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ABSTRACT

Intelligibility metrics are a fast way to determine how com-

prehensible a target signal is in a noisy situation. Most

metrics however rely on having a clean reference signal for

computation and are not adapted to live recordings. In this

paper the deep correlation modified binaural short time ob-

jective intelligibility metric (Dcor-MBSTOI) is evaluated

with a single-channel close-talking microphone signal as the

reference. This reference signal inevitably contains some

background noise and crosstalk from non-target sources. It

is found that intelligibility is overestimated when using the

close-talking microphone signal directly but that this overes-

timation can be eliminated by applying speech enhancement

to the reference signal.

Index Terms— intelligibility metric, MBSTOI, Machine-

Learning, close-talking microphone

1. INTRODUCTION

Determining the intelligibility of a speaker in a noisy situa-

tion comes naturally to a human listener but is challenging

to estimate computationally. Computed intrusive intelligibil-

ity metrics are a fast alternative to in-person tests but rely on

having a clean reference signal available to compare with the

noisy signal [1, 2, 3, 4, 5, 6].

One of the most widely used single-channel intrusive in-

telligibility metrics is the short time objective intelligibility

metric (STOI) [7]. It has been further developed over the

years [8, 9], and its latest implementation called modified bin-

aural STOI (MBSTOI) [10] extends its applicability to binau-

ral signals by adding an equalisation-cancellation (EC) stage

[11]. However, the requirement of a clean binaural reference

signal makes it challenging to use MBSTOI except in con-

trolled scenarios.

In recent years machine learning (ML) and deep learning

(DL) based techniques [12, 13] have enabled the creation of

new end-to-end metrics [14, 15, 16] and the improvement of

existing ones [17, 18, 19]. Recently, deep correlation MB-

STOI (Dcor-MBSTOI) [20, 21] allowed the computation of

MBSTOI when only a clean single-channel reference was

available.

In this paper Dcor-MBSTOI is evaluated using a close-

talking microphone (CM) to provide the reference signal to

determine whether this metric is applicable to live recordings.

Sec. 2 describes the metrics MBSTOI, Dcor-MBSTOI and

the dataset used for evaluation. The performance of Dcor-

MBSTOI is presented in Sec. 3 and conclusions are drawn in

Sec. 4.

2. METRICS AND SIMULATION

2.1. MBSTOI and Dcor-MBSTOI

The calculation of MBSTOI and Dcor-MBSTOI is illustrated

in Fig. 1. MBSTOI uses a clean binaural reference signal con-

taining the target speech components and compares it with

a noisy binaural signal to predict an intelligibility value be-

tween 0 and 1 [10]. To take into account binaural information,

the EC stage [11] uses binaural cues to find parameters that

align and cancel undesired localised interference. These pa-

rameters represent interaural level and time differences (ILD

and ITD). In each time analysis frame and third-octave band,

a grid-search is performed to determine the parameter values

that maximize the correlation between the reference and noisy

signals.

Dcor-MBSTOI uses the same noisy binaural signal but

only requires a clean single-channel reference signal to be

available. It aims to reproduce the value of MBSTOI as shown

in Fig. 1. In Dcor-MBSTOI, the EC stage is replaced by a

deep neural network comprising two 2D convolutional lay-

ers, of sizes 8 and 16, and two linear layers, of sizes 256 and

1, which directly estimates the correlation coefficients in ev-

ery time analysis frame and third-octave band. More details

about the structure and training hyperparameters can be found

in [21].

The preprocessing stage of MBSTOI shown in Fig. 1

applies an energy-based voice-activity detector (VAD) to the

reference signal in order to identify and remove analysis

frames in which the target talker is silent. To ensure that all

versions of the metric use the same set of analysis frames, we

have used the VAD from MBSTOI in all evaluations. This

VAD is based on the clean binaural signal and so, in practice,

the VAD would instead use either the clean single-channelIC
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Fig. 1. MBSTOI and Dcor-MBSTOI computation block diagram. In preprocessing, Dcor-MBSTOI can use the clean binaural

signal to have perfect silent frame removal. Dcor-MBSTOI uses DL to directly estimate the correlation coefficient of the current

analysis time frame and third-octave band.

signal or the close-talking microphone signal. Since both

these signals would normally have a high signal to noise

ratio (SNR), we do not expect that their use would have a

significant effect on the VAD decisions.

