  

Perhaps a general theory of vocal tone color does not exist precisely because, as De Poli 

and Prandoni (2008) note, “unlike other features of musical sounds, such as pitch or loudness, 

timbre cannot be linked directly to one physical dimension; its perception is the outcome of the 

presence and of the absence of many different properties of the sound, the perceptual weight of 

which is still in many ways unclear.”40 Near limitless by definition, timbre cannot be restricted to 

prioritize any one point of view. How one chooses to define and engage the idea of timbre 

changes the questions asked and the relevance of the various associated parameters: attack, 

                                                 

38 Cogan and Escot, Sonic Design, 328. 
39 The automatic identification of a recording’s musical genre has practical applications for streaming services like 
Spotify and Apple Music. See ɜamelia Aryafar and Ali Shokoufandeh, “Music Genre Classification Using Explicit 
Semantic Analysis,” MIRUM’11 (Nov. 30, 2011): 33-37, for one example of this approach.  
40 Giovanni De Poli and Paolo Prandoni, “Sonological models for timbre characterization,” Journal of New Music 
Research 26/2 (2008): 170-197, here 170. 
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decay, and release time, distribution of spectral energy, changes in the spectrum over time, 

presence of noise or harmonics out of the harmonic series of the fundamental, etc. In many ways, 

classical singing is so simple a timbral proposition that it is not served by any of the many 

complex analytical methods available.  

I believe the terminology underpinning current vocal pedagogy teaching models must 

invite singers to notice the difference between the aspects of the singing voice that communicate 

language (as in speech) and those that simply transmit sound (as does an instrument). In the 

former, the complex spectro-temporal flux caused by coarticulation renders the specific tone 

color of a vowel less important than its context. However, in the latter, as frequently found in 

vocalises and melisamatic passages, the listener must process the inherent timbre of the voice 

with few (if any) contextual clues. Terrance M. Nearey (1989) points to these two perceptual 

processes: 

…concerning context effects, isolated vowels are not by their nature impoverished 
stimuli; rather, in many conditions they are well identified. Therefore, extreme 
theories of cospecification of vowels by consonantal context must be 
rejected…[meaning that one does not differentiate vowels in speech based solely 
on the surrounding consonants]. On the other hand, as Strange et al (1983) point 
out, there are never any large disadvantages for vowels in consonantal context as 
might have been expected from some "target" theories …[meaning that one has a 
good deal of leeway regarding the specific spectral peaks that will convey a given 
vowel in context].41 
 

Essentially, when listening to speech, one hears vowels for their inherent quality and for their 

phonetic context simultaneously. As pitch rises, especially above the treble staff, and certain 

spoken phonemes become more physically difficult to resonantly produce (e.g. an [u] or the /k/ 

or /p/ that precedes the [i] in keep or peep), a singer gradually loses the ability to engage the 

latter and leans more heavily on the former. While some singers are physiologically able to 

                                                 

41 Nearey, 2089. 
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preserve the vocal tract shape of specific speech level phonemes at higher pitches than other 

singers, it is both logical and intuitive that there is an upper pitch limit for intelligible speech (see 

again Figure 7). When pursuing a singer-centric model of timbre analysis, the question of 

inherent quality appears to be the more fruitful of the two paths. Up to this point I have used the 

terms timbre and tone color fairly interchangeably. In order to tease out the qualities of timbre 

most relevant to singing, I would like to draw an important distinction between them. 

Building on the work of Fritz Winckle (1967), who believed that the spectral peaks of a 

sound wave are, “the most significant earmarks of sound…” despite the relevance of other 

factors to the nature of timbre, I would like to appropriate the term tone color to describe a 

subset of the characteristics currently lumped into the broad definition of timbre.42 As Plomp 

(1966) and others have noted, simple sounds have an inherent color tied to frequency. This 

means that two simple sounds of an identical frequency, but from different sound sources 

(perhaps matching harmonics isolated from a trumpet and a recorder), will exhibit the same tone 

color. Other aspects of timbre related to the mechanical creation of the sound may differ (e.g. 

attack, decay, release, ongoing variations in intensity or vibrato, and additional noise surrounding 

the harmonic) but the tone color itself will not (see Figure 9). Given a narrow enough frequency 

band, any moment of sound (with or without pitch) has a specific tone color. If the spectral 

envelope changes over time, and the relative contributions of the simple sounds change, the 

overall tone color also changes. Timbre characterizes this change. This may seem like an 

academic distinction, but it allows for a revision of the problematic definition of timbre. If timbre 

                                                 

42 Fritz Winckel, Music, Sound and Sensation, trans. Thomas Binkley (New York: Dover, 1967), 24. This line of 
though also finds agreement with the use of the term sound color in Wayne Slawson, Sound Color (Berkeley: 
University of California Press, 1985), 20, however Slawson quickly pivots to the application of this concept to 
structural transformations of the total spectral content of a sound. 
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is everything that differentiates two sounds of the same pitch, loudness, and duration, tone color 

invites one to consider what two different sounds may have in common. Figure 10 and Figure 

11 demonstrate that the tone color of one instrument may be imposed onto the remaining timbral 

elements of another. In Figure 10 the tone color of a tuba is grafted onto the other timbral 

characteristics of a bass-baritone. In Figure 11 the tone color of a bass-baritone is grafted onto a 

viola da gamba. In both cases the timbral qualities (especially the qualities of attack, decay, and 

release) of the original instrument shine through the change in tone color. While I do not expect 

universal acceptance of this definition of tone color, I believe it is important to make the 

conceptual distinction.  

What then, to reformulate Nearey’s question, is the unimpoverished nature of an isolated 

vowel? Is it the tone color created by the harmonics of the voice, other elements of timbre 

idiomatic to the voice (such as the attack, decay, and release), or the layers of meaning imbued 

by coarticulation? It is most certainly a combination of the first two, as the recognizable, but 

otherwise unsatisfying transformation of the viola da gamba into an [a] in Figure 11 suggests. 

However, below the complexity of the timbral elements that differentiate a viola da gamba from 

a voice lie common aspects of tone color. This is why the viola da gamba may be modified to 

create a vowel without otherwise losing its sonic identity. Figure 12 compares the long term 

average spectrum (LTAS) of a synthesized singing voice and a cello at the same pitch.43 Note the 

manner in which the voice produces a smooth slope of harmonics, while the cello produces 

jagged peaks and valleys. A specific harmonic exhibits the same tone color in both voice and 

                                                 

43 From Donald Miller, Resonance in Singing (Princeton: Inside View Press, 2008), 116, a long term average 
spectrum (LTAS), “…accumulates spectral measurements over a specified duration, displaying them lumped 
together in a single power spectrum.” While this reduces the resolution of spectro-temporal flux within the model, it 
allows one to generally characterize the spectral qualities of a longer sample.  
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cello, however, the way in which they are combined and fluctuate over time (their timbres) helps 

distinguish one from the other.  

Returning briefly the vowels in Figure 8, Figure 13 (bottom) displays them 

spectrographically. Note that [u] and [i]’s lowest five harmonics are nearly identical. [u] and [ɔ] 

both have energy in harmonics 6-9 (though at higher amplitude in [ɔ]), that harmonics 13-16 are 

the bottom of a cluster in [i] and the top of a cluster in [y], and that harmonics 8-10 are similar in 

[a] and [ʌ] (though at a higher amplitude in [a]). When heard in isolation, the tone color of the 

spectral segment common to [u] and [i] are basically indistinguishable and sound like [u]. The 

tone color of the segment common to [u] and [ɔ] is nearly the same (like [ɔ]), but has a higher 

amplitude in [ɔ] than [u]. Raising the amplitude of this segment in [u] would tip the vowel 

toward [ɔ]; it is a part of [u], but not the primary tone color. The tone color of the segment in 

common between [i] and [y] is similar (a harsh sound, like an [i]), but is closer to [e] in the [y]. 

These peaks are visually similar, but not identical in tone color. The tone color of the common 

segment in [a] and [ʌ] sounds like the bright edge of [a]. It is present, but quieter in [ʌ]. These 

examples begin to cast light on the gulf between what a visual model conveys and what a vowel 

actually sounds like, as defining qualities of certain vowels reside passively within the percepts 

of others. These examples outline three common relationships between the same spectral 

segments occurring in different vowels on the same pitch: 1) identical ([u] and [i]), 2) similar in 

tone color but differing in amplitude ([u] and [ɔ]; [a] and [ʌ]), and 3) similar but differing 

somewhat in tone color ([i] and [y]). Other possibilities include drastically differing in spectral 

shape (e.g. a peak in one vowel and a trough in another) or, returning to the voice and cello in 

Figure 12, a slope that is smooth in one and jagged in the other. As soon as pitch changes, the 

harmonic complexity (the number of harmonics present) of each segment also changes, creating 
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a new set of internal spectral relationships. Most importantly, I believe these spectral segments 

each have a specific tone color that can be heard both in isolation and also when the remainder of 

the spectral envelope is reintroduced. A schematic of this concept is found in Figure 14. 

These realizations suggest fundamental questions about vowel perception: If  a spectral 

envelope has several peaks, what do those peaks sound like in isolation? Does the timbre of a 

spectral peak in isolation persist when reintroduced to the overall sound wave? If one spectral 

peak contains one harmonic and another has several, with what level of detail may one 

characterize the difference between them? If a singer no longer produces a given spectral peak 

(due to a change in vowel or pitch), may one characterize the difference in terms of variation in 

that part, rather than the whole timbre? As explored above, may one reconcile that different 

vowels may share a common spectral peak but differ profoundly in overall quality? Due in large 

part to the acknowledged poverty of the vocabulary used to characterize timbre, one is not 

generally equipped to address these questions. Into this ambiguously labeled space I will offer a 

multi-layered theory of tone color and vowel perception. The framework that follows cultivates 

specific language and suggests specific models to explore these questions.  
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3. Exploring the Special Psychoacoustics of Sung Vowels 

Every time we introduce a new tool, it always leads to new and unexpected 
discoveries, because Nature’s imagination is richer than ours. 

