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Abstract This paper provides a comprehensive analysis of the effect of speaking rate on frame classification
accuracy. Different speaking rates may affect the performance of the automatic speech recognition (ASR)
system yielding poor recognition accuracy. A model trained on a normal speaking rate is better able to
recognize speech at a normal pace but fails to achieve similar performance when tested on slow or fast
speaking rates. Our recent study has shown that a drop of almost ten percentage points in the classification
accuracy is observed when a deep feed-forward network is trained on the normal speaking rate and evaluated
on slow and fast speaking rates. In this paper, we extend our work to convolutional neural networks (CNN)
to see if this model can reduce the accuracy gap between different speaking rates. Filter bank energies (FBE)
and Mel frequency cepstral coefficients (MFCC) are evaluated on multiple configurations of the CNN where
the networks are trained on normal speaking rate and evaluated on slow and fast speaking rates. The results
are compared to those obtained by a deep neural network (DNN). A breakdown of phoneme level classification
results and the confusion between vowels and consonants is also presented. The experiments show that the
CNN architecture when used with FBE features performs better on both slow and fast speaking rates. An
improvement of nearly 2% in case of fast, and 3% in case of slow speaking rates is observed.

Keywords speech recognition · phoneme classification · speaking rate · deep learning

1 Introduction

Deep learning has seen a massive growth in the past decade with the advancement of high performance
computational devices and dynamic programming. The decades worth of knowledge that has gone into
conventional state-of-the-art recognition systems is seeing a paradigm shift, and speech recognition is no
exception. Traditional speech recognition systems based on Gausian mixture model (GMM)/hidden Markov
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model (HMM) are now being replaced by deep architectures [6], as the gains in accuracy outweigh the
computational cost. Deep architectures having multiple hidden layers are now an essential part of automatic
speech recognition (ASR) systems - not only for feature representation [21] but also for language [2] and
acoustic modeling [21, 18].

ASR systems such as those employing supervised machine learning techniques and deep learning methods
can efficiently learn phonetic patterns. Having said that, speaking rate variability can drastically decrease the
performance of the ASR systems if they are not tuned for it. Variations in speaking rate affect the mapping
between the acoustic properties of speech and the linguistic interpretation of the utterances [9]. Humans can
naturally account for variations in speaking rate and can adapt to it while maintaining phonetic constancy
[4]; however, this can still be a challenging task for ASR systems.

Performance evaluation of ASR can be carried out across different intrinsic variabilities such as speaking
rate, effort, style, and dialect by decomposing the speech signal into phonetic features that describe aspects of
speech production such as voicing, manner, and place of articulation. Voicing deals with the glottal vibration,
i.e., whether glottal vibration is present or absent. Manner deals with the mode of articulatory production
such as nasal, stop, and fricative. Place of articulation deals with the locus of articulatory constriction such
as anterior, medial, or posterior. At the phonetic level, the consonant phonemes and vowel phonemes can be
grouped based on phonetic features for evaluating various speech intrinsic variabilities.

This paper extends our earlier work reported in [22] where we compared four different acoustic features
namely filter bank energies (FBE), Mel frequency cepstral coefficients (MFCC), line spectral frequencies
(LSF), and linear predictive coefficients (LPC). We provided a comparison between these features in terms
of different speaking rates, training the model on the normal speaking rate and evaluating slow and fast
speaking rates. Our findings showed that FBE results were far better compared to the other features. In
this paper, we further evaluate the FBE and MFCC on different deep neural network (DNN) models and
architectures. The contribution of the paper is threefold:

1. Evaluation of multiple configurations of both DNN and convolutional neural network (CNN) architectures
with respect to the number of hidden layers and the number of neurons in each layer.

2. Utilization of temporal context for creating context-dependent feature vectors for both FBE and MFCC
features.

3. Studying the impact of speaking rate variabilities on different deep learning architectures.

The remainder of the paper is structured as follows. Section 2 presents the related work, followed by
Section 3 where we describe both DNN and CNN. Section 4 gives an overview of the experimental setup.
Results and their analysis are presented in section 5, while section 6 concludes the paper.

2 Related work

Speech recognition is an area of wide interest and has undergone massive growth over the last couple of
decades. One particular topic that attracted attention in the late 1990s was the effect of speaking rate on the
performance of speech recognition [13, 5, 12]. It was observed that speech recognition performance dropped
considerably on fast speaking rates [19, 26]. Faltlhauser et al. in their work “why has speaking rate such an
impact on speech recognition performance” tried to figure out how speaking rate affects system performance
by showing a direct correlation between local average HMM score and local speech rate [8]. Similar studies
also showed that variations in speaking rate also affect speaker recognition [27, 10] and authentication [20]
performance, specifically as a result of distorted spectrum [28].

