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Abstract—Acoustic beamforming is routinely used to improve
the SNR of the received signal in applications such as hearing aids,
robot audition, augmented reality, teleconferencing, source locali-
sation and source tracking. The beamformer can be made adaptive
by using an estimate of the time-varying noise covariance matrix
in the spectral domain to determine an optimised beam pattern
in each frequency bin that is specific to the acoustic environment
and that can respond to temporal changes in it. However, robust
estimation of the noise covariance matrix remains a challenging
task especially in non-stationary acoustic environments. This paper
presents a compact model of the signal covariance matrix that is
defined by a small number of parameters whose values can be
reliably estimated. The model leads to a robust estimate of the
noise covariance matrix which can, in turn, be used to construct
a beamformer. The performance of beamformers designed using
this approach is evaluated for a spherical microphone array under
a range of conditions using both simulated and measured room im-
pulse responses. The proposed approach demonstrates consistent
gains in intelligibility and perceptual quality metrics compared to
the static and adaptive beamformers used as baselines.

Index Terms—Beamforming, speech enhancement, covariance
matrix estimation, spatial filtering, spherical microphone arrays,
adaptive beamforming, microphone array, MVDR, MPDR.

I. INTRODUCTION

T
HE use of microphone arrays and acoustic beamforming

has become routine in devices such as cellphones, hearing

aids, virtual assistants, teleconferencing and robot audition [1]–

[5]. These devices share a need to acquire speech from a target

talker in the presence of interfering noise from other sound

sources. In many situations, especially those in which the talker

is far from the microphones, the signal-to-noise ratio (SNR)

of the received microphone signals will be inadequate and in

these cases the spatial discrimination provided by beamforming

allows the SNR to be improved with little or no distortion of the

target speech. Existing beamformers perform well in laboratory

conditions but may perform less well in real-world situations

containing multiple interfering sound sources whose locations
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and characteristics vary with time. For clarity, the mathematical

symbols used in the remainder of this introduction will only be

given brief definitions here and will be fully defined in Section II.

Acoustic beamformers are conveniently implemented in the

short time Fourier transform (STFT) domain [6]. In each time-

frequency (TF) cell, the complex-valued output of the beam-

former is given by wHy where w is a weight vector that

determines the beamformer properties and the elements of y

are the microphone signals. When choosing w, a common goal

is to maximize the SNR of the beamformer output signal subject

to the so-called distortionless response constraint that the gain

of the target be constant across all time-frequency cells. To

achieve this, it is convenient to define the steering vector, d,

whose elements are proportional to the acoustic transfer func-

tions between the target source and each of the microphones.

With this definition, the optimum weight vector is given by

w = (dHR−1d)−1R−1d where R is the covariance matrix

either of the received microphone signals or, alternatively, of

the noise component within those signals. We refer to these

two alternative choices for R as the signal covariance matrix

(SCM) and the noise covariance matrix (NCM) respectively

and to the corresponding beamformers as the minimum power

distortionless response (MPDR) and minimum variance distor-

tionless response (MVDR) beamformers1 [7], [8]. It can be

shown using the matrix inversion lemma [9] that the MPDR

and MVDR beamformers are identical provided that the noise

is uncorrelated with the target and that the steering vector, d, is

precisely correct [10]. The advantage of the MPDR beamformer

is that the SCM is independent of the choice of target source and

is normally easier to estimate than the NCM. Its disadvantage,

however, is that if d is inaccurate, the MPDR beamformer

performance degrades and target cancellation can occur [11],

[12]. For this reason, if the NCM is known or can be robustly

estimated, the MVDR beamformer is the preferred choice. A

popular way of implementing the MPDR is via the generalized

sidelobe canceller (GSC) [13] structure which converts the con-

strained optimization problem into an unconstrained one that

can be implemented as a recursive algorithm.

In this work, we concentrate on the estimation of R and

assume that the steering vector, d, is either known a priori or

else can be estimated [6], [14]–[18]. We note that it is sufficient

to determineR to within a scalar multiple since multiplying it by

1We note that beamformer nomenclature varies and that the term MVDR is
used by some authors for either or both of the MPDR and MVDR beamformers.
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an arbitrary scale factor leaves the weight vector, w, unchanged.

If the characteristics of the interference are known a priori, then

the NCM can be taken to have a fixed, signal-independent form.

Examples of this include the matched-filter beamformer [1], [19]

in which the NCM is taken to be a multiple of the identity matrix

and the superdirective beamformer [20] in which it is taken

to be the covariance matrix corresponding to a spherically or

cylindrically isotropic diffuse noise field.