Freeman Dyson44 

Having established the need to explore the inherent tone colors of vowels, their individual 

spectral peaks, and the harmonics that compose these peaks, I will now present and demonstrate 

an analytical method based on five under-discussed or unlabeled, yet apprehensible principles of 

perception derived from studying the singing voice. These principles are currently absent in the 

voice science and vocal pedagogy literature. They are:  

1. Absolute spectral tone color 
2. The multiple missing fundamentals 
3. Local spectral coherence 
4. Weak tone color bridging 
5. The obvious true fundamental  

 
Together, these principles form a conceptual framework that chips away at the model of the 

spectral envelope of speech as an event horizon beyond which no meaningful understanding of 

vowel timbre may be extracted. I caution that while this framework encourages one to become 

                                                 

44 Freeman Dyson, The Scientist as Rebel (New York: New York Review of Books, 1995), 33, found in Robert 
Cogan, Music Seen, Music Heard: a picture book of musical design (Cambridge: PCI, 1998), 6. 
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aware of aspects of tone color that I believe to be objectively present in a singer’s sound, that 

such detailed listening is neither obligatory nor necessarily common. The value of this 

framework likely lies in the objective descriptive language it may bring to those who teach and 

study the singing voice, an instrument that produces a sound that may be perceived in a variety 

of ways based on both musical context and the focus of the listener’s attention. While this is not 

the only way to perceive the singing voice, it is both helpful and consistent with less detailed 

frameworks.  

This approach runs counter to the prevailing implementation of acoustic (formant) theory 

in voice science and vocal pedagogy texts, which engages vowels at the level of the totality of 

the spectral envelope. Donald Miller (2008) writes, 

…consider the… [vocal tract resonance] frequencies of the [i] sung on the pitch 
A4… The quality of the vowel is unremarkable perceptually, yet the first… [vocal 
tract resonance], which dominates in the sound through the strong first harmonic, 
is about 50% higher than the typical speech value.45 
 

Although everything Miller writes is correct, it misses a deeper truth. Return to the [u]/[i] pair in 

Figure 13 (bottom) and recall that a single harmonic in the range of the pitch A4 (regardless of 

the vowel) sounds like [u]. Were it to truly dominate the spectrum, the vowel would change. 

Scott McCoy (2012) similarly explores issues surrounding the production of [i] ascending to the 

pitch D5, “…an octave higher than the typical first…[vocal tract resonance] of the vowel.”46 

McCoy offers a solution based on the idea that tracking the pitch of the lowest vocal tract 

resonance to match the first harmonic means moving through a series of vowels that, in speech, 

contain the necessaril y adjusted first resonance. Returning to Figure 2 (b), one might map those 

vowels in order of ascending first vocal tract resonance from either [i][I][e][ܭ][a] or 

                                                 

45 Donald Miller, Resonance in Singing (Princeton: Inside View Press, 2008), 25. 
46 Scott McCoy, Your Voice: An Inside View (Delaware: Inside View Press, 2012), 46. 
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[u][o][ɔ][a]. As pitch ascends higher than the frequency of the first vocal tract resonance 

of a vowel, move along these vowel paths to preserve the intensity boost gained by tuning the 

first vocal tract resonance close to the first harmonic. This makes a high degree of intuitive 

sense, and finds agreement with Berton Coffin’s Chromatic Vowel Chart, which is based on 

managing the pitch of the first vocal tract resonance as sung pitch rises or falls.47 However, 

Coffin and McCoy offer heuristic solutions. As pitch rises, I argue that the basic character of 

what is considered to be a vowel percept fundamentally changes. Our tonal models must 

similarly change.  

These special psychoacoustic principles of singing suggest a novel analytical method 

based on parsing the spectral envelope of a sung vowel into perceptually coherent segments.48 

Central to this proposition, I will define and demonstrate a perceptual scale of absolute spectral 

tone color (see below). While significantly informed by Cogan  (1998) and Winckel (1967), this 

scale is based on the absolute, rather than relative tone colors of simple sounds.49 

Absolute Spectral Tone Color 

Definition 

absolute spectral tone color: Any two or more simple sounds (e.g. a sine wave, single harmonic 

of a complex tone, or narrowly notch filtered band of noise) of identical frequency, 

regardless of their sources, will produce an identical tone color percept independent of 

other spectral fluctuations considered aspects of timbre. If these simple sounds are 

                                                 

47 See Berton Coffin, Coffin’s Sounds of Singing (Lanham: Scarecrow Press, 1987), and Overtones of Bel Canto 
(Metuchen: Scarecrow Press, 1980). 
48 Again, here the term segment means a notch-filtered band of frequencies that is a contiguous portion of a sound’s 
total spectral envelope. 
49 See Robert Cogan, Music Seen, Music Heard: a picture book of musical design. (Cambridge: Publication Contact 
International, 1998), 110, for a history of this line of thought, and Fritz Winckel, Music, Sound and Sensation: A 
Modern Exposition, trans. by Thomas Binkley (New York: Dover, 1967), 14, for additional information. 
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located within a complex sound, their inherent absolute spectral tone color is never lost or 

changed, only expressed or masked. These tone colors may be placed on a continuum, 

and bear a meaningful similarity to several vowels. 

Discussion 

If one describes the tone color of simple sounds along a continuum of brightness (as 

Plomp (1966) suggests is accepted in psychoacoustics),50 the principle of absolute spectral tone 

color requires that we label any two simple sounds of the same frequency with an identical 

brightness value. Similarly, if we adopt Cogan’s register-based system and divide timbre into 

grave, neutral, and acute regions, two simple sounds of the same frequency exhibit exactly the 

same quality of graveness, neutrality, or acuteness.51 It matters less that we use a specific scale 

than that we make the conceptual leap that there are absolute values along the continuum. In 

speech, the nuanced differences between near similar absolute spectral tone color values 

(reflected in the ranges of spectral peaks possible for the same vowel over a population of 

speakers)52 obviate the need for fine gradations. Driven by questions specific to the higher pitch 

ranges inhabited by singers, the scale I propose here goes into greater detail and makes more 

specific claims than previous efforts. See Figure 15 for my scale based on the closest vowel-like 

quality and further tested while exploring the principles of local spectral coherence and weak 

tone color bridging. I must emphasize that these simple sounds are only similar to the defining 

quality of the chosen vowel; they are vowel-like. A vowel is a complex combination of many 

tone colors. Simple sounds, by definition, are not capable of fully representing the vowels they 

may play a strong role in defining. Additionally, though ranges of simple sounds elicit a similar 

                                                 

50 Plomp, Experiments, 132. 
51 Cogan, Music Seen Music Heard, 110. 
52 Gordon E. Peterson and Harold L. Barney, “Control Methods Used in a Study of the Vowels,” Journal of the 
Acoustical Society of America 24/175 (1952): 175-184, here 182.  
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vowel-like percept, even the tone color within a single vowel-like range lies on a continuous 

spectrum. Thus the tone color at the border between two different ranges may be perceptually 

fuzzy and exhibit qualities of both, much like the borders between spectral colors in a rainbow. 

The shorthand I use is the tilde ‘~’ plus the letter corresponding to the IPA symbol for the 

appropriate vowel. For example, a simple sound with a frequency of the pitch D4 is ~u. This 

means it is like the defining tone color of [u].53 

I also acknowledge two biases that permeate this work. The first is anthropomorphic in 

that I assign values preferentially based on the way that humans voice sound. Meaningful 

variations of tone color certainly exist below the frequency range I have labeled ~u and above 

the range labeled ~bright i. For physiological reasons, the human voice does not create strong 

spectral peaks below and above those ranges, so less perceptual awareness of variation exists for 

those tone colors. I am sure that subtle gradations exist within ~u and ~bright i that are simply 

irrelevant to both this inquiry, and also human experience more generally. The second is my bias 

toward the sounds of English, which certainly informs the order in which I have attempted to 

study vowels. My use of IPA, that groups sounds common to many languages, hopefully 

alleviates most of this. Even if a non-English speaker prefers slightly different borders for these 

IPA symbols, I am confident that they will consistently do so.  

The vowel-like tone colors presented in Figure 15 likely represent a class of vowels (that 

I tentatively term ‘spectral vowels’) characterized by a strong peak in a dominant tone color. 

Notably absent are some common English vowels such as [ʌ] (this and other variations of /ə/ 

appear to arise when multiple tone colors occur simultaneously at more subdued amplitudes than 

                                                 

53 I hope linguists will accept the visually simpler language of ~u rather than ~[u]. I am hesitant to use the IPA 
brackets in this context for fear of implying that ~u expresses something more than the most narrowly vowel-
defining portion of the full spectrum of [u].  
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found in the spectral vowels––this allows the neutral background harmonics to come closer to 

the foreground) and [ܮ], and common German and French vowels like [y], [Y], [ø], and [œ] (that 

appear to arise when the third vocal tract resonance lowers to give a boost to—and effectively 

widen the area of effect of—the second spectral peak). Also missing are continuants (sustained, 

voiced consonants like [l], [m], [n], and [ŋ] (like “sing”)), sounds characterized almost 

exclusively by the buzzy sound of what would be background harmonics in a true vowel. Further 

research is warranted.  

The Multiple Missing Fundamentals 

Definition 

the multiple missing fundamentals: Provided it contains sufficient harmonics to trigger the 

missing fundamental phenomenon, each spectral peak of a sung vowel gives rise to a 

separate missing fundamental characterized by the absolute spectral tone colors of its 

constituent harmonics. Therefore, multiple, separately tone-colored missing fundamentals 

may coexist with the true fundamental in the perceptual space of the pitch. 

Discussion 

The missing fundamental phenomenon has been well documented since before 

Helmholtz, who called them differential tones.54 A listener will hear the pitch of a complex 

periodic wave stripped of its first harmonic, the only harmonic with the actual frequency of the 

pitch (see Figure 16 (top)). This is, in most cases, a purely cognitive experience; the actual 

fundamental does not exist in the sound wave. This is such a dependable phenomenon that the 

analog telephone system was designed to transmit no information below about 300Hz (around 

                                                 

54 Hermann L. F. Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music, Fourth 
edition(1877), translated by Alexander J. Ellis (New York: Longmans, Green, and Co., 1912), 153. 



Howell: Parsing the Spectral Envelope 33 

E♭4), well above the speaking pitch for most males and some females. Indeed, very few 

harmonics from a periodic wave are needed to elicit this phenomenon, provided they are 

contiguous and from the same harmonic series (see Video Example 3.1), though the fewer the 

number of harmonics, and the higher within the series they fall, the weaker the missing 

fundamental. Citing Houtsma and Smurzynski (1990), Plomp (2002) declares that: 

…the pitch problem can be considered as settled. That is, the pitch of tones 
occurring in music and speech is primarily determined by the lower harmonics 
resolved by the ear …[the lowest eight harmonics according to Norman-Haignere, 
et al (2013)]. The periodicity of the unresolved higher harmonics may also 
contribute, but to a lesser extent.55 
 

The lowest eight harmonics span a pitch range of three octaves. Thus below the pitch C2, all 

eight fall exclusively within the ~u range; however, within the usable pitch range of most 

singers, these resolvable harmonics cover a wide range of absolute spectral tone colors. 