Meyer and his colleagues designed the logotome speech corpus to study the effect of different intrinsic
variabilities by comparing the performance of human speech recognition to automatic recognition systems
[15]. The corpus was designed to facilitate studies of various intrinsic variabilities including speaking rate,
effort, and dialect. The three state HMM model used in their study described each phoneme by a binary
voicing feature and a ternary feature defining manner and place of articulation. They showed that misclassi-
fication of voicing and manner of articulation were the major causes for recognition errors. Later, they tried
to reduce the gap between the performance of automatic systems and human listeners [16]. This work was
further extended to use a DNN model in which the authors compared three acoustic features namely MFCC,
FBE, and PLP [7].
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Various acoustic features have been revisited for the task of frame level phoneme classification with
the development of deeper and wider neural networks. For instance, authors in [24] used MFFC and relative
spectral transformation perceptual linear prediction (RASTA-PLP) for predicting the phoneme classes. They
applied a reservoir computing technique in a two-layer recurrent neural network to classify 39 phoneme
classes of English and found that MFCC performs slightly better compared to RASTA-PLP. MFCC, PLP,
and RASTA-PLP were also evaluated by authors in [11] using fuzzy logic and deep belief networks (DBN)
for the same task but for a different language. Their results for the African language Fongbe similarly showed
that MFCC produced better classification accuracy. Authors in [14] used a more traditional approach by
modeling a five state HMM to compare six acoustic features including LPC, MFCC, PLP, FBE, linear
prediction reflection coefficients and Mel-filter bank coefficients on the task of frame classification for phoneme
recognition for Arabic. In their study, they found that the FBE representation attained the highest frame
level classification accuracy. From the previous work reported in the literature and the work presented in
this section, it is evident that the FBE and MFCC are the two feature sets that stand out from the rest for
correctly classifying phoneme classes. However, it should be noted that all of these studies were conducted
on normal speaking rates.

Not much literature exists regarding the performance of different acoustic features for variable speaking
rates. Evaluating performance for variable speaking rates means that a system should be trained on regular
speaking rates, and tested on slow or fast speaking rates. Our earlier work, on evaluating acoustic features
for variable speaking rates [22], showed that FBE performs slightly better than MFCC when trained and
tested on a three-hidden layer DNN with 1024 neurons in each hidden layer. In this paper, we extend our
work to evaluate and compare how these speech features perform on convolutional deep neural network and
feed-forward deep neural network architectures. Therefore, we build and train our neural network models on
deep architectures with context-dependent acoustic features on normal speaking rate data and test them on
fast and slow speaking rates.

3 Deep neural networks

3.1 DNN

State-of-the-art speech recognition systems use DNN for acoustic modeling as an alternative to GMM [6].
DNN is a feed-forward, artificial neural network consisting of one input layer, one output layer, and at least
two hidden layers. Each hidden unit contains two inner parts: a sum operand adding up all the information
from the previous layer, and a nonlinear function, typically logistic regression (1) or tangent hyperbolic
(depending on the range of the target values) mapping the total input yi from the previous layer to a scalar
xj :

xj = bj +
∑

i

yiθij , yj = logistic(xj) =
1

1 + exp(−xj)
, (1)

where bj is the bias of jth unit, θij is the weight on the edge connecting unit i to unit j, and i is the index
corresponding to all input units to the current layer. In the last layer of nodes, a softmax function will enforce
the total outputs to be mapped as probabilities, by making them add to one. Training the network means
to adjusting the set of parameters such that for each input vector, the output vector is as close as possible
to the desired output.

DNN training consists of two phases. In the first phase, the layers are pre-trained sequentially, in an
unsupervised manner to initialize the weights, and in the second phase a supervised fine tuning is applied to
the network for finalizing the weights. The most popular pre-training scheme is built upon a special type of
Boltzmann machines known as a restricted Boltzmann machines (RBM). These are probabilistic graphical
models consisting of two layers. The variables in the same layer do not have edges linking them (this is why
they are called restricted), while there are undirected edges connecting the nodes of one layer to the other.
The upper level corresponds to hidden variables, and the lower level constitutes the visible nodes. The joint
energy of the visible and hidden units is defined as:

E(v,h) = −

I
∑

i=1

J
∑

j=1

θijhivj −

I
∑

i=1

bihi −

J
∑

j=1

cjvj , (2)
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where hi and vj are the binary hidden and visible state variables, respectively, and bi and cj are the bias
terms for the hidden and visible nodes, respectively. The joint probability assigned to each pair of hidden
and observed variables is:

P (v,h) =
exp

(

− E(v,h)
)

Z
, (3)

where Z is the normalizing constant:

Z =
∑

v

∑

h

exp
(

− E(v,h)
)

. (4)

Training an RBM involves learning the set of unknown parameters θij , bi and cj . This is obtained by
maximizing the average log-likelihood:

L(Θ, b, c) =
1

N

N
∑

n=1

lnP (vn;Θ, b, c) =
1

N

N
∑

n=1

ln
( 1

Z

∑

h

exp(−E(vn,h;Θ, b, c))
)

=
1

N

N
∑

n=1

ln
(

∑

h

exp
(

− E(vn,h;Θ, b, c)
)

)

− ln
∑

h

∑

v

exp
(

− E(v,h)
)

,

(5)

where Θ, b, and c refer to the collection of the unknown parameters. Taking the derivative of the log-likelihood
with respect to one of the weights, we have:

∂L(Θ, b, c)

∂θij
=

1

N

N
∑

n=1

(

∑

h

P (h|vn)hivjn

)

−
∑

v

∑

h

P (v,h)hivj , (6)

where N is the size of the training set. A gradient ascent scheme for maximizing the log-likelihood will be
of the form:

θij(new) = θij(old) + µ
(

< hivj >data − < hivj >reconstruction

)

, (7)

where the < ... > denotes the expectation over the containing variables, the < hivj >data corresponds to the
first term of (6) and represents the correlation between the visible units vj which are the data samples and
the hidden units hi which are generated by (8), < hivj >reconstruction corresponds to the second term of (6)
and represents the correlation between the visible units vj which are reconstructed by (9) and the hidden
units hi which are generated by (8) conditioned to the reconstructed visible units, and µ shows the learning
rate. For calculating < hivj > the conditional probabilities should be computed:

p(hi|v) = logistic
(

bi +

J
∑

j=1

(θijvj)
)

, (8)

and because of the symmetry in the previous equations the following equation can easily be derived:

p(vj |h) = logistic
(

ci +

I
∑

i=1

(θijhi)
)

. (9)

Based on these equations, the correlations can be calculated by applying Gibbs sampling sequentially.
The sampling will be done by the following steps, which are known as contrastive divergence (CD):

• Given the visible layer v(1), samples for the hidden layers are generated by a Gibbs sampler according to
h
(1) ∼ p(h|v(1)).

• From the hidden samples h(1) the visible samples can be generated as v(2) ∼ p(v|h(1)).
• Use the recently generated visible samples v(2) for generating the next hidden samples h(2) ∼ p(h|v(2)).
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Because of only one up-down-up Gibbs sampling is used, this method is known as CD-1 [23]. The new weights
can be calculated from the generated samples as:

θij(n) = θij(n− 1) + µ
(

h
(1)
i v

(1)
j − h

(2)
i v

(2)
j

)

(10)

After training the first RBM on the data, the estimated samples for the hidden units are used as the
visible samples for training the next RBM. In this way, the RBMs can be stacked on top of each other to
make a multilayer generative model that is called a deep belief network (DBN). This process is a pre-training
phase which is carried out in an unsupervised manner. The inferred DBN is then used as the initial values
for the final DNN, which is trained in a supervised manner by adding a softmax layer at the end and having
the label samples as the output. This process is known as fine-tuning. Figure 1 shows the whole procedure
of training a DNN by using the DBN.

3.2 CNN

CNN is a slightly modified version of a standard neural network and is a combination of the feature extracting
layers with the conventional deep neural network. The feature extracting layers contain convolution and
pooling layers, which are not fully connected layers. These layers try to extract the information which
is invariant to variations in the input data. The important part of how to use CNN is presenting the
input data to the convolution layer. The representation of data as features is often called a feature map.
It represents the features along different locations, for example, time and frequency in speech processing.
In the case of speech processing, in particular, a feature map mostly constitutes the information along the
frequency axis [1]. As the feature maps are one-dimensional for a speech signal, each one of them shows
the values of a different frequency band. When the feature maps are ready, the convolution and pooling
are applied to extract the features. The input feature maps Xi, (i = 1, . . . , I) are transformed to another
set of feature maps Yj , (j = 1, . . . , J) by the convolution layers based on the number of the local filters
θij , (i = 1, . . . , I; j = 1, . . . , J). The calculation of the new feature maps is done by the convolution as
follows:

Yj = σ
(

∑

i

Xi ∗ θij + θ0,j

)

, (11)

which is in a matrix form. Here, σ is the activation function. For more clarification, the convolution operation
for the mth element of the feature map xi,m is of the following form:

yj,m = σ
(

∑

i

F
∑

k=1

xi,k+m−1θi,j,k + θ0,j

)

, (12)

h1

v1

v3

RBM2

RBM1

RBM3

DNN

DBN

v2

h2

h3

Fig. 1: Training a DNN based on unsupervised learning of DBN with the stacked RBMs.
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where yj,m is the mth element of the jth feature map, θi,j,k is the kth element of the weight vector θi,j which
connects the ith input feature map to the jth feature map of the convolution layer and F is the filter size.
The filter size specifies the number of input bands which are convolved with each element of the convolution
layer. After computations of the feature map on the convolution layer, a pooling layer is applied to reduce
the dimension of the feature maps and also to remove small variations in the location [1]. There are two
common ways of pooling, maximum and average pooling. If the maximum pooling is applied, the output is
calculated as:

zi,m =
P

max
k=1

yi,(m−1)×s+k, (13)

where P is the pooling size and s is the shift between the pooling regions. In the same way, the average
pooling output is calculated as:

zi,m =
1

P

P
∑

k=1

yi,(m−1)×s+k. (14)

The pooling output can be fed to a nonlinear function or fully connected layers and then all of the weights
can be updated by the backpropagation algorithm.