If the interference is non-stationary, then a higher SNR im-

provement can be obtained by making R adaptive and signal-

dependent in which case the SCM and/or NCM must be esti-

mated from the microphone signals. For the MPDR beamformer,

an estimate of the SCM may be obtained by smoothing the

instantaneous outer product, yyH , using a recursive average

filter whose time-constant is short enough to follow temporal

variations in the noise characteristics but long enough to obtain

a good estimate [6]. For the MVDR beamformer, however, it is

necessary to estimate the noise component in each microphone

signal in order to determine the NCM. Typically this estimate is

obtained by using a speech activity detection (SAD) algorithm to

identify when the target talker is inactive or alternatively an algo-

rithm to estimate the speech presence probability (SPP) in each

time-frequency cell [6]. More recently, deep neural networks

(DNNs) have been used to identify time-frequency cells that

are dominated by noise [21], [22]. In [23] noise is estimated by

steering a null at the target while [24] assumes a stationary noise

component. Also in [25] a time-invariant homogeneous noise

field is assumed. Other works such as [16]–[18] propose methods

to jointly estimate the power spectral density (PSD) of the

speech and reverberation together with the early relative transfer

functions. The robust estimation of the noise component in a

noisy speech signal, however, remains a challenging problem

when the SNR is poor or when, as is often the case in practical

applications, the interference arises from other talkers whose

characteristics are similar to those of the target.

If the matrix R is ill-conditioned, the weight vector, w,

becomes sensitive to errors in the steering vector, d. In this

case, the robustness of the beamformer may be improved by

adding a multiple of the identity matrix onto the SCM or the

NCM before calculating w. This diagonal loading procedure

may be formulated as imposing a constraint on the condition

number of R, on the norm of w or on the white-noise gain

of the array [26]. It is also equivalent, within a scale factor, to

allowing for uncertainty in d when maximizing the SNR gain

of the beamformer [27].

In this paper, instead of estimating the NCM directly, we

first estimate a parametric model for the SCM and then modify

this to obtain a model for the NCM. The compact model that

we use for the SCM is defined by only a small number of

parameters. These can be estimated reliably even in high levels

of noise and can adapt rapidly in non-stationary environments.

The underlying signal model is similar to that introduced in [28]

and expresses the sound field at the microphone array as a

sum of plane-waves (PWs) together with isotropic and spatially

white noise components. An advantage of the proposed model

is that estimating its parameters does not require the interferer

directions to be determined explicitly although it is nevertheless

straightforward to account for any interferers whose target vec-

tors are known a priori. Once the model parameters for the SCM

have been determined, an estimate of the NCM can be made by

excluding any sources that lie close to the direction of the target

talker. This provides the robustness advantages of the MVDR

beamformer without the need to estimate the noise component in

each microphone signal. The principle underlying this approach

is similar to that of the GSC-based method in [29] where the

blocking matrix is modified to suppress an angular region around

the target direction. An earlier version of the proposed method

was presented in [30]; the present paper includes a richer model

of the sound field, an explicit estimation of the NCM from

the SCM, more extensive evaluation and a new procedure for

determining the model parameters with lower cost and improved

performance.

The remainder of the paper is organized as follows: Section II

formulates the problem, defines the parametric model for the

SCM and explains the estimation of the NCM from the modelled

SCM. Section III describes the procedure for estimating the

parameters of the model under the assumption of single unknown

plane wave direction. Using test data generated respectively

with simulated and measured room impulse responses (RIRs),

Sections IV and V compare the performance of beamformers

designed with the proposed method against that of beamformers

using other baseline techniques. Finally, conclusions are given

in Section VI.

II. FORMULATION AND PROPOSED MODEL

Assuming that all sources are in the far field, the time domain

signal received at the mth microphone, ym(t), can be decom-

posed into a sum of plane waves encompassing both direct-path

propagation from sources as well as reflected components, to-

gether with a noise component

ym(t) =

J
∑

j=1

xm,j(t) + vm(t) (1)

where t is the time index, J is the number of plane wave

components, xm,j(t) is the signal due to the jth plane wave

component and vm(t) is sensor noise. In typical room acoustic

scenarios, J will often be very large since it encompasses not

only the direct path of the sources but also numerous reflections.

Note that due to the coherence between (near-) simultaneously

arriving reflections, the J plane waves do not necessarily have

a direct, one-to-one, correspondence with reflection paths.

The microphone signals can equivalently be expressed in the

STFT domain as

Ym(ν, ℓ) =
J
∑

j=1

Xm,j(ν, ℓ) + Vm(ν, ℓ) (2)

where capitalized letters denote the STFT of the quantities

denoted by the corresponding lowercase letters in (1), and ν

and ℓ are the frequency and frame indices respectively. Since

all frequency bins are processed independently, the dependence

on ν will be omitted in the remainder of this paper for clarity.
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Stacking the signals for all M microphones into a vector gives

y(ℓ) =
J
∑

j=1

xj(ℓ) + v(ℓ) (3)

where y(ℓ) =
[

Y1(ℓ) . . . YM (ℓ)
]T

and (·)T denotes the

transpose. Other signals are stacked similarly.

In the design of a beamformer, the weight vector, w(ℓ) can

be calculated according to the MVDR formula [8], in which the

dependence on ℓ has been omitted for clarity,

w =
R−1

ε d

dHR−1
ε d

(4)

with Rε = R̂N + εI (5)

and ε = max

(

λmax − κ0λmin

κ0 − 1
, 0

)

, (6)

where d is the steering vector, R̂N is an estimate of the NCM,

(·)H and (·)−1 respectively denote the conjugate transpose and

the inverse, I is the identity matrix, λmax and λmin are the

largest and smallest eigenvalues of R̂N , and κ0 is the maximum

permitted condition number ofRε and, indirectly, constrains the

norm of w and the sensitivity of the beamformer to errors in d

[26], [27].