As the fundamental has a fixed absolute spectral tone color based on frequency, the pitch 

of almost every possible vowel is actually an aggregate of that true fundamental and a group of 

distinctly tone-colored missing fundamentals. The sample in Figure 16 (top) ought not be 

thought of as the fundamental plus ‘everything else’ that remains when the fundamental is 

removed. The ‘everything else’ is comprised of multiple sub units, each capable of producing a 

missing fundamental with a unique, immutable tone color. This is profoundly strange, and forces 

one to reconsider whether a spectrogram conveys information in a perceptually relevant manner 

at all. Figure 16 (bottom) is a schematic that illustrates this perceptual phenomenon.  

According to D. Robert Ladd, et all (2013), while recent experimental evidence suggests 

that only a portion of the population actually hears the missing fundamental (implying that those 

who do not instead hear spectrally––they hear the frequencies of the actual harmonics present 

                                                 

55 Plomp, The Intelligent Ear, 28. 
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instead), methodological issues may have contributed to such conclusions.56 Ladd, et al suggest 

instead that most people are able to switch between these listening modes depending on a variety 

of circumstances, which better aligns with my empirical evidence: most listeners notice the 

missing fundamental when you teach them what to listen for.57 The research reviewed by Ladd 

does not appear to address the question of how the tone color of a cluster of harmonics does or 

does not change when that cluster is reintegrated into the complete periodic wave.  

I argue that the missing fundamental occurs separately for each spectral peak of the 

voice, provided that peak contains sufficient harmonics to trigger such a percept (usually a 

minimum of two, but this is somewhat dependent on frequency range and position within the 

harmonic series). Additionally, contiguous attenuated harmonics (appearing as troughs in the 

spectral envelope) also contribute a neutral, buzzing missing fundamental. The important 

concept to consider is that each of these missing fundamentals has a tone color related to the 

absolute spectral tone colors of its constituent harmonics (e.g. a spectral peak in the ~u absolute 

spectral tone color frequency range will never express the inherent tone color of ~i).58 This 

suggests that multiple missing fundamentals, separable not by their pitch, but rather by their tone 

color, coexist in the perceptual space of a vowel’s fundamental pitch. This is another way to say 

that the pitch itself has multiple aspects, perceptually separable by tone color. One of the dangers 

of using spectrographic models is the potential to assume that the intensity of the displayed first 

harmonic is the same as the intensity of the perceived pitch, and that independently perceptible 

harmonics are represented by the intensity of the displayed higher harmonics. For the most part, 

                                                 

56 D. Robert Ladd, et al, “Patterns of individual differences in the perception of missing-fundamental tones,” Journal 
of Experimental Psychology: Human Perception and Performance 39/5 (Oct 2013): 1386-1397, here 1386. 
57 For a review of previous missing fundamental studies, and new research suggesting the fluidity of missing 
fundamental versus spectral hearing modes, see Ladd, et al, “Patterns of individual differences in the perception of 
missing-fundamental tones.”  
58 This will be further explored through the principles of local spectral coherence and weak tone color bridging. 
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the harmonics of a voice displayed on a spectrogram are literally aspects of the pitch. In some 

cases, one may also notice a harmonic as a distinctly heard simple sound separate from the pitch. 

Overtone singers cultivate this skill. Vocal registration and vowel modification may be 

characterized by both the manner in which these missing fundamentals come to dominate our 

attention for a given pitch/vowel combination, and also the way in which they change, combine, 

or disappear entirely as pitch changes and the harmonic complexity of each spectral peak is 

altered.  

Local Spectral Coherence 

Definition 

local spectral coherence: A given spectral peak of a periodic sound wave may contain harmonics 

that represent more than one absolute spectral tone color range, but the spectral peak will 

come to be defined by the absolute spectral tone color of the amplitude-weighted average 

frequency (spectral centroid) of its harmonic(s). In this manner, each of the multiple 

missing fundamentals contributes a single sub-tone color to the vowel’s composite tone 

color. 

Discussion 

Closely linked to the multiple missing fundamentals, local spectral coherence helps to 

explain the perceptual process connecting the absolute spectral tone colors of harmonics and the 

tone color(s) of a complex sound. E.g. if we consider harmonics 2-4 of the pitch A3 (frequencies 

equal to the fundamentals of the pitches A4, E5, and A5) within this framework, they will elicit 

the respective absolute spectral tone colors of ~u, ~o, and ~ɔ in isolation. The amplitudes of 

these three harmonics may be individually manipulated to produce a missing fundamental at A3 

that sounds similar to each of these three tone colors (see Figure 17). I label this phenomenon 
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with a ‘less than’ sign (<) followed by the IPA symbol of the absolute spectral tone color 

corresponding to the amplitude-weighted average frequency of the group of harmonics.59 These 

tone colors are still less than the total tone color of the vowels they emulate, but more complex 

than a simple sound. Again, these < percepts exist primarily as missing fundamentals located in 

the perceptual space of the pitch. 

One may not simply isolate any set of contiguous harmonics and expect to find the tone 

color of that spectral segment strongly present in the overall vowel percept; a few conditions 

appear vital. First, with the exception of the first harmonic, there must be a sufficient number of 

harmonics preset to elicit a missing fundamental. If not, the segment boundaries must expand; at 

times this means encompassing more than one absolute spectral tone color range. Second, the 

slope of the segment must generally be bound or bordered by harmonics of lower intensity than 

the segment’s peak. This means that at times the first and second spectral peaks of a vowel like 

[a] will create separate spectral segments, each with its own < percept and missing fundamental. 

At other times, if there is no harmonic of lesser amplitude between them, and especially if each 

peak contains one or no harmonics, what would have been the first and second spectral peak at a 

lower pitch perceptually coheres into a single < percept. As mentioned above, this also means 

that a series of harmonics of relatively similar amplitudes will likely cohere into a single < 

percept, as is found in the buzz of the vocal fold source sound (see again Figure 1) or the 

background troughs of attenuated harmonics that lie between spectral peaks. 

                                                 

59 As with the use of the ~ to label absolute spectral tone color, I hope linguists will accept the visually simpler 
language of <u rather than <[u]. 
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The idea of local spectral coherence finds significant agreement with the “subband 

spectral centroid based features,” explored by Phu Ngoc Le, et al (2011).60 Their approach 

measures the average amplitude and frequency center for a band of harmonics, though they do 

not characterize tone color, or dynamically adjust their bands to follow the spectral peaks as 

vowels change. One may imagine that in Figure 17, parts (b), (c), and (d), the tone color of the 

percept of the three harmonics tips toward the absolute spectral tone color of the highest 

amplitude harmonic because the amplitude-weighted average frequency of those three harmonics 

skews toward the highest amplitude harmonic. And this is true. However, while those same three 

harmonics in Figure 17 (a) form a different envelope shape (a subtle decreasing slope from 

harmonic 2 through 4) than in Figure 17 (c), they also sound <o; albeit a different quality than 

found in Figure 17 (c), but <o nonetheless. Again though, in both Figure 17 (a) and (c) the 

average central frequency based on the amplitude of each harmonic falls toward the center, 

which here (probably around the harmonic at E5) has the absolute spectral tone color ~o.61 In 

this way, slightly differently-shaped spectral segment slopes may elicit a similar < percept.  

Other recent research also supports the idea that each spectral peak of a vowel contributes 

a different tone color. Jennifer Bizley, et al (2013), study vowel discrimination in a population of 

trained ferrets. Based on the idea that,  

…human listeners rely on the relationship between…[spectral peak] frequencies 
in order to correctly identify vowels, …[s]ince the ferrets in this study were 
required to discriminate between two vowels only, they could potentially base 

                                                 

60 Phu Ngoc Le, et al, “Investigation of spectral centroid features for cognitive load classification,” Speech 
Communication 53/4 (April 2011): 540-51, here 542. 
61 Current experimental data suggest that higher frequency harmonics within a slope have a subtly disproportionate 
effect on the < percept at the same amplitude, though this is not uniformly true. In certain ranges, this may be 
consistent with the effect of the equal loudness curve, a measure of the ear’s sensitivity based on frequency range. 
Further research is warranted. 
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their judgments on the frequency of either the first or second…[spectral peak] or a 
combination of the two.62 (emphasis added) 
 

However, the ferrets responded in an unexpected way: 

While we cannot be sure what cues the ferrets used when discriminating the full 
four-…[spectral peak] vowels, these observations suggest that the ferrets can 
identify these two vowels using just the location of the first… [spectral peak] of 
/u/ and the second… [spectral peak] of /63.../ܭ 
 

As discussed in Figure 13, the first spectral peak (Bizley uses the term formant) of [u] is the 

segment of the spectrum with the tone color that characterizes [u] (<u). It is logical that her 

ferrets were able to identify [u] based on that peak, as the second spectral peak sounds <ɔ. [ܭ], 

however, relies heavily on the tone color of the second spectral peak, which the ferrets needed 

for proper identification. Figure 19 explores this idea in greater detail. The isolated vowel [ܭ] is 

followed by the vowel in the context of the words bed, fed, said, and red. When only the second 

spectral peak is presented, the [ܭ] sounds like [ܭ], albeit missing other elements of tone color 

usually present. The words sound similarly impoverished, but are understandable. When only the 

first spectral peak is presented, the isolated [ܭ] vowel sounds <o. Again, impoverished, but 

clearly not [ܭ]. The words are still understandable and sound like [o] and a muted [ܭ] 

simultaneously. This is the strange effect of coarticulation layered onto the perception of tone 

color. Wonderfully, the ferrets were able to recognize the intrinsic [ܭ]-like tone color (<ܭ) of the 

second spectral peak and the not [ɛ]  quality (instead <o) of the first spectral peak.64 

                                                 

62 ɛennifer Bizley, ɜerry M. M. Walker, Andrew ɛ. ɜing, and ɛan W. H. Schnupp, “Spectral timbre perception in 
ferrets: Discrimination of artificial vowels under different listening conditions,” Journal of the Acoustical Society of 
America 33/1, (January 2013): 365-76, here 368. In this quote, formant aligns with my use of spectral peaks. 
63 Bizley, 370. 
64 Dr. Bizley was generous enough to share her “single spectral peak” audio samples, synthesized in Matlab, with 
the author. They are a full spectrum of harmonics, filtered through a single virtual vocal tract resonance. In contrast 
to my examples here, her samples also featured low amplitude harmonics above and below her single spectral peaks. 
The effect, however, is a sound dominated by the tone color of the single peak. 
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The principle of local spectral coherence may be used to explore the frequency 

boundaries of each range of absolute spectral tone color. By synthesizing a segment of the 

spectrum, one may shape it to elicit the < percept of the spectral centroid (see Video Example 

3.2), and then change the < tone color by reshaping the spectrum. As the fundamental of the 

series of harmonics rises, one may notice the < percept change as the amplitude-weighted 

average frequency (spectral centroid) crosses absolute spectral tone color boundaries. 