4 Experimental setup

This section describes the speech dataset, presents the data preparation step, and explains the feature
representation process used for data analysis, presented in section 5.

4.1 OLLO dataset

The Oldenburg logatome (OLLO) corpus [25] was used for this study. It is a speech database that contains
simple, non-sense combinations of consonants (C) and vowels (V), which are referred to as logatomes. These
different phonemes are listed as below:

• Vowels: /a/, /E/, /I/, /c/, /U/, /a:/, /e/, /i/, /o/, /u/.
• Consonants: /d/, /t/, /g/, /k/, /f/, /s/, /b/, /p/, /v/, /ts/, /m/, /n/, /S/, /l/.

One hundred and fifty different CVC and VCV combinations were spoken by 40 German and 10 French
speakers. The VCVs are the combination of 14 central consonants and 5 outer vowels. Also eight consonants
and 10 vowels are combined to make the CVCs. In both combinations the outer phonemes are the same.

Four different dialects are covered by the German speakers containing no dialect, Bavarian, East Frisian,
and East Phalian. The database contains logatomes spoken normally, followed by variabilities such as ‘fast’,
‘slow’, ‘loud’, ‘soft’, and ‘questioning’. These variabilities can be grouped together into three categories: i)
speaking rate (fast, slow and normal), ii) speaking style (question and statement), and iii) speaking effort
(loud, soft and normal). Each of the 150 logatomes was repeated three times by each speaker. The same
number of male and female speakers were used to record the database to cover gender variabilities. The
sampling frequency of the utterances is 16 kHz.

OLLO is mostly used for comparison between human speech recognition (HSR) and ASR [15, 17]. We
primarily chose to use this dataset for the following reasons:

(a) This database enables the evaluation of different variabilities and their effects on ASR systems;
(b) OLLO may be useful in studying the influence of dialect or accent on speech recognitition performance.

In the following experiments 10 speakers with no dialect were chosen. The variations fast, slow, and normal
were used.
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Table 1: Number of training and test samples for fast, normal, and slow speaking rate utterances.

Speaking rate Fast Normal Slow

No. training

samples

127100 174200 258200
≃ 20 minutes ≃ 30 minutes ≃ 45 minutes

No. test samples
14100 19300 31700

≃ 2.5 minutes ≃ 3.5 minutes ≃ 5.5 minutes

Table 2: Leave-one-out cross validation train and test data samples for each speaker.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

Train 110945 115529 117133 113956 117639 119083 116433 117454 115817 116749

Test 18025 13441 11837 15014 11331 9887 12537 11516 13153 12221

4.2 Data preparation

For the experiments, different speaking rate utterances such as fast, normal, and slow were chosen from
no-dialect speakers, as shown in Table 1. Then leave-one-out cross validation is performed on each of the
ten speakers (S01 - S10). Each speaker is chosen iteratively for the test and the remaining nine speakers are
used for training. Table 2 shows the total number of train and test samples for each of the ten speakers.

As mentioned in section 4.1, 150 logatomes are available with three repetitions each, which equals 450
utterances for each speaking rate. The average length of utterances for slow, normal, and fast speaking rates
are 700 ms, 400 ms, and 300 ms respectively. The frame length and frame shift were set to 25 ms and 10 ms
respectively. For the validation data, we used 5% of the training data. The total number of training and test
samples, and the amount of data in minutes are shown in Table 1.

4.3 Speech Features

Two different feature representations were used for the experiments: MFCC and FBE. All of the features
were extracted from a windowed signal of length 25ms with a 15ms overlap between consecutive frames.

4.3.1 FBE and MFCC

FBE features were extracted by a uniform filter bank of size 40 on the Mel-scaled frequency axis which
resembles the frequency characteristics of the human auditory system. The logarithm of the filter bank
energies yield the FBE features. MFCCs were then obtained by using the DCT transformation on the FBE
features. As a result of this transformation, the features were decorrelated. To have the same information
in both FBE and MFCC representations, all of the 40 MFCC features were preserved, and there was no
dimensionality reduction.