2.2. Simulated scenes

Table 1. Simulated scene parameters

Target Interferer

Distance (m) 1 1

Level (dB) 60 [50, 51, ..., 70]

Azimuth (degrees) [-30, 0, 30] [0, 22.5, ..., 180]

Elevation (degrees) [-45, 0, 45] [-45, 0, 45]

In order to test the metrics, 250 sentences were gener-

ated using the tascar software package [22]. The listener

is located at the origin of the spatial coordinate system and

is facing forwards at zero azimuth and elevation. The target

speaker is located in front of the listener at one of the nine po-

sitions listed in Table 1. In addition to diffuse babble noise, a

localised interferer is located somewhere around the listener.

Potential locations of target and interferer are listed in Table 1.

This takes place in empty rooms of varying size with rever-

beration times of up to 3 s. The reverberation time is below

0.42 s in over 50% of cases and above 1 s in 20% of cases.

The target speech signal is randomly chosen from the

IEEE speech corpus [23], UK recordings. The interferer can

be another sentence from the same corpus or else a localised

noise from the PNL100 non-speech noise corpus [24]. Dif-

fuse noise consist of babble noise recordings from crowded

bar. As described in [21], the DL stage in Dcor-MBSTOI was

trained with data generated from the same set of scenarios

using a clean single-channel reference and was not retrained

for the experiments discussed below.

The scene includes a binaural microphone pair and two

single-channel omnidirectional microphones. The binaural

microphone represents the listener and incorporates the main

features of a measured head related transfer function (HRTF).

One of the omnidirectional microphones is positioned at the

origin, coincident with the listener, while the other is placed

10 cm in front of the target speech location in the direction of

the listener. We refer to the signals from these microphones

as the single-channel and close-talking (CM) signals respec-

tively. Each scene is simulated twice: a clean version which

includes only the anechoic target talker and a noisy version

which additionally includes the interferer, the diffuse noise

and reverberation. As shown in Fig. 1, MBSTOI compares

the noisy binaural signal with the clean binaural signal as a

reference. In contrast, Dcor-MBSTOI compares the noisy

binaural signal with one of the single-channel signals as a ref-

erence. The frequency weighted segmental SNR (fwSegSNR)

of the noisy CM is ranging from −4 dB to 8 dB. The effect of

choosing different references for Dcor-MBSTOI is discussed

in Sec. 3.



3. ANALYSIS

3.1. MBSTOI reproduction

Fig. 2. Box plot representing ∆MBSTOI, the difference be-

tween Dcor-MBSTOI and MBSTOI, when using different

reference signals for Dcor-MBSTOI. The rightmost column

shows the difference between using the ”noisy CM” with re-

spect to ”clean CM” signals as the Dcor-MBSTOI reference.

Table 2. Mean absolute deviation (MAD) and standard devi-

ation (SD) of ∆MBSTOI using different reference for Dcor-

MBSTOI. The root mean square error (RMSE) between Dcor-

MBSTOI and MBSTOI is also calculated.
Reference signal MAD SD RMSE

clean binaural 0.037 0.034 0.048

clean single-channel 0.069 0.058 0.088

clean CM 0.080 0.059 0.099

noisy CM 0.095 0.113 0.126

enhanced noisy CM 0.083 0.104 0.105

noisy CM/clean CM 0.135 0.088 0.162

The leftmost five columns of Figure 2 show the distri-

bution of ∆MBSTOI = Dcor-MBSTOI − MBSTOI on the

simulated sentences when Dcor-MBSTOI uses different ref-

erences. In each case we calculate the mean absolute devia-

tion (MAD), the standard deviation (SD) and the root mean

squared error (RMSE) whose values are given in Table 2.

Best performance is achieved using the clean binaural refer-

ence (using a Dcor-MBSTOI version adapted to binaural ref-

erences [21]), followed by the clean single-channel reference.

Notably, the clean CM reference performs very similarly to

the clean single-channel reference, even though it incorpo-

rates a small bulk time offset due to the different microphone

positions. Dcor-MBSTOI is thus robust to small time delays.

As previously observed in [21], Dcor-MBSTOI generally un-

derestimates MBSTOI when using clean reference.