Finally, local spectral coherence offers a way to explain the harmonic complexity 

(literally the number of harmonics) of one spectral peak versus another. As pitch rises, the 

number of harmonics occupying a given absolute spectral tone color band necessarily diminish. 

This means that the character of the missing fundamental triggered by those harmonics 

simplifies. As pitch falls, not only do the number of harmonics in a given spectral peak increase, 

more of them fall into what is known as the critical band of hearing.65 This is a frequency band of 

about a minor third within which the ear cannot well resolve the individual frequencies of two 

simple sounds. All harmonics ascending from the fifth harmonic fall within the critical band of a 

neighbor. If multiple harmonics fall within a critical band, and especially if they are of near 

equally high amplitude, one perceives roughness, “the buzzing, rattling auditory sensation 

accompanying narrow harmonic intervals,”66 in the tone. All harmonics but the first five of a 

baritone’s A3 fall within the critical band of a neighbor. Depending on how intensely the 

baritone sings, there is much potential for complex and buzzy roughness. Contrast this with a 

soprano singing a high F6 (1396.9 Hz). Her first five harmonics reach to nearly 7,000 Hz, well 

                                                 

65 Johan Sundberg, The Science of the Singing Voice (Dekalb: Northern Illinois University Press, 1987), 108.  
66 See the abstract to Pantelis N. Vassilakis and  Roger A. ɜendall, “Psychoacoustic and cognitive aspects of 
auditory roughness: definitions, models, and applications,” Proc. SPIE 7527, Human Vision and Electronic Imaging 
XV, 75270O (February 17, 2010): doi:10.1117/12.845457. 
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above the frequency range generally energized by classical female voices. She will likely have 

no rough, buzzy complexity at all. These local spectral segments are characterized by at least 

three important parameters: < tone color (the absolute spectral tone color of the average 

amplitude-weighted frequency), complexity (number of harmonics), and roughness (number of 

harmonics within a critical band of its neighbors and their relative amplitudes). As alluded to 

above, the resolvability of the harmonics must also play a role in characterizing the sound of a 

spectral peak, though further research is warranted.  

Weak Tone Color Bridging 

Definition 

weak tone color bridging: According to the principle of absolute spectral tone color, certain 

vowel sounds ought be impossible if the pitch places the first and second harmonics 

(separated by an octave) or the second and third harmonics (separated by a fifth) below 

and above the absolute spectral tone color range of the target vowel (see Figure 15 for 

these ranges of absolute spectral tone color). A conceptual extension of local spectral 

coherence, which suggests a spectral segment will have the tone color of its amplitude-

weighted central frequency (spectral centroid), one may perceive the bridged tone color 

(where no harmonic is present), but it will be qualitatively weaker in comparison to a 

pitch/vowel combination that places a harmonic within the bridged tone color’s 

frequency range (see Video Example 3.4).  

Discussion 

Assuming equal amplitude, the spectral tone color center (spectral centroid) of the first 

and second harmonics is roughly a fifth above the first harmonic. The spectral tone color center 

of the second and third harmonics is roughly a major third above the second harmonic. E.g. if the 
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first harmonic is A4 (440 Hz), the second harmonic is A5 (880 Hz), and both harmonics are of 

equal amplitude, the spectral tone color center will be E5 (660 Hz). In this example, A4 sounds 

~u, A5 sounds ~ɔ, and E5’s tone color (~o), though not present, will be weakly expressed. 

Increasing the amplitude of the upper or lower harmonic will shift the spectral centroid toward 

its absolute spectral tone color instead (either ~u or ~ɔ). In theory this principle applies to pairs 

of higher harmonics, but as the intervals become smaller, so do the odds of bridging an entire 

absolute spectral tone color.67 A weakly bridged tone color will be notated with a superscript or 

parenthetical “wb,” e.g. <awb or <a(wb). 

The Obvious True Fundamental 

Definition 

the obvious true fundamental: Under certain circumstances, the first harmonic (the only 

harmonic with the frequency of the pitch) may be easily perceived as distinct in tone 

color from the rest of the spectrum. 

Discussion 

The first harmonic occupies a unique place within the harmonic series. It is the only 

harmonic with the frequency of the pitch, it will almost never fall within the critical band of 

another harmonic (thus it will almost never be associated with roughness),68 and ascending from 

approximately C♯4, it will always be the only harmonic within its absolute spectral tone color 

range. Though at low pitches it is often grouped into the <u percept of its local spectral segment, 

these unique characteristics mean that the first harmonic may be simultaneously perceived as a 

                                                 

67 This may help to explain Bozeman’s “pitch of turning,” a passive vowel modification that takes place as the 
second harmonic (and to a lesser degree higher harmonics as well) crosses the first formant. What was a strong first 
spectral peak becomes a weakly bridged tone color. For more, see Bozeman, Practical Vocal Acoustics, 26. 
68 Below about 100 Hz (approximately G2) the critical band is wider than the frequency difference of the first and 
second harmonics. Above that pitch, the first harmonic will never fall into the critical band of another harmonic. See 
Sundberg, The Science of the Singing Voice, 108 for a discussion of the critical band of hearing.  
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part of and distinct from the total percept of the spectrum. No other harmonic exhibits this 

quality so dependably.  

Because classical female singers (and countertenors) often shape their vocal tract to align 

their lowest vocal tract resonance to couple with the first harmonic as pitch ascends (a resonance 

strategy called whoop or hoot) this harmonic is often significantly louder than the rest of the 

spectrum.69 As Richard Miller describes, “…among prominent female artists, when they are 

singing in [the] upper range, the first… [spectral peak] and the fundamental are often enhanced 

and exhibit increased acoustic energy in the lower portion of the spectrum.”70 This causes a 

portion of the total vowel percept to be significantly defined not by the < tone colors of several 

spectral segments simultaneously (as found in the lower pitch range of the voice), but rather by 

the simple absolute spectral tone color of the obvious true fundamental. Additionally, on and 

above the treble staff, the vibrato-associated amplitude fluctuations often found in higher 

harmonics appear to be less present in the first harmonic. This means that certain technical 

competencies (such as rate and extent of vibrato, and intonation) may be best aurally assessed via 

the obvious true fundamental. Further research is warranted. 

As pitch rises, the absolute spectral tone color of the first harmonic will predictably pass 

through several tone color ranges (see again Figure 15). The common range of the female and 

countertenor classical singing voice encompasses the absolute spectral tone colors of ~u, ~o, ~ɔ, 

~ɑ, and (at the upper extreme) ~a. Traditional male voice types sing with their fundamental 

almost exclusively in the ~u range. This means that as pitch rises in a voice trained to whoop, the 

vowel percept will come to be defined in part by the absolute spectral tone color of the first 

                                                 

69 See Bozeman, Practical Vocal Acoustics, 23, and Donald Miller, Resonance in Singing, 52. 
70 Miller, Richard. Solutions for Singers: Tools for Performers and Teachers. Oxford: Oxford University Press, 
2004, 75. 
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harmonic, with significant tone color changes in the fundamental from ~u to ~o around C5/D5, 

~o to ~ɔ around F♯5/G5, ~ɔ to ~ɑ around B5/C♯6, and to ~a by F♯6. These changes in tone color 

align with the transitions found in a well-balanced classical female singing voice; since the 

absolute spectral tone color of the first harmonic at the same pitch produced by two different 

singers will be the same, this explains the near uniform aspects of good registration across all 

singers. Richard Miller (2000) places a soprano’s acoustic registration transitions at 

approximately C♯5, F♯5, and C♯6.71 Miller gives mezzo sopranos and contraltos slightly lower 

pitch points, implying that some aspect of this registration is physiological; i.e. for an equal 

amount of physical ease, the pitch range of the first vocal tract resonance may lie lower for lower 

voice types, thus making specific resonance tuning transitions easier at slightly lower pitches. 

However, the similarity of these pitches to the obligatory shifts in the absolute spectral tone color 

of the first harmonic (independent of vowel) may mean that these registration points have a 

significant psychoacoustic component as well. This is to say that the expectation of how a vowel 

percept will change as pitch rises may also need to align with perceptual, rather than strictly 

physical limitations. 

  

                                                 

71 Richard Miller, Training Soprano Voices (New York: Oxford University Press, 2000), 117. 
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4. Analysis 

...let us explore freely in this vast realm, not uncritically, but with an open eye and 
ear for the unexpected connection, the so far unrecognized pattern, the previously 
unfelt flash of sensation and expression. 

Robert Cogan72 

 Models of vowels exclude information by design, presenting a narrow view of just a few 

of the many measurable parameters. I believe meaningful revisions to such models must capture 

how one perceives sound, not simply display factual information about a sound wave or vocal 

tract shape. In the short term, I encourage those in the singing community who use our current 

models to add the scale of absolute spectral tone color to the appropriate frequency axes of the 

models in Figure 2.73 This will quickly allow students to notice that the first spectral peak has a 

dependable < percept that is in most cases different from the primary tone color of the vowel; [u] 

is a notable exception. See Figure 20 for an example of such a revision that helps to explain the 

change in tone color of the soprano voice above the pitch G5. Note that Vennard’s chart 

indicates that above the pitch G5, only those vowels that fall outside of (toward the upper right 

                                                 

72 Robert Cogan, The Sounds of Song: a picture book of music for voice (Cambridge: PCI, 1999), 12. 
73 Perhaps someone will offer a three dimensional revision of the vowel quadrilateral (Figure 3 (e)) to indicate the 
anticipated vowel for the same vocal tract shape as pitch rises. 
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corner of the chart) the thick, shaded bands may be sung. Consider though, that in this range a 

soprano’s first harmonic may be the highest amplitude part of the spectrum. This means that for 

a given pitch in this range, the vocal tract shape of the vowel on the chart would be strongly 

characterized by the absolute spectral tone color of the value indicated on the horizontal axis 

(that of the first harmonic).  