4.3.2 Feature representation

The features extracted in section 4.3.1 were represented as a temporal context produced by the DCT vector
Cv. Different sizes of Cv were generated by concatenating M prceeding and N succeeding frames: Cv =
[CT

(f−M), . . . , C
T
f , . . . , C

T
(f+N)]

T . Each frame is a single feature vector of size 1 × 40 and Cf is the context

frame under consideration which leads to Cv having size 40× (M + 1 +N) . We set M = N . Context sizes
of M (i.e.,M = 0, . . . , 10) were used. This resulted in a context vector of size 40 for no-context and 840 for
M = 10 corresponding to time durations of 25ms to 225ms. Figure 2 shows the frame classification accuracy
for different M . These were initial experiments to determine context size, and based on results, context size
M = 10 was used for the remaining experiments. It is obvious that the larger the context size, the better the
accuracy. The empirical results do, however, suggest that the accuracy rate becomes saturated for M ≥ 9.
The Cv is the input to various deep networks, as shown in Figure 3.
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Fig. 2: Effect of context size on the accuracy rate for train and test data.

40xCv

Fig. 3: A 3 hidden layer DNN with the context window size of Cv.

Table 3: Topology of the CNN.

Layer type Input shape Output shape No. of filters Filter size Activation function

Convolution 1D 840 4224 128 8× 21 Linear
Max pooling 4224 1408 −− −− Sigmoid

Convolution 1D 1408 2048 256 512× 1 −−

Max pooling 2048 2048 −− −− Sigmoid
Fully connected 2048 1024 −− −− Sigmoid
Fully connected 1024 1024 −− −− Sigmoid
Fully connected 1024 24 −− −− Softmax

4.4 Networks topology

Two types of deep learning models are utilized in this study, each containing an architecture of four hidden
layers, as shown in Fig. 4. For the DNN architecture, each fully-connected layer containing 1024 nodes is
placed one after another. The hyperparameters of the DNN topology and the network configurations are
set according to [22]. In the case of CNN, the network topology consists of two complex convolution layers
where each complex layer consists of a convolution followed by a pooling operation. A Max pooling of size 3
and a pool stride of 1 was used for the first pooling layer and a pool size of 1 for the second pooling layer in
the experiments. The other two hidden layers are fully-connected layers. The network configuration and the
total trainable parameters of the CNN are given in Table 3. In both models, the input layer contains 840
nodes (i.e., 40Fv × 21Cv) and the output layer contains 24 nodes.
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maxpooling

convolution layer 2

maxpooling

Fig. 4: Architecture of CNN and DNN.

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.84 0.02 0 0.02 0 0 0 0 0 0

/E/ 0 0.81 0.06 0 0 0 0 0 0 0

/I/ 0 0.05 0.85 0 0 0 0.02 0 0 0

/ c/ 0.1 0 0 0.76 0.04 0 0 0 0 0

/U/ 0 0 0 0.06 0.79 0 0 0 0 0.02

/a:/ 0.17 0 0 0.02 0 0.74 0 0 0 0

/e/ 0 0.02 0.34 0 0 0 0.5 0.07 0 0

/i/ 0 0 0.11 0 0 0 0.02 0.82 0 0

/o/ 0 0 0 0.03 0.14 0 0 0 0.71 0.05

/u/ 0 0 0 0 0.15 0 0 0 0.10 0.69

(a) Fast speaking rate

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.83 0 0 0.03 0 0.05 0 0 0 0

/E/ 0 0.86 0.06 0 0 0 0 0 0 0

/I/ 0 0.06 0.78 0 0 0 0.04 0.05 0 0

/ c/ 0.03 0 0 0.83 0.04 0 0 0 0 0

/U/ 0 0 0 0.05 0.78 0 0 0 0.03 0.04

/a:/ 0.03 0 0 0.03 0 0.87 0 0 0 0

/e/ 0 0 0.11 0 0 0 0.73 0.1 0 0

/i/ 0 0 0.03 0 0 0 0.03 0.91 0 0

/o/ 0 0 0 0 0.02 0 0 0 0.86 0.09

/u/ 0 0 0 0 0.03 0 0 0 0.09 0.83

(b) Normal speaking rate

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.58 0 0 0.04 0 0.29 0 0 0 0

/E/ 0 0.77 0.06 0 0 0 0.03 0 0 0

/I/ 0 0.06 0.53 0 0 0 0.12 0.16 0 0

/ c/ 0 0 0 0.76 0.05 0.03 0 0 0.08 0

/U/ 0 0 0 0.07 0.52 0 0 0 0.13 0.19

/a:/ 0 0 0 0.02 0 0.88 0 0 0 0

/e/ 0 0 0.06 0 0 0 0.6 0.23 0 0

/i/ 0 0 0 0 0 0 0.02 0.91 0 0

/o/ 0 0 0 0 0 0 0 0 0.80 0.14

/u/ 0 0 0 0 0.04 0 0 0 0.12 0.79

(c) Slow speaking rate

Fig. 5: Vowel part of the confusion matrix for different speaking rates with DNN trained on FBE features.