The proposed technique first introduces the parametric model

of the SCM from which the NCM is then estimated.

A. Parametric Model of SCM

The proposed sound field model used to generate the modelled

SCM makes three simplifying assumptions:

1) the array is sufficiently compact that, for a plane wave, the

relative transfer function (RTF) to each microphone with

respect to the reference microphone can be represented by

a multiplicative constant in the STFT domain [31],

2) the signal in each time-frequency cell is dominated by

a small number, K, of the J plane wave components

enumerated in (2) and (3). This is a generalization of the

W-disjoint orthogonality assumption in [32],

3) The combined effect of the remaining J −K plane wave

components may be approximated as a diffuse isotropic

sound field, γ.

With these assumptions, (3) is represented in terms of the

model as

ẏ(ℓ) =

K
∑

k=1

a(Ωk(ℓ))Ṡk(ℓ) + γ(ℓ) + v(ℓ) (7)

where ẏ(ℓ) is the modelled signal, γ(ℓ) is the diffuse noise

signal, and Ωk(ℓ) is the direction of arrival (DOA) of the kth

plane wave component(s) in the ℓth frame (which may be dif-

ferent in each frequency bin), Ṡk(ℓ) models the complex-valued

amplitude of the kth plane-wave as observed at the arbitrarily

selected, reference microphone anda(Ω) is the plane-wave array

manifold expressed as the RTF from a distant source to each

microphone with respect to the reference microphone.

The signal covariance matrix (SCM) is the STFT-domain

covariance of the microphone signals

Ry(ℓ) = E{y(ℓ)yH(ℓ)} (8)

where E{·} is the expectation operator. The powers and covari-

ance matrices of the quantities in (7) are similarly defined as

σk(ℓ) = E{|Ṡ2
k(ℓ)|}

Ra(Ω) = a(Ω)aH(Ω)

Rγ(ℓ) = E{γ(ℓ)γH(ℓ)} � σK+1(ℓ)Rγ

Rv(ℓ) = E{v(ℓ)vH(ℓ)} � σK+2(ℓ)Rv (9)

where a normalized covariance matrix is written with an over-

bar to indicate that it is scaled so that the diagonal element

corresponding to the reference microphone equals unity. In

this work we will assume that the pre-calculated normalized

covariance matrices Rγ and Rv are based respectively on a

spherically isotropic noise field and on uncorrelated spatially

white Gaussian sensor noise.

It can now be seen that the covariance matrix of each term

in (7) can be expressed as the product of a fixed matrix and a

scalar parameter. Assuming that these terms are uncorrelated,

this leads to a compact model of Ry(ℓ) written as

Rẏ(ℓ) =

K
∑

k=1

σk(ℓ)Ra(Ωk(ℓ)) + σK+1(ℓ)Rγ + σK+2(ℓ)Rv

(10)

and defined by the 2K + 2 parameters {Ωk(ℓ), σk(ℓ)}1≤k≤K ,

σK+1(ℓ) and σK+2(ℓ). These denote respectively the DOA and

power of each of the K plane-wave components, the power of

the diffuse noise component and the power of the sensor noise

component all at the reference microphone.

B. NCM Estimation From the Modelled SCM

Where the estimated SCM model identifies a dominant source

in exactly the same direction as the target, which is a priori

known, the MVDR and MPDR beamformers are equivalent,

as discussed in Sec I. However, coherent reflections and/or

estimation errors can lead to the direction of the dominant source

being slightly offset from the true source direction. Therefore to

avoid signal cancellation, an estimate of the NCM may now be

obtained by excluding the components likely to be associated

with the target from the modelled SCM and calculated as

R̂CM(ℓ) =
∑

k∈K
σk(ℓ)Ra(Ωk(ℓ))+ σK+1(ℓ)Rγ+σK+2(ℓ)Rv

(11)

where K denotes the set of plane-waves for which the angle

between Ωk and steering direction exceeds ∆Ω. In other words,

using the modelled SCM from (10), the plane-wave power

associated with directions that lie within ∆Ω of the target

direction are set to zero to obtain an estimate of the NCM, R̂CM.

The estimated NCM is then used to calculate the beamformer

weights from (4)–(6). The choice of value for ∆Ω is discussed

in Sections IV-C and V-C.
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The general approach outlined above allows for the incorpo-

ration of a priori known interferer directions. The usefulness

of such information depends on the accuracy with which it is

known or can be estimated. Since in many situations interferer

directions are unknown, or vary with time, in the remainder of

this paper we restrict our analysis to cases K = 1 and K = 2
and where the target is the only source whose direction is known.