What this simple addition misses, however, is a method to display the complexity of 

(number of harmonics constituting) each spectral peak and the relationships between the several 

spectral peaks (the internal relationships of tone color within a vowel). For example, this revised 

chart (see again Figure 20) suggests that the neutral [ʌ] vowel (like “up”) is a combination of a 

first spectral peak that sounds either <u or <o and a second that sounds <ɑ. Without a third axis 

of amplitude, this fails to elegantly capture the difference between [ɑ] and [ʌ], despite the 

apparent qualities they share (notably the frequency of the second spectral peak). [ɑ] is 

meaningfully characterized as a strong first spectral peak that sounds <ɔ and a strong second 

peak that sounds <ɑ (and defines the vowel). One may imagine these tone colors as the depth and 

clarity of [ɑ] respectively.74 [ʌ] arises when lower intensity <u/<o and <ɑ peaks sound 

simultaneously. As Bozeman (2013) suggests, as two vocal tract resonances approach one 

another in frequency they “mutually reinforce” one another, raising the amplitudes of both 

resulting spectral peaks.75 As the first vocal tract resonance of [ɑ] lowers (relative to the second 

resonance) to create [ʌ], both spectral peaks (especially the second) diminish in amplitude, and 

the character of the overall percept becomes more neutral. So our model must also accommodate 

that these vowel-like building blocks of tone color sometimes combine in a manner that doesn’t 

                                                 

74 This aligns well with Bozeman’s characterization of the first and second spectral peaks of vowels, Bozeman, 
Practical Vocal Acoustics, 13-16. 
75 Bozeman, Practical Vocal Acoustics, 16. 
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strongly express the < tone color of either the first or second spectral peak. Depending on the 

pitch and vowel, each of these < percepts may be rich and complex (many harmonics in each 

spectral peak), simple and pure (few or one harmonic), or somewhere between. Importantly, as 

pitch and vowel change, each spectral peak’s < percept may change qualities independent of the 

remaining spectral peaks. In the analyses that follow, I must direct attention to an obvious blind 

spot within my own models: the use of long term average spectrums. While they limit one’s 

awareness of subtle spectro-temporal shifts present in the voice (indeed, something as ubiquitous 

as vibrato ought be understood in terms of the subtle change in each spectral peak’s < percept as 

pitch rises and falls and the relative amplitude of each harmonic non-uniformly changes), I hope 

to consider this simplification a starting point for exploring deeper issues, rather than a 

limitation. 

Parsing the Spectral Envelope: A Model for Aurally Locating Vocal Tone Colors 

To begin to explore a logical visual language that captures the principles introduced in 

chapter 3, first consider an analysis of a single [ɑ] sung by a baritone on the pitches B2 and B3, 

and a synthesized B4 based on the same vocal tract resonances. In Figure 21 (a), (b), and (e), 

notice that the complexity of (number of harmonics present within the same frequency range) the 

entire spectral envelope decreases as pitch rises. Almost the entirety of the first two spectral 

peaks of the B2 (c) fall within the critical band (indicated by the gray box), lending a buzzy 

quality to the segment of the spectrum that sounds most like the vowel. At the pitch B3 (d), most 

of the remaining harmonics in this range fall outside of the critical band, further reducing the 

complexity. An octave higher at B4 (e), the (synthesized) sample has only three harmonics 

remaining in the entire frequency range occupied by two uniquely tone colored, buzzy spectral 

peaks at the pitch B2. Instead of a missing fundamental from each of two spectral peaks in this 
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range, one finds only the purity of the obvious true fundamental plus a single potential missing 

fundamental from the second and third harmonics. 

The way in which this vowel passively modifies as pitch rises cannot adequately be 

characterized as a shift from one vowel to another.76 The perceptual differences between these 

three samples have to do with the complexity and character of the spectral peaks themselves, not 

simply their frequency centers or the associated vocal tract shape. The vocal tract resonances that 

produce an [ɑ] at B2 produce something qualitatively different at B4. One could argue that the 

vowel percept of B4 (and certainly at even higher pitches) falls short of presenting the basic 

elements of a speech level vowel: a warm quality of the first spectral peak, a clear quality of the 

second spectral peak, and (at least for spoken pitches below about C5) a warm ~u or <u below, 

and a bright <i (that becomes the singer’s formant in singing) above the tone colors of the vowel. 

Given that a sung vowel at a high pitch loses many of these basic qualities, perhaps such singing 

should be objectively analyzed based on its inherent tone colors rather than in the context of 

those expected from speech. Since much of classical voice training aims to balance registration 

such that the singer may negotiate a large range of pitches with a consistently low level of effort, 

a discussion of the way in which these basic elements change, simplify, and disappear gradually 

as pitch ascends is both relevant and helpful. To visualize this, first see Figure 22. This is the B2 

pitch from Figure 21 as a traditional graph of the spectrum (top) and broken into individual 

spectral peaks with separate < percepts (bottom). Each one of these spectral peak segments 

creates a missing fundamental that adds its < tone color to the aggregate tone color of the pitch. 

The segment of harmonics labeled background sounds buzzy and indistinct, like the unfiltered 

sound of the vocal folds. 

                                                 

76 As discussed above, passive vowel modification refers to shifts in the vowel that result from changing the sung 
pitch without changing the frequencies of the vocal tract resonances. 
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Figure 23 aligns the B2, B3, and B4 from Figure 21 as broken spectrum graphs. Follow 

any one spectral peak from low to high pitch and notice how it simplifies. The <u present in the 

B2, for example, reduces to a ~u (single harmonic) at the B4. The buzzy background harmonics 

in the B2 shrink in the B3 and disappear entirely in the B4. The <o and <ɑ present as complex 

separate peaks (four and five harmonics respectively) predominantly within the critical band 

reduce in complexity as pitch rises until they merge into one <ɑ completely outside of the critical 

band.  

I would like to further clarify this model by discarding the dimension of frequency, a 

radical departure from one of the core assumptions inherent to spectrographic models: that the 

frequency of each harmonic is relevant to our perception of the vowel. It is, of course, but in 

context I believe one generally perceives the tone color, not the frequency of that harmonic.77 If 

harmonics of the voice are primarily experienced as tone color aspects of the pitch (overtone 

singing is a notable exception), our model should compress these various ~, <, and <wb percepts 

into the pitch space of the fundamental while representing aspects of their complexity, tone 

color, and amplitude. If one seeks to derive information relevant to resonant singing technique 

from the qualities present in a singer’s vowels, the pitch is where to aurally locate that 

information. 

Figure 24 demonstrates the ~ and < percepts from Figure 23 aligned on a three 

dimensional graph. The vertical axis is amplitude, horizontal axis the harmonic complexity, and 

depth axis is tone color (which becomes shallower for the B4). Note that this model captures not 

only the number of tone color areas present in each sample (depth axis), but also the harmonic 

                                                 

77 Yes, depending on style, pitch, and registration higher harmonics may rise to the listener’s awareness; however, 
within the classical singing idiom, I generally argue that this is in addition to, rather than instead of the role of the 
harmonic as a part of a missing fundamental. 
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complexity of each spectral segment (horizontal axis), the relative prominence of each segment 

(vertical axis), and the differences in tone color grouping. For example, the fundamental 

becomes a perceptually separable simple sound with an absolute spectral tone color between the 

B2 and B3 (though because of its role in the spectral slope, it also coheres on B3 with the <o 

segment), and the <o segment is absorbed into the <ɑ segment between the B3 and B4.  

Figure 25 graphs the parsed spectra of a baritone’s [ɑ] and [i] on the same pitch (B2). 

The depth of tone color for [i] is less than [ɑ], the harmonic complexity of the second and third 

spectral peaks of [i] is significantly wider than for any one peak of [ɑ] (requiring additional data 

points along the horizontal axis), the background harmonics in [i] are both more complex and of 

lower amplitude than those in [ɑ]. Finally, the <u percept, a warm tone color beneath the more 

relevant <o and <ɑ in [ɑ] is a higher amplitude, more complex spectral peak in [i].  

These two vowels allow one to consider the way in which the local spectral coherence 

effect perceptually glues harmonics (which have absolute spectral tone colors) together into < 

percepts. The <u segment of [ɑ] in Figure 25 contains three harmonics (with frequencies 

corresponding to the fundamentals of the pitches B2, B3, and F♯4), each within the absolute 

spectral tone color of ~u. The fourth harmonic (B4) lies on the ~u side of the transition to ~o. 

The fifth harmonic (D♯5) sounds ~o. The fourth and fifth harmonics are pulled into the <o of [ɑ], 

but the <u of [i]. They retain their absolute spectral tone colors in both vowels, but function as a 

part of two different < tone colors because of the shapes of their local spectral peaks. These are 

differences that can be heard when one draws his or her attention to them. The parsed spectrum 

graphs invite us to locate these < percepts as aspects of pitch, separable by tone color, amplitude, 

and complexity. 
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Methodologically, defining the spectral segment boundaries in the previous figures 

requires some trial and error. The process involves isolating the central frequencies of a peak and 

adding harmonics individually on either side until either an additional < percept emerges, or the 

addition of further harmonics ceases to change the < tone color of the segment (likely relegating 

those harmonics to a background segment). Returning to the concept of the subband spectral 

centroid, each time a high enough amplitude harmonic is added in this manner, the spectral 

centroid of that segment shifts. For example, in Figure 24 (bottom) the highest amplitude peak 

of the <i actually lies in the ~e range. However, the high amplitude harmonics to the right of that 

peak fall into the ~i range, raising the spectral centroid of that segment to <i, despite the strong 

~e elements. This raises interesting questions about the utility of selecting the highest amplitude 

frequency of a spectral peak to represent a vowel on an x/y plot graph. Yet to be determined, and 

as far as I can tell currently absent from the psychoacoustics literature, are exact measurements 

for the threshold characteristics of these segment borders. 

The Classical Female (and Countertenor) Voice above the Treble Staff 

 A similar graphical analysis of the classical female (and arguably countertenor) singing 

voice on and above the treble staff is interesting not for its complexity, but rather for its 

simplicity. Gone are the large number of harmonically complex spectral peaks found in the 

previous figures. Instead, one perceives a sound increasingly defined by the obvious true 

fundamental and additionally colored by a single (or perhaps two) contiguous spectral 

segment(s) spanning multiple absolute spectral tone color regions, likely devoid of vowel 

defining harmonics within the critical band. Depending on the singer and tonal model (bright and 

edgy, warm, muffled, etc…), the total percept may even consist of just the obvious true 

fundamental and a single, indistinct background of higher frequency harmonics. This means that 



Howell: Parsing the Spectral Envelope 51 

the number of missing fundamentals comprising the pitch literally decreases, and those that 

remain have a diluted < percept increasingly characterized by the weak timbre bridging principle. 

Additionally, few truly resonant pitch and vowel combinations remain, especially for vowels 

with lower second spectral peaks (e.g. [u], [o], [ɔ], [ɑ], and [a]), necessitating active vocal tract 

modifications that result in a weakly-defined sound that likely fails, I would argue, to meet the 

threshold of complexity found in spoken vowels. Consider, for example, the resonant vowels 

available at the pitch G5. The first harmonic sounds ~ɔ, so [u] and [o] are not possible. The 

second harmonic already sounds ~æ or ܭ, so resonant versions of [ɑ], and [a] are not possible. 