5 Deep learning for frame-level classification

This section presents an analysis of the results for frame-level classification in terms of classification accuracy
of correctly classified phonemes. It also provides in-depth error analysis and presents confusion matrices for
various phonemes. An F1 score showing a weighted average of precision and recall was computed for the full
confusion matrix to compare the performance between the DNN model and the CNN. Additionally, a Kappa
κ value that represents classification accuracy normalized by the imbalance of the classes in the data was
also computed for a fair comparison.

5.1 Classification accuracy

Results in Table 4 show the frame accuracy rate for the normal speaking rate for both training and test
data. There is a wide gap between training and test accuracy rates for MFCC as compared to FBE for
both DNN and CNN, especially in the case of DNN with MFCC features. This huge gap might be a result
of over-fitting of the training data, which failed to generalize well on the test set in the case of MFCC for
DNN. CNN, on the other hand, has improved the test classification accuracy by 0.5% and 2% for FBE and
MFCC respectively. Table 5 shows the frame classification accuracy for fast (V1) and slow (V2) speaking
rates for the networks trained on normal (V6) speaking style. Networks trained on FBE achieved better
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/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.85 0.02 0 0.02 0 0 0 0 0 0

/E/ 0 0.86 0.03 0 0 0 0 0 0 0

/I/ 0 0.07 0.81 0 0 0 0.03 0 0 0

/ c/ 0.08 0 0 0.77 0.02 0 0 0 0 0

/U/ 0 0 0 0.05 0.81 0 0 0 0 0.03

/a:/ 0.16 0 0 0 0 0.78 0 0 0 0

/e/ 0 0.05 0.32 0 0 0 0.53 0.03 0 0

/i/ 0 0 0.12 0 0 0 0.03 0.81 0 0

/o/ 0 0 0 0.03 0.14 0 0 0 0.68 0.07

/u/ 0 0 0 0 0.14 0 0 0 0.08 0.73

(a) Fast speaking rate

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.83 0 0 0.02 0 0.06 0 0 0 0

/E/ 0 0.9 0.02 0 0 0 0 0 0 0

/I/ 0 0.08 0.76 0 0 0 0.04 0.02 0 0

/ c/ 0.02 0 0 0.83 0.02 0.02 0 0 0 0

/U/ 0 0 0 0.05 0.77 0 0 0 0.03 0.05

/a:/ 0.02 0 0 0.02 0 0.92 0 0 0 0

/e/ 0 0.02 0.09 0 0 0 0.76 0.07 0 0

/i/ 0 0 0.03 0 0 0 0 0.93 0 0

/o/ 0 0 0 0 0.02 0 0 0 0.85 0.09

/u/ 0 0 0 0 0.02 0 0 0 0.06 0.87

(b) Normal speaking rate

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.54 0 0 0.04 0 0.33 0 0 0 0

/E/ 0 0.83 0.03 0 0 0 0.02 0 0 0

/I/ 0 0.06 0.54 0 0 0 0.13 0.12 0 0

/ c/ 0 0 0 0.78 0.04 0.05 0 0 0.03 0

/U/ 0 0 0 0.04 0.56 0 0 0 0.14 0.18

/a:/ 0 0 0 0 0 0.93 0 0 0 0

/e/ 0 0 0.06 0 0 0 0.7 0.15 0 0

/i/ 0 0 0 0 0 0 0 0.93 0 0

/o/ 0 0 0 0 0 0 0 0 0.78 0.16

/u/ 0 0 0 0 0 0 0 0 0.08 0.88

(c) Slow speaking rate

Fig. 6: Vowel part of the confusion matrix for different speaking rates with CNN trained on FBE features.

classification accuracy when tested on variable speaking rates. The best performing model was CNN with
FBE, which had better accuracy rates for both slow and fast speaking rates. This implies that the CNN can
better incorporate the variations in speaking rate, as is evident from Table 5.

Table 4: Frame accuracy rate for training and test of normal speaking style (V6), context size M = 10.

DNN

FBE MFCC
CNN

FBE MFCC

Train 94.81 97.01 95.41 93.96
Test 83.22 74.75 83.76 77.06

Table 5: Frame accuracy rate for fast (V1) and slow (V2) speaking styles on the networks trained on normal
speaking style with context size M = 10.