III. MODEL PARAMETER ESTIMATION

To determine the parameters of the SCM model in (10), an

estimate, R̂y(ℓ), of the SCM in (8), is first obtained by applying

a recursive estimator to the instantaneous covariance,

R̂y(ℓ) = αR̂y(ℓ− 1) + (1− α)y(ℓ)yH(ℓ), (12)

where α determines a smoothing time constant whose choice is

discussed in Section IV. This estimator is a lowpass filter with a

gain of unity at zero frequency, as in [33]. The number of model

parameters in (10) may be reduced by making the assumption

that the DOAs, {Ωk(ℓ)}, of all but the first of the dominant plane

waves are known a priori. In this paper, we consider the cases

K = 1 and K = 2 where, in the latter case, the second source

corresponds to the target whose direction is assumed known. For

each TF cell, the remaining K + 3 parameters are then chosen

to minimize the Frobenius norm of the difference between the

modelled and estimated covariance matrices as the solution to

arg min
Ω1,{σk}1≤k≤K+2

{

∥

∥

∥
Rẏ − R̂y

∥

∥

∥

2

F

}

(13)

where ‖ · ‖F denotes the Frobenius norm and the frame index,

(ℓ), has been omitted for clarity.

In order to express (13) as a quadratic programming problem

in standard form, an invertible, linear, norm-preserving trans-

formation is applied that converts a complex-valued Hermitian

covariance matrix, R, into a real vector, r, whose M2 elements

are defined by

ri+(j−1)M =

⎧

⎪

⎨

⎪

⎩

√
2ℜ (Ri,j) for 1 ≤ i < j ≤ M

Ri,j for 1 ≤ i = j ≤ M√
2ℑ (Ri,j) for 1 ≤ j < i ≤ M

(14)

in which ℜ() and ℑ() take the real and imaginary parts of their

arguments and Ri,j denotes the element of R at row i and

column j. It can be verified that the transformation is linear

and that

‖R‖2F = rT r. (15)

In the remainder of this section, the transformed version of a

covariance matrix is denoted by a lower case r with the same

subscripts and diacritics as the original matrix.

Substituting (10) into (13) and applying this transformation

results in the following optimization problem

min
Ω1

{

min
σ

(

‖Cσ − r̂y‖2
)}

subject to σk ≥ 0 for 1 ≤ k ≤ K + 2 (16)

where σk denotes the kth element of σ and

C =
[

r̄a(Ω1) · · · r̄a(ΩK) r̄γ r̄v
]

(17)

σ =
[

σ1 · · · σK σK+1 σK+2

]T
. (18)

The outer minimization in (16) is performed using an ex-

haustive search over all possible values of the discretized plane

wave direction, Ω1. For each possible value of Ω1, the inner

minimization in (16) is a quadratic programming problem whose

solution is the unique pair of vectors, σ and µ that satisfy the

Karush-Kuhn-Tucker (KKT) conditions [34]:

µ = CT (Cσ − r̂y) (19)

with σk ≥ 0, µk ≥ 0 and σkµk = 0 ∀k. (20)

This quadratic programming problem may be solved using the

algorithm from [35]. The algorithm would normally be initial-

ized with σ = 0 but, because the solution must be found for

many different values of Ω1, it is more efficient to initialize with

σ = σ where σ is the solution to (16) but with the additional

constraint σ1 = 0 (i.e. without any directional component). It

is found that, in the majority of TF cells, all the remaining

component powers in σ are strictly positive which implies that

the corresponding elements of µ are necessarily zero because of

the condition σkµk = 0 in (20). To determine σ, it is therefore

most efficient to apply the algorithm from [35] to the dual of the

quadratic programming problem in which the roles of σ and µ

are interchanged, (19) is rewritten as

σ =
(

CTC
)−1 (

µ+CT r̂y
)

, (21)

and the optimization is initialized with µk = 0 for k 
= 1.

IV. EXPERIMENT USING SIMULATED RIRS

In this section an evaluation using simulated reverberant

RIRs is conducted to compare the performance of the proposed

compact model method with baseline methods under varying

reverberation. An evaluation using the measured RIRs from a

reverberant room under varying angular spacing and noise level

is presented in Section V. The MATLAB code and some audio

examples of the results presented in this paper are available

at [36] and [37], respectively.

A. Scenario Setup

Recorded anechoic speech signals were convolved with sim-

ulated reverberant RIRs for a 32-element rigid spherical micro-

phone array (SMA) with a radius of 4.2 cm (corresponding to

the em32 Eigenmike [38]) using the spherical microphone arrays

impulse response generator (SMIRgen) [39], [40] which is based

on the image method [41]. Spatially white Gaussian sensor noise

was also added. The reference microphone is chosen towards

the top with azimuth of 180◦ and inclination of 21◦ where the

array orientation is aligned with the X-axis, to minimise the

dependence on azimuth of arrival of the sources.

As illustrated in Fig. 1, the array was placed at (4.65,

3.25, 1.5)m in a simulated shoebox room with dimension of
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Fig. 1. The top view of the simulation setup. The origin is set to the array
location.

8.3× 6.5× 2.9m. The reverberation time, T60, was varied be-

tween 0.2 s and 1.0 s and the associated speech clarity, C50,

varied between 27.05 dB and 2.0 dB. The scenario involves

two main sources (one target and one interferer) as well as

eight sources which generate babble noise. All sources are

stationary and lie on the array’s horizontal plane. The target

azimuth is 0◦ while the interferer azimuth is ∆ϕ = 15◦. The

direction of the interferer is unknown to the beamformer al-

gorithms but the target direction is known. The eight bab-

ble sources have close-to-uniform circular distribution with

azimuths of {18◦, 72◦, 108◦, 162◦, 198◦, 252◦, 288◦, 342◦}. The

main sources (target and interferer) and the babble sources are

respectively 0.5 m and 1.57 m away from the array.