Almost all vowels sung on this pitch will actually be dominated by the ~ tone color of the first 

harmonic, perhaps characterized by a weak, bridged tone color defined by the amplitude 

relationship of the first and second harmonics, and additionally colored by an indistinct cluster of 

higher harmonics. Through contextual phonetic clues, one may imply a wide range of vowels, 

but the singer’s tonal model must accommodate that the objectively producible sounds are rather 

limited. 

Consider the pitches F5, G5, and A♭5 from m. 35-36 of Renée Fleming’s (1997) 

recording of Mozart’s “Porgi amor” from Le Nozze di Figaro. Here Ms. Fleming choses a 

resonance strategy that aligns the first vocal tract resonance with the first harmonic (see Figure 

26), and brings the greatest intensity to the lower end of the spectrum, causing the absolute 

spectral tone color (F5=~o, G5=~ɔ, A♭5=~ɔ) of the first harmonic to dominate the overall 

percept. The remaining harmonics create a < percept that sounds like variations of <i. However, 

these harmonics span tone colors from ~æ/ܭ to bright ~i, lack intensity, and fall outside of the 

critical band. Essentially, these higher harmonics add a sheen to the ~o and ~ɔ that dominate the 

percept, without changing the quality of the obvious true fundamental. 
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When comparing Ms. Fleming’s performance to that of a heavier, brighter voice, such as 

Ms. Lisa Della Casa, the non-universality of Ms. Fleming’s approach comes into focus. In Ms. 

Fleming’s A♭5, the second harmonic is significantly quieter (on average about 30dB) than the 

fundamental. The spectral centroid of a segment consisting of these two harmonics at these 

amplitudes still falls near the ~ɔ range (just above the pitch Ab5). Consider this parsed spectrum 

graph (Figure 27) of Ms. Della Casa singing the same A♭5 from “Porgi amor.” While Ms. Della 

Casa’s second harmonic (on average only 20dB less than her first harmonic) does not change the 

~ɔ found in Ms. Fleming’s first harmonic to a weakly bridged <ɑwb percept (it would have to 

have been at a much higher amplitude to do this), compared to Ms. Fleming’s A♭5, Ms. Della 

Casa has both a stronger peak in the <i/bright <i range, and also a peak in an extremely bright 

range of ~i (here covering about 6-10kHz, the pitches G8 through D9, labeled “Ext Bright <i”). 

Notably, this peak falls within the critical band of hearing, and sounds as buzzy and rough as you 

might find in a baritone’s singer’s formant, albeit with an extremely bright <i tone color and 

some ambiguity of pitch. As Figure 27 shows, Ms. Fleming is not simply singing a different 

vowel, or singing the same vowel more quietly. Each singer presents a slightly different sound 

across the axes of complexity and tone color. These differences may arise from training, 

aesthetics, or each singer’s inherent capabilities. In this example, Ms. Fleming produces a 

simpler sound than Ms. Della Casa. As a result, different tone colors come to prominence.  

This analysis suggests that active vocal tract modifications above the treble staff do not 

substitute a workable vowel for a problematic one, and that a resonance strategy (like whoop) 

does not have a uniform sound; rather, as pitch ascends, a vocal tract shape that profitably 

matches vocal tract resonances and glottal source harmonics produces a small number of 

harmonics relative to speech, with obligatory and disparate absolute spectral tone colors. The 
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percept of the potential variations of these absolute spectral tone colors is significantly limited 

relative to speech (see again Figure 7 and consider the objective tone colors of the high-pitched 

bottom sample). Exploring this idea further, Figure 28 displays a soprano singing the pitches 

C5-C6 (which rise above the absolute spectral tone color range of ~u) first with a resonant vocal 

tract shape of her choice, and second with vocal tract strictly shaped like a dark [u], each 

harmonic exhibits the same absolute spectral tone color in each resonant/non-resonant pair, 

despite changing the vocal tract. What changes is the overall intensity of the spectrum, and the 

physical ease of production. This ease comes across in the sound as even/uneven vibrato and 

accurate/inaccurate intonation. Stripped of contextualizing consonants, from D5-C6 the second 

of each pair never actually sounds like [u], though it does contrast with the resonant version. This 

pitch range of the female singing voice is fascinating for this reason: the context effect becomes 

vital to vowel perception in exactly the range where consonants are most limited by the 

decreasing range of coarticulation of the available vocal tract shapes. Technical training of 

classical singers in this range becomes increasingly focused on setting tonal expectations such 

that the singer only attempts workable modifications. Another way to think about this is that 

voice teachers may better serve their students by suggesting that they make a pitch through a 

certain shape, and let go of the idea of a vowel entirely. Indeed, I suspect that in the higher 

female voice one does not infer the correct word in consonantal context despite the presence of 

the wrong vowel; rather, one infers the correct vowel because the sung sound is perceptually 

ambiguous at those pitches. Effectively, above the staff, vowel clarity disappears entirely 

because the simplicity of the percept is too distant from the timbral complexity of speech. 

Characterized by strong qualities of absolute spectral tone color, and weakly bridged tone colors, 

what remains is vague enough that multiple linguistic meanings may be overlaid.  
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The Classical Female (and Countertenor) Voice on the Treble Staff 

The female (and countertenor) voice on the treble staff presents a different set of issues as 

this range transitions from the complex qualities of speech to the dissolution of speech like 

vowels that occurs above the staff. As discussed in chapter 3, the principle of the obvious true 

fundamental suggests that beginning approximately with the pitch C♯4, the fundamental is the 

only harmonic with its absolute spectral tone color. The second harmonic, an octave higher, is at 

least one absolute spectral tone color range away. Yet for many vowels on the staff (with the 

possible exceptions of [u] and [o]), the fundamental remains an additional warm quality 

unnecessary for vowel identification. A classical singer using a whoop resonance strategy will 

allow the absolute spectral tone color of the first harmonic to exert itself, but it remains 

perceptually separable. This is perhaps most noticeable for vowels with a high second spectral 

peak, like [i]. Figure 29 shows a countertenor moving between [u] and [i] on the pitch E4. In 

both vowels the <u is strongly defined by the ~u absolute spectral tone color of the fundamental 

(highlighted with overlaid boxed text), which remains the same amplitude in both vowels. More 

dramatic in the [i] than [u] (yet still noticeable in the [u]), the fundamental (~u) becomes 

perceptually separable from the second and third harmonics. Heard in isolation, one is unable to 

discern whether the fundamental was extracted from the [i] or [u], and as Vennard predicted, the 

~u percept is a noticeable common thread between these vowels.   

 I will conclude this glimpse into a psycho-acoustical analysis of the female (and 

countertenor) voice on the treble staff with an excerpt from the classical repertory that illustrates 

the perceptual shifts that occur in this pitch range. In m. 46-49 of Richard Strauss’ “Beim 

Schlafengehen” from Vier Letze Lieder (Figure 30) from Ms. Gundula ɛanowitz’s 1971 

recording, the continuous power of the fundamental relative to the remaining harmonics is 



Howell: Parsing the Spectral Envelope 55 

apparent in the spectrogram, and exists because Ms. Janowitz couples her first vocal tract 

resonance with her first harmonic (whoop resonance). The spectrogram in Figure 31 displays the 

vertical frequency axis logarithmically to aid aligning the fundamental with the pitches on the 

piano keyboard. Additionally, I have delineated the ranges of absolute spectral tone color 

relevant to the compass of the fundamental. Figure 31 suggests that the fundamental (at times 

significantly more intense than the rest of the spectrum) should be separable by tone color. 

Indeed, once the remainder of the spectrum is removed, the fundamental can be heard changing 

along a continuum of ~u, ~o and ~ɔ as pitch rises. Whether an untrained ear (or a trained ear 

distracted by something else) would hear this distinctly is not particularly relevant to the value of 

listening in this manner. Since whoop resonance is a technical competency for classical singers 

(especially, but not limited to female, countertenor, and unchanged voices), the ability to hear 

this harmonic separately, and thus determine if the coupled resonance is correctly managed by 

the student, is advantageous for singing teachers. Figure 32 is a series of LTAS parsed spectrum 

graphs, one for each pitch of the melisma on the word “Flügen” in m. 46-47. All the tone colors 

across this entire sample are indicated on the depth axis, and the obvious true fundamental is 

indicated as boxed text. The spectral centroid (the amplitude-weighted average frequency that 

characterizes the < percept) of the first and second harmonics (in this excerpt rarely higher than 

the tone color of the first harmonic in isolation) is indicated in the lower text box. In this way, 

one may observe how the number of < percepts changes as pitch rises and falls (generally more 

for lower pitches), how the amplitude of the lowest < percept comes to dominate the vowel as 

pitch rises, and how the same pitch in different contexts might vary in subtle ways. What is 

certainly clear from these graphs is that each pitch has a different tone color quality (despite the 

same written vowel), strongly characterized by the < or < wb percept of the first and second 
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harmonics and the ~percept of the first harmonic. Also of note, above the pitch F5, the lowest 

spectral peak absolutely dominates the overall sound. Figure 33 illustrates that such an approach 

dictates that different vowels will reduce to a similar simple percept at high enough pitches. 

Compare the F5 from the word “Flügen” ([y]) m. 47 (top) with the F5 from the word “schweben” 

([e]) (bottom) from m. 48. One may see that despite the difference in written vowel, the parsed 

spectrum graphs show that Ms. Janowitz sings almost identical sounds. Neither are true vowels, 

yet they create a very similar percept.  

 Returning to Miller’s transitional pitches for female registration, the graphs in Figure 32 

also show that below the pitch C5 the separate < percepts are more equally represented. The 

A♭4, for example, features an <e of near equal amplitude with the <u. In contrast, the E♭5 

already exhibits characteristics of pitches above the staff: a more dominant low spectral peak, 

and a simpler, quieter, higher spectral peak. It is worth noting that E♭5 is the highest pitch in this 

sample where Ms. Janowitz was able to energize harmonics in the <e range. The F5, G5, and 

A♭5 all simplify to a second spectral peak of <i. So, elements of psychoacoustics are at play in 

the pitch regions that Miller defines as vital to understanding registration in the female voice. 

Simply describing these transitions as changes in vowels misses the rich variation apparent in the 

parsed spectrum graphs. One would expect a performance by a different singer, or by a singer 

who belted rather than whooped to also be meaningfully describable by this analytical method. 