SR DNN

FBE MFCC
CNN

FBE MFCC

V1 75.59 67.90 76.65 69.23
V2 74.85 68.97 77.87 71.81

5.2 Confusion matrix

A confusion matrix depicts the performance of the classifier in terms of correctly classified and misclassified
labels, which are phonemes in this case. 24 phonemes inventory consists of 10 vowels and 14 consonants.
Figures 5 and 6 show the confusion matrices for fast, normal, and slow speaking rates on the FBE features
from both DNN and CNN architecture. A quick glimpse at the confusion matrices shows that the DNN and
CNN have almost the same performance for different speaking rates. However, if we compare and analyze
the confusion matrices for fast and slow speaking rates between DNN in Fig. 5 and CNN in Fig. 6 we can see
that, except for /i/, /I/, and /o/ in the case of fast, and /a/ and /o/ in the case of slow, CNN’s performance
is marginally better than the DNN. Also, CNN better captured (correctly classified) short vowels at the fast
speaking rate. This is noticeable when we compare Fig. 6a and Fig. 6c.

Furthermore, by comparing the confusion matrices for the same network but with different speaking rates
of the same network, it can be inferred that variation in the speaking rate will lead to confusion between
short and long vowels. Looking at Fig. 8a and Fig. 6b, it is obvious that the trained network on MFCC often
gets more confused between short and long vowels, for example, vowel /e/ gets confused with /I/ more than
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Normal speaking rate

0.762

0.126 0.111

0.831

0.063 0.106

C C-C C-V V V-C V-V
0

0.5

1

Fast speaking rate0.668

0.150 0.182

0.771

0.077 0.152

C C-C C-V V V-C V-V
0

0.5

1

Slow speaking rate
0.700

0.173 0.127

0.752

0.073
0.176

C C-C C-V V V-C V-V
0

0.5

1

Fig. 7: Rates for correct and incorrect classification of consonants and vowels. Bar (C) shows the correct
classification rate for consonants, bar (C-C) shows the misclassification of a consonant as another consonant,
bar (C-V) shows the confusion of the consonants with vowels. Bar (V) shows the correct classification rate of
vowels, bar (V-C) shows the misclassification of a vowel as a consonant and bar (V-V) shows the confusion
of the vowels with another vowel.

/a/ /E/ /I/ / c/ /U/ /a:/ /e/ /i/ /o/ /u/

/a/ 0.73 0 0 0 0 0.15 0 0 0 0

/E/ 0 0.84 0.05 0 0 0 0 0 0 0

/I/ 0 0.06 0.67 0 0 0 0.08 0.08 0 0

/ c/ 0 0 0 0.84 0.02 0.02 0 0 0 0

/U/ 0 0 0 0.04 0.65 0 0 0 0.09 0.11

/a:/ 0.06 0 0 0.02 0 0.87 0 0 0 0

/e/ 0 0.02 0.23 0 0 0 0.61 0.09 0 0

/i/ 0 0 0.06 0 0 0 0.02 0.87 0 0

/o/ 0 0 0 0.02 0.07 0 0 0 0.78 0.06

/u/ 0 0 0 0 0.08 0 0 0 0.07 0.77

(a) Vowel part of the confusion matrix
for the normal speaking rate with CNN
trained on MFCC features.

/d/ /t/ /g/ /k/ /f/ /s/ /b/ /p/ /v/ /ts/ /m/ /n/ /S/ /l/

/d/ 0.71 0 0.07 0 0 0 0.06 0.03 0 0 0 0 0 0

/t/ 0 0.87 0 0 0 0 0 0.03 0 0 0 0 0 0

/g/ 0.03 0 0.7 0.07 0 0 0.03 0.04 0 0 0 0 0 0

/k/ 0 0 0.03 0.85 0 0 0 0.03 0 0 0 0 0 0

/f/ 0 0 0 0 0.91 0.02 0 0 0 0 0 0 0 0

/s/ 0 0 0 0 0.05 0.87 0 0 0 0 0 0 0.03 0

/b/ 0.05 0 0.07 0 0 0 0.69 0 0 0 0 0 0 0

/p/ 0 0.03 0 0.03 0 0 0 0.82 0 0 0 0 0 0

/v/ 0 0 0 0 0 0 0 0 0.74 0 0 0 0 0

/ts/ 0 0 0 0 0 0 0 0 0 0.91 0 0 0 0

/m/ 0 0 0 0 0 0 0 0 0 0 0.58 0.1 0 0.1

/n/ 0 0 0 0 0 0 0 0 0 0 0.09 0.61 0 0

/S/ 0 0 0 0 0 0.07 0 0 0 0 0 0 0.88 0

/l/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0.76

(b) Confusion matrix for the 14 consonants from the
CNN trained on the FBE.

Fig. 8: Confusion matrix for the normal speaking rate.

the /i/. Similarly, there is a higher confusion rate for /U/ with /o/ and /u/ in the MFCC case. Confusions
was typically between phonemes belonging to the same broad phonetic class, for example between the nasals
/m/ and /n/, or the fricatives /s/ and /S/.