The anechoic speech source signals were selected from Open

Speech Repository [42] containing a selection of two female and

six male talkers each reading different phrases in English. Fifty

unique pairs of speech signals (with no repeated talker or phrase

in a pair) were selected and each pair was used in two trials

with swapped target and interferer positions giving a total of

100 trials per setting. For each trial, eight other speech signals

were randomly selected as babble noise with a unique phrase

per source in each trial. The signals were sampled at 8 kHz and

truncated to a duration of 6s for processing.

The relative amplitudes of the sources at the reference micro-

phone are controlled using three parameters defined as follows:
� signal-to-interference ratio (SIR) is the power ratio of the

target source to the interferer source.
� signal-to-babble-noise ratio (SBNR) is the power ratio of

the target source to the overall babble noise signal with the

equal power at all babble sources.
� signal-to-sensor-noise ratio (SSNR) is the power ratio of

the target source to the individual sensor noise.

In this experiment, SIR = −5 dB, SBNR = 15 dB, SSNR =
40 dB and ∆ϕ = 15◦ corresponding to a realistic challenging

situation where an adjacent interferer masks the target. The effect

of varying these parameters is investigated in Section V.

B. Methods

The proposed compact model (CM) method is compared

with four baseline MVDR-based techniques including static

and adaptive beamformers. They all share the same MVDR

formulation and use (4)–(6) for the weight vector calculation

but differ in the choice of covariance matrix. Table I provides

a summary of the methods. An additional ‘passthrough’ case is

also included, which is the unprocessed signal at the reference

microphone. The description and calculation of the covariance

matrix in the four baseline methods is as follows:

1) Isotropic (Iso): A stationary spherically diffuse sound

field is assumed. This is equivalent to assuming the presence

of interference equally from all directions. The spherically

isotropic diffuse covariance matrix can be obtained as

Rγ =

∫

Ω

a(Ω)aH(Ω)dΩ, (22)

where
∫

Ω dΩ =
∫ 2π

0

∫ π

0 sin(ϑ)dϑdϕ denotes integration along

azimuth ϕ ∈ [0, 2π) and inclination ϑ ∈ [0, π].
Equation (22) is approximated using a quadrature-weighted

grid of discrete points I with 10◦ resolution in both azimuth and

inclination giving

R̂Iso =
∑

i∈I
wia(Ωi)a

H(Ωi), (23)

where wi is the quadrature weight for each sample point given

by [43]

wi =
2 sinϑi

NϕNϑ

0.5Nϑ−1
∑

m=0

sin ((2m+ 1)ϑi)

2m+ 1
(24)

in which ϑi is the inclination of sample point i and the number

of sample points in azimuth and inclination are Nϕ and Nϑ

respectively.

2) MPDR: An estimate of the SCM in (8) is obtained using

(12) giving

R̂MPDR(ℓ) = R̂y(ℓ). (25)

3) Oracle-VAD: Using a voice activity detector (VAD) [44]

on the oracle target signal in isolation at the array’s reference

channel, an estimate of the SCM as in (25) is used for the duration

when the target is inactive giving

R̂Oracle−VAD(ℓ) =

{

R̂y(ℓ) ifVADTarget(ℓ) = 0

R̂y(ℓ− 1) otherwise
(26)

where VADTarget(ℓ) is the VAD state of the target at frame ℓ.

4) Oracle-NCM: The direct-path target-only signal,yTarget is

used to estimate the true NCM as

R̂Oracle−NCM(ℓ) = αR̂Oracle−NCM(ℓ− 1)

+ (1− α)(y(ℓ)− yTarget(ℓ))(y(ℓ)− yTarget(ℓ))
H . (27)

C. Parameter Settings

The time-domain signals are transformed to the STFT domain

using 16 ms frames with 50% overlap. The steering vectors used

for all methods are anechoic simulated impulse responses for

the rigid spherical array, as described in Section IV-A, and are
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TABLE I
METHODS SUMMARY

Fig. 2. Distribution of the evaluation metrics as absolute values (top row) and relative to CM (bottom row) for fixed SIR = −5 dB, SBNR = 15 dB, SSNR =

40 dB, ∆ϕ = 15◦ and varying reverberation using simulated RIRs.

obtained using SMIRgen [39], [40]. The maximum condition

number κ0 = 100 in (6) is empirically chosen and used in all

methods. The smoothing factor α used for the real-time covari-

ance matrix estimation in the proposed, MPDR, Oracle-VAD

and Oracle-NCM methods is calculated as

α = exp

(−∆t

τ

)

, (28)

where ∆t = 8 ms is the frame hop and τ = 50 ms is the

time constant of the exponential moving average. The initial

covariance matrix at ℓ = 0 for the smoothing operation is the

mean SCM in (8) averaged over the first 100 ms assuming no

activity of the target in this initialisation interval.