Further research is warranted.  
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Conclusions  

The immediate implications of this type of analysis are profound: rather than reduce the 

sound of an elite classical singer to a group of vowels, one may productively analyze its inherent 

tone color, describe obligate changes that deepen one’s understanding of singing technique, and 

graph a singer’s expressive choices with greater detail than previously available. I hope that a 

computer program will eventually be able to execute this sort of analysis in real time, though 

certain challenges (such as defining threshold parameters for the local spectral coherence effect) 

need to be addressed first. More broadly, a sung vowel may be divided into multiple unique 

percepts so long as one knows where to aurally locate them. Placed within a framework that 

explains the manner in which these percepts change, one may hear and predict qualitative 

differences in tone color as pitch and vowel vary. This is especially relevant for treble staff 

singers (e.g. females, children, countertenors), as the tessitura of their fundamentals encompasses 

several ranges of absolute spectral tone color, and the potential rich roughness of lower pitches 

gives way to weakly bridged tone colors as pitch ascends. I believe that the sound of optimal 

vocal registration may be described with greater specificity than the current visual models to 

describe vowels afford. Members of the singing voice science and pedagogy communities may 

be able to use this type of analytical approach to better listen, teach, and sing. 
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Appendices  

Appendix A: International Phonetics Alphabet Symbols 

 

Source: Cheri Montgomery, “IPA Charts for Lyric Diction,” STM Publishing (stmpublishing.com), 
http://nebula.wsimg.com/0f288123bb2580bf33136ca9d158a8aa?AccessKeyId=2FDAD2B87450CB38B630&dispos
ition=0&alloworigin=1. Reprinted with the gracious permission of the publisher.  
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  Figures 

 

 

 

 

 

 

 

Figure 1: The vocal tract filter reshapes the spectral envelope of the glottal source sound. The black outlined 
harmonics represent the glottal source sound (here a synthesized example of the compression wave created by the 
vocal folds) that sounds like a buzz due to the steady roll off in amplitude of higher harmonics. The black line 
represents the disposition of a vocal tract shaped for [a] to reshape the source harmonics. The solid harmonics 
represent the spectrum of the reshaped compression wave. Note that the highest intensity harmonics fall into the 
octave from E5 to E6. Source: Author’s analysis. 
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Figure 2: Charts representative of models used in voice science and vocal pedagogy texts to explain vowels in terms 
of vocal tract resonances and spectral peaks. Clockwise from top left: (a) average acoustic spectrum of [i] from 
McCoy, Your Voice: An Inside View 2nd Edition, 42 (horizontal axis is frequency in Hz, vertical axis is amplitude); 
(b) Graph of first two vocal tract formants [resonances] from Bozeman, Practical Vocal Acoustics, 13 (horizontal 
axis is vowels, vertical axis is frequency); (c) Plot graph of first and second formant (spectral peaks) locations; 
points falling within a circle represent simultaneous first and second spectral peak values that have been observed in 
speakers (horizontal axis is the first spectral peak frequency in Hz, vertical axis is the second spectral peak 
frequency in Hz), from Doscher, The Functional Unity of the Singing Voice 2nd Edition, 138; (d) Graph of four 
lowest vocal tract resonances of specific singers for five vowels, from Sundberg, The Science of the Singing Voice, 
107 (horizontal axis is vowels, vertical axis is frequency in Hz); (e) Treble staff notation of the average pitch of the 
first spectral peak for the indicated vowels, from Doscher, Functional Unity, 152; (f) Piano keyboard of ranges of 
first and second vocal tract resonances across voice-types, from McCoy, Inside View, 45; (g) A graph of the average 
values of the three lowest spectral peaks for eleven English vowels as spoken by males, Reprinted by permission 
from Waveland Press, Inc. from Denes and Pinson, The Speech Chain, 143 (horizontal axis is vowels, vertical axis is 
frequency in Hz). Images a-f reprinted with the gracious permission of their respective copyright owners. 
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Figure 3: Charts representative of models used in voice science and vocal pedagogy texts to explain vowels in terms 
of vocal tract shapes. Clockwise from top left: (a) contours of the tongue body for three vowels in four pitch ranges 
from Sundberg, The Science of the Singing Voice, 128; (b) side view of the vowels [i] and [a] from Bozeman, 
Practical Vocal Acoustics, 62; (c) aligned vocal tract shapes and spectrum of three vowels reprinted by permission 
from Waveland Press, Inc. from Denes, The Speech Chain, 74; (d) sketch of the air-containing spaces of the vocal 
tract (not including the nasal cavity) for a neutral vowel from Titze, Vocology, 340; (e) The vowel quadrilateral from 
IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart, available under a Creative Commons 
Attribution-Sharealike 3.0 Unported License. Copyright © 2015 International Phonetic Association. This is an 
organization of vowels along a horizontal axis representing the location of the point of greatest tongue constriction 
in the mouth (front, central, back), and a vertical axis representing the distance of the tongue from the roof of the 
mouth (close, close-mid, open-mid, or open). Vowel pairs to the right and left of the bullet points represent rounded 
and unrounded (lips) versions; (f) tongue position for four vowels from Doscher, Functional Unity of the Singing 
Voice, 112. Images a, b, d, and f reprinted with the gracious permission of their respective copyright owners. 
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Figure 4: A portion of Dr. Martin Luther ɜing’s “I Have a Dream” (a) with original spectrum of the recording, (b) 
only sound below 2,000 Hz, (c) only sound above 2,000 Hz, and (d) only sound between 300 Hz and 3400 Hz 
(similar to an analog telephone). The text is understandable in all four versions, which supports the idea that speech 
sounds are simultaneously encoded into the entire spectrum. Source: “Martin Luther ɜing, ɛr. I Have A Dream 
Speech,” https://www.youtube.com/watch?v=3vDWWy4CMhE 
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Figure 5: X-Ray images of Enrico Caruso’s mouth and throat in profile, from left to right [i], [a], [u]. Note that the 
pharyngeal space (from glottis to the tongue hump, here indicated with a white arrow), a primary determinant of the 
pitch of the first vocal tract resonance, is significantly larger for [i] than [u]. However, in a given human these 
vowels share roughly the same first vocal tract resonance frequency, imparting a near identical vowel-like aspect of 
timbre to the overall timbre of each vowel. Source: G. Oscar Russell, Speech and Voice, with X-rays of English, 
French, German, Italian, Spanish, Soprano, Tenor, and Baritone Subjects (New York: Macmillan, 1931), found in 
Berton Coffin, Overtones of Bel Canto (Metuchen: Scarecrow Press, 1980), 183. Reprinted with the gracious 
permission of Scarecrow Press. 
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Figure 6: From top to bottom the density of harmonics (on a linear frequency axis) for the pitches 
C3, C4, C5, G5, and F6 as filtered by the resonances of an [a] shaped vocal tract (the black solid 
line). Note that as pitch rises all harmonics rise and become progressively more spread out. The 
harmonics of C3 and C4 outline a shape similar to the ideal envelope for [a]. C5, G5, and F6 form 
much simpler shapes. The change in envelope fundamentally changes the vowel percept. Source:  
Vowels synthesized by author in MADDE.   
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Figure 7: Spectrograms of a single female subject speaking the phrase, “Oh, what a lovely day” in three pitch 
ranges. A comfortable speaking pitch varying between approximately C4 and G4 (Top), centering around D5 
(Middle), and centering around D6 (bottom). Note the diminishing density of harmonic information as the pitch 
rises. Source: Analysis by the author. 
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Figure 8: First, second, and third spectral peak frequency centers for the sung vowels [u], [ɔ], [i], [y], [a], and [ʌ]. 
Note that almost all these vowels share a third peak. Additionally, [u] and [i] share a first peak; [u] and [ɔ] share a 
second peak; [i] and [y] both share a first peak and also [i]’s second peak may overlap with [y]’s third peak; and [a] 
and [ʌ] differ only in the frequency of the first peak. Source: Vowels synthesized by author in MADDE.  
 

0

500

1000

1500

2000

2500

3000

[u] [i] [u] [ɔ] [i] [y] [a] [ʌ] 

F
re

qu
en

cy
 (

H
z)

 

Vowels 

Spectral Peak Frequency Similarities 
examples of [u], [ɔ], [i], [y], [a], and [ʌ]  

Peak 3

Peak 2

Peak 1



Howell: Parsing the Spectral Envelope 67 

  
 
 
 
 

 
 

 
 
Figure 9: Comparing the tone colors of isolated harmonics from different sources. (Top) From left to right, 
normalized isolated harmonics with the frequency of the fundamental of D4, D5, A5, D6, and D7. Isolated 
harmonics of the same frequency all exhibit the same tone color. The sources (bottom) from left to right are a 
trumpet, male voice, same voice an octave higher, female voice, alto recorder, and white noise. Additionally, a sine 
tone has been added to the isolated samples (top). Source: All files recorded and analyzed by author. 
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Figure 10: From left to right a bass-baritone singing [a] (without vibrato) at the pitch C3, a tuba playing the pitch 
C3, and the singer’s spectrum reshaped to imitate a long term average spectrum (LTAS) of the tuba sample. The 
tone color of the third sample is clearly that of a tuba, but the attack, decay, release, and overall spectro-temporal 
flux is that of a singer. Source:  Author’s analysis. 
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Figure 11: From left to right a bass viola da gamba playing the pitch B2, a bass-baritone singing [a] (without 
vibrato) at the pitch C3, and the viola da gamba’s spectrum reshaped to imitate a long term average spectrum 
(LTAS) of the singer’s sample. The tone color of the third sample is clearly that of an [a] vowel, but the attack, 
decay, release, and overall spectro-temporal flux is that of a viola da gamba. Source: Author’s analysis. 
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Figure 12: A long term average spectrum (LTAS) of a synthesized voice (top) and cello (bottom) on the pitch D2. 
Note that the slope formed by the peaks of the voice’s harmonics is continuous. The cello’s slope has several sudden 
drops in harmonic intensity (indicated with arrows). Source: Top synthesized in MADDE by author. Bottom from 
“Cris Cambell - Tone and Color of the Cello - Strings By Mail,” 
https://www.youtube.com/watch?v=t1RsDTQ8_Bg. 
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Figure 13: (Top) the graph from Figure 8 showing the first, second, and third spectral peak frequency centers for 
the vowels [u], [ɔ], [i], [y], [a], and [ʌ]. (Bottom) the vowels graphed in Figure 8 shown spectrographically. From 
left to right, [u], [i], [u], [ɔ], [i], [y], [a], [ ʌ] all on the pitch C3. Common spectral peaks between vowel pairs 
(excepting the near uniform third spectral peak) are indicated here with boxes. Source: (Top) Synthesized by author 
in MADDE; (bottom) Author’s analysis.  
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Figure 14: Perceptual flowchart of the manner in which harmonics with individual tone colors (bottom) cohere into 
spectral segments (frequency bands) with unique tone colors (middle), which in turn form the unified vowel percept 
(top). Source: Author. 
  