Using the noisy CM reference, Dcor-MBSTOI now of-

ten overestimates MBSTOI. Each individual sentence always

estimates a higher Dcor-MBSTOI than when a clean CM ref-

erence is used. This is demonstrated in the rightmost column

of Fig. 2 which plots ∆MBSTOI = Dcor-MBSTOInoisy CM −

Dcor-MBSTOIclean CM. The better performing sentences of

Dcor-MBSTOI with a noisy CM reference have been inves-

tigated in terms of interferer position relative to target, signal

to noise ratio, global levels, or reverberation time but no sig-

nificant trend was found.

We hypothesize that, when using a noisy reference, the

correlation between signal and reference is artificially in-

creased leading to higher Dcor-MBSTOI. If this is the case,

it should be possible to improve the estimation by applying

noise reduction to the reference. Noise reduction in python

using spectral gating [25] is therefore applied to noisy CM,

resulting in a new reference called enhanced noisy CM. Re-

sults are shown in Fig. 2 second plot from the left. Results

improved from noisy CM with lower MAD, SD and RMSE,

but do not reach clean CM performance.

3.2. DNN performances

Figure 3 displays scatter plots of the correlation coefficients

estimated by Dcor-MBSTOI compared to the target MBSTOI

correlation value in a single, randomly-chosen sentence for

which MBSTOI equals 0.289 and fwSegSNR at the CM

equals 2.3 dB. Every dot corresponds to a single analysis

time frame and each plot to a single third-octave band. Color

denotes the reference signal used in Dcor-MBSTOI.

Black dots correspond to Dcor-MBSTOI with a clean bin-

aural reference. Good correlation is observed in high fre-

quency bands and more deviation is seen at lower frequen-

cies. The average Pearson correlation coefficient across all

frequencies is 0.896 with Dcor-MBSTOI value of 0.270.

Blue dots correspond to Dcor-MBSTOI with a clean

single-channel reference. At low frequency, estimated co-

efficients match those using a binaural reference whereas at

higher frequencies blue dots are seen to underestimate high

correlation values. This leads to a lower Dcor-MBSTOI value

of 0.202. Nevertheless, mean Pearson correlation remain high

at 0.820. Similar performances are obtained with clean CM

and are not displayed here.

Orange dots correspond to Dcor-MBSTOI with a noisy

CM reference. While at very high and very low frequen-

cies estimated values closely match those with a clean single-

channel reference, Dcor-MBSTOI overestimates the correla-

tion coefficients in most third-octave bands. This leads to

a higher Dcor-MBSTOI of 0.336 with a mean Pearson cor-

relation of 0.416. As noted in Sec. 2.1, an oracle VAD is

provided to Dcor-MBSTOI so that every time frame contains

target speech. Nevertheless, the noisy CM reference carries

noise information which leads to higher estimated correlation

coefficients.



Fig. 3. Scatter plot of the estimated correlation coefficient from Dcor-MBSTOI compared to the target value from MBSTOI

using various reference signal. Binaural reference in black, clean single-channel reference in blue, noisy close-talking reference

in orange and enhanced close-talking reference in green. Displayed in each third-octave band for a single sentence, each dot

being a single time frame estimation.

Lastly, green dots correspond to Dcor-MBSTOI with

an enhanced noisy CM reference. It is observed that many

frames still overestimate the correlation coefficients but less

often than with the raw noisy CM. Dcor-MBSTOI of 0.267

is then closer to the target value and the mean Pearson corre-

lation increases to 0.514. Notably in this example, using the

enhanced noisy signal led to the Dcor-MBSTOI estimation

closest to MBSTOI. However, given the poor average Pearson

correlation coefficient and the high RMSE seen in Table 2,

an alternative enhancement algorithm might result in more

consistent estimation.

4. CONCLUSION

In this work, the machine learning hybrid version of MBSTOI

called Dcor-MBSTOI, which uses only a clean single-channel

reference, has been tested with a close-talking microphone

reference which includes some noise and reverberation.

The results showed that when a noisy CM reference was

used, Dcor-MBSTOI generally overestimated the value of

the MBSTOI metric with an RMSE of 0.126. By applying

a speech enhancement algorithm to the CM reference, the

RMSE was reduced to 0.105. This still exceeds the RMSE of

0.088 obtained by using a clean single-channel reference, so

it may be that an alternative enhancement algorithm would

give better performance.

Nevertheless, this work has shown that it is feasible to

have an accurate binaural intelligibility metric that uses a

close-talking microphone signal as the reference in circum-

stances where a clean reference is unavailable.
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