In these experiments, the proposed method usedK = 1 in (10)

and a spatial search domain of discrete grid points with 5◦ res-

olution along azimuth and inclination covering the full azimuth

circle and 90◦ ± 10◦ in inclination. This implicitly assumes that

the dominant sources lie within ±10◦ of the horizontal plane of

the array. The mis-steering angular range ∆Ω used to exclude

the target-nearby estimated directions in (11) was empirically

set to 10◦.

D. Evaluation Metrics

The beamformer output was evaluated using three intrusive

metrics; fwSegSNR [45], PESQ [46], [47], and STOI [48]. The

PESQ and STOI metrics aim to measure speech quality and

speech intelligibility respectively. Each metric compares the

output of the beamformer to the target-only direct-path signal,

at the reference microphone.

E. Results and Discussion

Fig. 2 shows the distribution of the evaluation metrics both

as absolute values (upper row) and relative to CM (lower row)

for four different values of T60 and C50 using simulated RIRs.

The boxes show the upper and lower quartiles with the whiskers

extended to 1.5 times the interquartile range with any values

outside this range marked as grey dots. The mean and median are

respectively indicated as black dots and horizontal solid black

lines in the boxes. Using a paired t-test, all the relative differences

plotted in the lower row are significant at the 5% level except

where indicated with a star at the bottom of the plot. The results

for each metric are discussed in turn below. In all cases lowest

and highest metric scores were obtained with Passthrough and

Oracle-NCM respectively, which confirms that the beamformers

always improve the passthrough signal.

1) fwSegSNR Evaluation: Using the fwSegSNR metric, the

order of performance from high to low is consistently Oracle-

NCM, MPDR, Oracle-VAD, CM, Iso and Passthrough, as shown

in the leftmost column of Fig. 2. CM significantly outperforms

Iso by up to 2 dB and with an average improvement of 1 dB due

to utilising an extra component for the presence of interferer in
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Fig. 3. The spatial, spectral and temporal visualisations of the filter gain (normalised by the transfer function of the reference microphone) for each beamformer
in a trial with T60 = 0.2 s, C50 = 27.5 dB, SIR = −5 dB, SBNR = 15 dB and ∆ϕ= 15◦ using simulated RIR. The fourth column shows the spectrogram of the
oracle signals for the anechoic target, anechoic interferer, reverberant babbles as well as the passthrough at the reference microphone. For each method (per row),
the first three columns respectively show the instantaneous spatio-spectral beam pattern on the horizontal plane at time t = 5 s, the instantaneous filter response in
the direction of target and interferer, and the spectrogram of the filter in the interferer’s direction. The solid blue line on the plots in the third and fourth columns
shows the time used for the instantaneous plots in the first and second columns and the dashed blue lines on the first column plots indicate the azimuth of the target
and interferer.

the model. It is observed that MPDR and Oracle-VAD achieve

more noise reduction than CM. However, this comes at the cost

of signal quality and intelligibility degradation, as is seen in the

subsequent metrics.

2) PESQ Evaluation: As seen in the centre column of Fig. 2,

CM outperforms Iso by up to 0.6 and with an average improve-

ment of 0.2 in varying amount of reverberation due to interferer

suppression. In high reverberation, MPDR and CM show similar

performance whereas, in low and moderate reverberation, CM

slightly leads by an average of 0.05 (T 60 ≤ 0.5 s, C50 ≤9.0 dB).

3) STOI Evaluation: The absolute STOI plot in the top right

plot of Fig. 2 shows that STOI decreases with increasing T60.

The ∆ STOI plot shows that CM outperforms Iso, MPDR, and

Oracle-VAD in almost all cases by up to 0.15 in STOI with an

average improvement of 0.05.

Compared to Iso, CM shows a greater performance advantage

in low reverberation (T60 =0.2 s, C50 =27.5 dB) than in moder-

ate and high reverberation. This is expected since the suppression

of reverberation is handled by the isotropic component, which

is shared in both methods. Hence as the reverberation increases,

the isotropic component (present in both Iso and CM) plays a

greater role in the beamforming. However the distinguishability

threshold of Iso and CM also depends on other parameters such

as SIR, source angular spacing and the width of the main beam

in Iso that is governed by the number of microphones in the

array.

Compared to MPDR, CM gives a consistent STOI improve-

ment of about 0.05 at all reverberation levels despite having a

worse fwSegSNR. Compared to Oracle-VAD, CM still provides

better STOI due to its target-robust adaptive suppression of in-

terferer when the target is active, especially as the reverberation

decreases where the presence of interferer is more prominent

than the diffuse noise.

F. Beam Patterns Analysis

Fig. 3 shows the spatial, spectral and temporal representations

of the filter gain for each beamformer as well as microphone and
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Fig. 4. The evaluation metrics of the methods relative to CM (K = 1) in a trial with SIR=−5 dB, SBNR =15 dB and ∆ϕ=15◦ for varying T60 = [0.2 s, 0.5 s]
using simulated RIR.

oracle signals for a single trial. Columns one to three illustrate

the beamforming filter gains for each beamformer per row. The

first two columns show the instantaneous filters at time t = 5 s in

the azimuth-frequency and the frequency domains, respectively.

The third column shows the filter in the interferer direction in the

STFT-domain. The fourth column shows the oracle direct-path

target and interferer, reverberant babble noise as well as the

passthrough microphone signal all at the reference microphone.