Howell: Parsing the Spectral Envelope 73 

 
 
 
 

 
 
Figure 15: Absolute Spectral Tone Color: Approximate Ranges of vowel-like tone color of a simple sound. I use the 
convention of ‘~’ followed by the International Phonetics Alphabet (IPA) symbol of the vowel closest in timbre to 
the simple sound. These values are inspired by Robert Cogan’s register-based analysis of the “sonic qualities” of 
sine waves, found in Figure 18. See Appendix A for word-based examples of the vowel sounds associated with 
each IPA symbol. Source: Created by the author. 
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Figure 16: (Top) Spectrogram of male voice singing A3 with and without the fundamental. Perception of the pitch 
A3 is not changed when the fundamental is removed, just an aspect of the tone color. Source: Author’s analysis. 
(Bottom) Author’s schematic of the spectrum of a synthesized [a] demonstrating the manner in which spectral peaks 
are experienced as differently tone-colored aspects of the pitch via the multiple missing fundamentals property. The 
black line is an approximation of the vocal tract resonances (which correspond with the spectral peaks). Note that 
the fundamental (first harmonic) has the absolute spectral tone color ~u.  
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Figure 17: Exploring the local spectral coherence of harmonics 2-4 of the pitch A3. Isolating these three harmonics 
creates a missing fundamental pitch with a specific tone color. Reshaping this segment of the (a) spectral envelope 
for [o] results in three different percepts similar to, but less than (<) the vowels [u], [o], and [ɔ]. (b) <u, (c) <o, and 
(d) <ɔ. Source: Author’s analysis. 
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Figure 18: Robert Cogan's register-based analysis of the “sonic qualities” of sine waves. Source: A new 
schematic by the author based on Robert Cogan, New Images of Musical Sounds (Cambridge: Harvard 
University Press, 1984), 7, 12. 
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Figure 19: From left to right, “[ܭ], bed, fed, said, red” three ways. The full spectrum (left), only the second spectral 
peak (middle), and only the first spectral peak (right). According to Bizley, et al, ferrets can be trained to recognize 
the second spectral peak as [ܭ], however they failed to recognize the first spectral peak (here notated as sounding 
like [o]!?! as [ܭ]. Note that the context created by coarticulation allows all of the words to be recognized, if distorted. 
Source: Analysis of author’s voice by author.  
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Figure 20: Revision of Vennard’s chart of the ranges of frequency for the first (horizontal axis) and second (vertical 
axis) spectral peaks of English vowels. Horizontal and vertical axes now incorporate the absolute spectral tone color 
values from Figure 15. Horizontal and vertical lines between absolute spectral tone color values indicate transition 
zones from one value to the next. Source: Author’s adaptation of Vennard, Singing, 137, which is an adaptation of 
data from Denes and Pinson, Fairbanks, Peterson, and Barney. Original image copyright © 1968 by Carl Fischer, 
Inc., New York. Used by gracious permission of the publisher. 
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Figure 21: Long term average spectra (LTAS) of [ɑ] sung by a baritone at the pitches (a and c) B2, (b and d) B3, 
and B4 (e). The horizontal axis is frequency, vertical axis is amplitude. The gray shaded areas indicate regions 
where harmonics fall within the critical band of their immediate neighbors. Note that the overall spectral shape is 
very similar (which suggests consistent vocal tract resonance frequencies between samples), and that the B2 has 
twice as many harmonics as the B3 within the same frequency range. (c) ovals indicate the first four spectral peaks 
of the B2; each gives rise to a separate missing fundamental with the < tone color of its amplitude weighted central 
frequency. (d) shows that for B3, the harmonic complexity of each peak has been reduced, and almost all of the 
harmonics forming the two lowest peaks fall outside of the critical band, further decreasing the complexity of these 
< percepts. The tone color shifts toward a more neutral vowel, and loses much of the edge and clarity present in the 
B2. (e) shows a synthesized B4 based on the vocal tract resonances of (a) and (b). This is a completely different 
percept. The two lowest spectral peaks have merged into a single percept, as have the third and fourth. The 
fundamental is now clearly audible as a separate tone color, only two missing fundamentals are present, and almost 
none of the harmonics are within the critical band of a neighbor. This changes the number of missing fundamentals, 
the complexity (number of harmonics constituting the peak) of each missing fundamental, and the overall quality of 
the vowel. Source: Analysis by author. 
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Figure 22: (Top) Traditional spectrum graph of audio from Figure 21 (a) with the addition of a scale of brightness 
from low to high frequency. (Bottom) The same graph broken into individual spectral peaks with the < percepts 
indicated. Each segment creates its own missing fundamental. Every harmonic to the right of the arrow falls within 
the critical band of its neighboring harmonics. Source: Analysis by the author. Amplitudes in dB are relative, not 
calibrated. 
 
 
 
 
 
 
 

30

40

50

60

70

80

90

B2B3 B4 B5 B6

A
m

pl
itu

de
 in

 d
B

 

Dark<—>Bright 

Baritone [ɑ] B2 

<u 

<o 

<ɑ 

Background 

<i <i bright 

30

40

50

60

70

80

90

B2B3 B4 B5 B6

A
m

pl
itu

de
 in

 d
B

 

Dark<—>Bright 

Baritone [ɑ] B2 



Howell: Parsing the Spectral Envelope 81 

 
 
Figure 23: The audio from Figure 21 (c) top, (d) middle, and (e) bottom, displayed as a graph broken apart by 
spectral peaks. Note the manner in which both the number of separate < percepts changes as pitch rises, the 
percentage of the total spectrum that falls above the beginning of the critical band (arrow), and the number of 
harmonics (vertical white lines) that form each spectral peak. Source: Analysis by author. Amplitudes in dB are 
relative, not calibrated. 
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Figure 24:  Parsed spectrum models of the B2 (top), B3 (middle), and B4 (bottom) from Figure 21. Vertical axis is 
amplitude, horizontal axis the harmonic complexity, and depth axis is tone color (which becomes shallower for the 
B4). Arrow indicates the area above which harmonics fall within the critical band. Drop lines indicating harmonics 
have been removed. Note that the B3 (middle) and B4 (bottom) graph the tone color contribution of the fundamental 
as separate from the <o and <ɑ respectively. Source: Analysis by author. Amplitudes in dB are relative, not 
calibrated. 
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Figure 25: Parsed spectrum graphs of a baritone singing [a] (top) and [i] (bottom) at the pitch B2. Vertical axis is 
amplitude, horizontal axis the harmonic complexity, and depth axis is tone color (which becomes less complex for 
an [i]). Arrow indicates the area above which harmonics fall within the critical band. Source: Analysis by author. 
Amplitudes in dB are relative, not calibrated. 
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Figure 26: Parsed spectrum graphs of an excerpt from m. 35-36 of Renée Fleming’s recording of Mozart’s “Porgi 
amor” from Le Nozze di Figaro, F5 (top), G5 (middle), and A♭5 (bottom). Arrow indicates the area above which 
harmonics fall within the critical band.  Source: Author’s analysis of excerpt from “Renée Fleming Great Opera 
Scenes,” London Symphony Orchestra, George Solti, Conductor (1997). Analysis by author. Amplitudes in dB are 
relative, not calibrated.  
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Figure 27: Parsed spectrum graphs of pitch A♭5 from an excerpt of m. 36 of Renée Fleming’s (top) and Lisa Della 
Casa’s (bottom) recordings of Mozart’s “Porgi amor” from Le Nozze di Figaro. Arrow indicates the area above 
which harmonics fall within the critical band. Source: Author’s analysis of excerpt from (top) Renée Fleming, 
Renée Fleming Signatures: Great Opera Scenes, London Symphony Orchestra, conducted by George Solti, London 
Records, 1997, and (bottom) W.A. Mozart, Mozart: Le Nozze di Figaro, Vienna Philharmonic, conducted by Erich 
Kleiber, Decca, 1955. Analysis by author. Amplitudes in dB are relative, not calibrated.  
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Figure 28: Spectrogram of a soprano singing a major scale C5-C6, alternating between a resonant vocal tract shape 
(of her choosing) and vocal tract shape of a speech level [u]. Source: Author’s analysis. 
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Figure 29: Spectrogram of a countertenor singing [u], [i], [u] from left to right (top), parsed spectrum graphs of the 
[u] (middle) and [i] (bottom). Arrow indicates the area above which harmonics fall within the critical band. The 
overlaid text box indicates the obvious true fundamental is perceptually separable from its local spectral segment. 
Source: Analysis by author. Amplitudes in dB are relative, not calibrated. 
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Figure 30: m. 46-49 of Richard Strauss, “Beim Schlafengehen,” from Vier Letze Lieder. Source: Author’s edition 
from Vier Letzte Lieder by Richard Strauss, Hermann Hesse, and Joseph Von Eichendorff © Copyright 1950 by 
Boosey & Co. Ltd. International Copyright Secured. All Rights Reserved. Reprinted by permission.  
 
  
  



Howell: Parsing the Spectral Envelope 89 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 31: Spectrogram of m. 46-49 of Ms. Gundula Janowitz’s performance of “Beim Schlafengehen” from 
Richard Strauss’ Vier Letze Lieder. Note that the vertical axis displays frequency logarithmically to aid aligning the 
fundamental (at the bottom of the spectrogram) with the pitches on the piano keyboard (left). Areas of absolute 
spectral tone color covered by the fundamental are indicated below (~u), between (~o), and above (~ɔ) the 
horizontal black lines. Source: Gundula Janowitz, Vier Letze Lieder, Berliner Philharmoniker, conducted by Herbert 
von Karajan, Deutsche Grammophon, 1971.  
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Figure 32: Parsed spectrum graphs for each note of the melisma on the word “Flügen” from m. 46-47 of Richard 
Strauss, “Beim Schlafengehen,” Vier Letze Lieder. Values determined by the long term average spectrum (LTAS) of 
each note. Upper boxed text is the absolute spectral tone color of the first harmonic. Lower boxed text is the spectral 
centroid value (SC) for the first two harmonics Source: Author’s analysis using Praat (to determine spectral centroid 
values) based on Gundula Janowitz, Vier Letze Lieder, Berliner Philharmoniker, conducted by Herbert von Karajan, 
Deutsche Grammophon, 1971. Amplitudes in dB are relative, not calibrated.  
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Figure 33: Parsed spectrum graphs for the F5 on the word “Flügen” ([y]) from m. 47 (top) and F5 on the word 
“schweben” ([e]) of Richard Strauss, “Beim Schlafengehen,” Vier Letze Lieder. Values determined by use of the 
long term average spectrum (LTAS) of each note. Arrows indicate point above which harmonics fall into the critical 
band. Source Author’s analysis using Praat (to determine spectral centroid values) based on Gundula Janowitz, Vier 
Letze Lieder, Berliner Philharmoniker, conducted by Herbert von Karajan, Deutsche Grammophon, 1971. 
Amplitudes in dB are relative, not calibrated. 
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