In addition, the misclassifications were broken down into two separate categories for both vowels and
consonants: confusions within the broad class (e.g., a consonant misclassified as another consonant) and
confusions between the classes (e.g., a vowel misclassified as a consonant). Figure 7 shows these performance
measures for test data with different speaking rates using FBE features as the input vector with context size
M = 10 to the CNN. By considering the normal speaking rate as the reference point, we can see that the
true classification rate of the consonants in the fast speaking rate is the lowest one, and it is confused more
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with vowels. Also, the true vowel classification rate was lowest at the slow speaking rate, with increased
vowel confusion.

5.3 F1 and Kappa score

To evaluate the overall performance of the deep learning models and to compare them across different
features, we compute the F1 and the Cohen’s Kappa measure.

F1 is a harmonic mean of precision and recall and is defined as:

F1 = 2×
Precision×Recall

Precision+Recall
, (15)

where Precision is given as:

Precision =
L
∑

i=1

wi × TPi

TPi +
∑L−1

j=1 FPij

, (16)

and Recall is given as:

Recall =

L
∑

i=1

wi × TPi

TPi +
∑L−1

j=1 FNij

, (17)

where wi is:

wi =
#Ni

∑L

j=1 #Nj

. (18)

L is the number of labels, wi is the weight for a given class label which are calculated as the number of
samples (#Ni) that belongs to the class i divided by the total number of samples, and TP, FP, and FN are
the numbers of true positives, false positives, and false negatives respectively,

Table 6 shows various statistical performance measures for the DNN and CNN architectures. If we look
at the F1 score for fast (V1) and slow (V2) speaking rates, we observe that both networks performed better
on the slow speaking rate compared to the fast, and FBE on both occasions has an improvement of 7-8%
over the MFCC.

Table 6: Precision, Recall, F1, and Kapp score of DNN and CNN for V1, V2 and V6 speaking rates.

SR Performance

Measure

DNN

FBE MFCC
CNN

FBE MFCC

V1 Precision 78.22 70.42 78.96 71.40
... Recall 76.31 68.18 77.42 69.60
... F1 76.62 68.44 77.68 69.91
... Kappa 74.95 66.34 76.11 67.84

V2 Precision 76.21 69.54 79.11 72.81
... Recall 74.86 68.99 78.03 71.97
... F1 74.83 68.77 77.87 71.87
... Kappa 73.29 67.05 76.66 70.23

V6 Precision 83.27 75.27 83.81 77.25
... Recall 83.13 74.80 83.75 77.07
... F1 83.16 74.80 83.74 77.05
... Kappa 82.13 73.30 82.78 75.70

Since the number of training samples across different categories is not uniform in our dataset, we there-
fore also presents the Kappa score in addition to F1 score. Kappa κ represents the classification accuracy
normalized by the imbalance of the classes in the data. It is given as:
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κ =
(po − pe)

1− pe
, (19)

where po is the observed agreement ratio and pe is the expected agreement, given the labels are assigned
randomly. The value of pe is estimated as given in [3] using a per-annotator empirical prior over the class
labels.

The obtained κ scores for various networks configuration as shown in Table 6 were fairly consistent with
the F1 scores. In the case of CNN with FBE there was a drop of only 1%, which shows that the classifiers
are able to efficiently handle the data imbalance for all three speaking rates.

6 Conclusion/ future work

One of the challenges facing ASR systems is the variation in the speaking rate which causes changes both
in formant frequencies and in their transition tracks. It directly affects the performance of the systems as a
word spoken at a normal pace has a better chance of being recognized compared to words spoken at slower
or faster paces by the same speaker. To better understand the effects of speaking variabilities, we studied two
acoustic features on the task of phoneme classification using different deep learning models. In particular, we
used a four hidden-layer feed-forward DNN and CNN. The study also provides an in-depth analysis of the
MFCC and FBE features trained using different context sizes on two deep learning models on the normal
speaking rate and tested on slow and fast speaking rates. Results were analyzed at micro-level.

Our findings suggest that a four-hidden-layer CNN can classify both short and long vowels slightly better
than the DNN with similar network configurations, though the short vowels were better captured by the
CNN for the fast speaking utterances. Comparing confusion matrices between different speaking rates also
revealed that the variations in speaking rate lead to a higher confusion between short and long vowels even
on the same network. The true classification rate of consonants at slow speaking rates is higher than the rate
for vowels. For fast speaking rates, consonants become confused more often with vowels. On the other hand,
on both CNN and DNN, FBE results were far better than the MFCC. Both models, however, favoured the
slow speaking rate where a slight improvement can be observed in terms of both F1 and Kappa κ scores.
Overall, CNN with FBE features performed best for all three speaking rates.

The speaking rate variations may be better treated by recurrent neural networks which handle dynamic
temporal behaviour. This may reduce the context size dependent pre-processing step on the speech data.
Future work, therefore, may focus on using recurrent neural networks, such as long-short term memory, for
analyzing variations in speaking rate.
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