As expected, Iso’s beam pattern is independent of the interferer

unlike that of the three adaptive beamformers. Hence, due to

the small angular spacing between interferer and target, the

attenuation in the interferer direction is relatively low (≤ 2 dB)

whereas the adaptive beamformers have much higher (≥ 10 dB)

interferer attenuation above 1 kHz.

Although MPDR and Oracle-NCM look very similar, there

are times where detailed differences can be observed in the third

column plots, e.g. the last 0.5 s period, where strong attenuation

of the interferer is continued to the end in Oracle-NCM, unlike

MPDR. This is due to the presence of the target signal in the

MPDR’s SCM when the target is active. Oracle-VAD is similar

to MPDR when there is no target signal as expected.

CM generally results in fewer STFT cells with significant

interferer attenuation, compared to MPDR and Oracle-NCM.

However, as the PESQ and STOI results in Fig 2 show, this is

at the cost of degrading the target quality and intelligibility in

MPDR. Note that the lack of attenuation at low frequencies is a

consequence of the array dimensions, the condition-number lim-

iting in (5)–(6) and the low angular spacing between interferer

and target.

G. Multi-PW CM

In this subsection, the performance of CM withK = 2 is com-

pared with the other methods, in particular with CM withK = 1.

For CM with K = 2 the DOA of one of the PWs is assumed to

be known and set to the target direction whereas the DOA of

the second PW is estimated. Note that the power of both PWs

are still to be estimated in CM. Although the PW component

with the known DOA in the target direction is considered in the

modelled SCM, it is excluded in the modelled NCM, R̂CM, as

in (11), since the target is within the target-exclusion zone ∆Ω
by definition.

TABLE II
RELATIVE LOCATION OF SOURCES WITH RESPECT TO THE ARRAY

Fig. 5. The top view of the measured RIR setup. The origin is set to the array
location.

Fig. 4 shows the evaluation metrics of the methods relative to

CM (K= 1) in a trial with SIR=−5 dB, SBNR=15 dB and∆ϕ

=15◦ for varying T60= [0.2 s, 0.5 s] using simulated RIR. It can

be seen that the additional PW results in a marginal improvement

in STOI for low reverberation since the importance of PW

component in CM becomes more significant as the reverberation

decreases, as discussed in Section IV-E3.

V. EXPERIMENTS USING MEASURED RIRS

This section presents evaluations using RIRs recorded in a

real reverberant room under varying angular spacing and noise

level. Some audio examples of the results are available at [37].
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Fig. 6. Distribution of fwSegSNR (top row) and ∆fwSegSNR, relative to CM, (bottom row) for varying SIR, SBNR and ∆ϕ using measured RIRs.

Fig. 7. Distribution of PESQ (top row) and ∆PESQ, relative to CM, (bottom row) for varying SIR, SBNR and ∆ϕ using measured RIRs.

A. Experiment Setup

The measured RIRs from METU SPARG Eigenmike em32

Acoustic Impulse Response Dataset [49], [50] were convolved

with the same anechoic speech source signals used in the

previous section with additive spatially white Gaussian sensor

noise.

The RIRs were recorded in an empty approximately rectan-

gular classroom with a high reverberation time (T60 ≈ 1.12 s)
that is illustrated in Fig. 5. The room dimensions of 8.3× 6.5×
2.9m and the array location of (4.65, 3.25, 1.5)m match the

setup in the previous section. The available measurement points,

indicated by dots, were symmetrically distributed on a grid with

0.5m spacing surrounding the array and at the same height as

the array. Table II lists the azimuth, source-to-array distance

and associated C50 for the different sources. Note that although

two positions for the interferer are considered, all trials involve

a single-interferer scenario by including only one of the two

possible positions giving two categories of∆ϕ = 27◦ or 45◦. As

in Section IV, the DOA of the target is known a priori while the

DOA of the interferer is unknown. The same parameter settings

and steering vectors as in Section IV-C are used for all methods

including K = 1 for CM.

B. Results and Discussion

Figs. 6, 7 and 8 respectively show the distribution of

fwSegSNR, PESQ and STOI using measured RIRs. For each

metric, the four columns show different combinations of SBNR

and ∆ϕ while, within each plot, the horizontal axis shows three

different values of SIR. The discussion of the results based on

each metric is as follows.

1) fwSegSNR Evaluation: As shown in Fig. 6, MPDR en-

hances SNR as much as Oracle-NCM since its covariance

matrix partially contains the true NCM. Oracle-VAD has the

third highest SNR improvement due to its utilisation of SCM

but still less than Oracle-NCM and MPDR due to its lack of

adaptive suppression during target activity. CM still leads in SNR

enhancement by 1 dB over Iso due to its ability to suppress the

interferer. The amount of SNR enhancement is not significantly

high as strong attenuation of the interferer can be only achieved

at high frequencies (≥ 1kHz) whereas the the main interference
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Fig. 8. Distribution of STOI (top row) and ∆STOI, relative to CM, (bottom row) for varying SIR, SBNR and ∆ϕ using measured RIRs.

power is at lower frequencies, as shown in the rightmost column

of Fig. 3.

2) PESQ Evaluation: The results in Fig. 7 (bottom row)

show higher or similar PESQ scores for CM compared to Iso,

MPDR and Oracle-VAD. This validates the enhancement of the

target signal perceptual quality compared to other baselines due

to CM’s robustness to mis-steering, when compared to MPDR,

and the use of an interferer component in the modelled covari-

ance matrix, when compared to Iso as well as the robustness to

target activity, when compared to Oracle-VAD.

3) STOI Evaluation: As seen in Fig. 8 (bottom row), CM

consistently outperforms all except Oracle-NCM with a few

cases being similar to Iso. Compared to Iso, as the SIR or ∆ϕ

decreases, CM becomes more superior. The decrease in SIR

increases the importance of interferer component in CM as an

advantage over Iso whereas the decrease in ∆ϕ exposes the

interferer more to the low or no-attenuation zone of the Iso’s

main lobe, as shown in Fig. 3.

Compared to MPDR, CM performs significantly better in

terms of STOI by up to 0.1 and with an average improvement

of 0.05. This is due to CM being more robust to mis-steering,

to which MPDR is prone. These are likely to be more erroneous

in measured RIRs than simulated RIRs. The superiority gap be-

tween CM and MPDR does not significantly vary over different

SIR, SBNR and angular spacing as both methods adaptively

include interferer and isotropic noises in their covariance matrix.

CM also outperforms Oracle-VAD due to its adpative suppres-

sion of interferer during target activity, unlike Oracle-VAD.

C. Mis-Steering Evaluation

This subsection evaluates the effect of mis-steering for each

method as well as the choice of∆Ω in CM. Fig. 9 shows the STOI

for all methods including the variations of CM with varying

choice of ∆Ω = {5◦, 10◦, 20◦} for a trial with SIR = −5 dB,

SBNR=10 dB and∆ϕ=45◦ using measured RIR. As expected,

Oracle-NCM shows the highest robustness to mis-steering. The

STOI drops sharper at the positive target DOA error due to the

steering direction getting closer to the interferer placed at +45◦

Fig. 9. The effect of mis-steering on STOI for a trial with SIR=−5 dB, SBNR
= 10 dB and ∆ϕ = 45◦ using measured RIR.

from the target. The MPDR shows the highest sensitivity to mis-

steering, as expected. It can clearly be seen that the increase in the

size of target-exclusion zone∆Ω in CM improves the robustness

to mis-steering as CM with ∆Ω = 20◦ provides a wider safe

zone (with relatively consistent STOI) than ∆Ω = 10◦ and 15◦.

Although the performance of CM improves with the increase in

the size of target-exclusion zone, the choice of ∆Ω needs to be

less than the minimum angular separation of the interferer(s) to

the target. Since a minimum of∆ϕ = 15◦ was used in this paper

for the interferer azimuth, the choice of ∆Ω = 10◦ was chosen

for our standard CM as stated previously in Section IV-C.

D. Computational Complexity

A comparison of the average run time for each method relative

to MPDR is shown in Fig. 10. CM superiority is shown to be at

the cost of approximately 4.5 times more computational cost

than other conventional beamformers. Several optimizations

could be considered including for example fixed, frequency-

dependent, regularization in (6).
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Fig. 10. Relative average run times for all methods with respect to MPDR.

VI. CONCLUSION

A method employing a compact model of the noise covariance

matrix is proposed for adaptive beamforming. Using the signal

covariance matrix as the reference, the model optimizes a small

number of parameters for each TF cell including the direction

of the dominant source(s) and power components associated

with the plane-wave source(s), spherically isotropic noise and

spatially white sensor noise. This parametric representation of

the signal covariance matrix provides the ability to constrain

the direction of interferer(s) over time, which increases the ro-

bustness to mis-steering or imperfect steering vectors, unlike the

other adaptive baseline methods, which are based on the signal

covariance matrix or a VAD-controlled estimate of the NCM. In

addition, the proposed method uses a model with relatively few

parameters to be estimated and pre-calculated basis elements to

define the complex noise sound field. An evaluation based on

simulated and measured RIRs for a 32-element spherical mi-

crophone array was conducted to compare the proposed method

with other baseline methods, which employs static isotropic (Iso)

sound field, SCM (MPDR and Oracle-VAD) and true NCM

(Oracle-NCM) as well as passthrough signal (no processing),

under varying interference and babble noise conditions, angular

spacing and reverberation. The results show that all baseline

methods (excluding the Oracle-NCM) are outperformed by the

proposed method in terms of improving the target intelligibility

and perceptual quality by up to 0.15 and 0.6 with average

improvements of 0.05 and 0.1 in STOI and PESQ, respectively.

Informal listening by the authors indicates that the subjective

improvement is more perceptually significant than indicated by

the metrics. The interested reader is invited to listen to the audio

demonstrations available at [37]. Although the proposed method

is shown to result in less improvement of fwSegSNR than MPDR

and Oracle-VAD, CM is shown to have noticeable superiority

and robustness in terms of enhancement of target intelligibility

and perceptual quality due to its target-exclusion zone constraint

over the interference direction as well as ability to suppress the

interferer(s) during target activity. The superiority of CM over

Iso increases as the relative level of interference noise increases,

and the sources’ angular spacing or reverberation reduces.
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