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Abstract
This thesis explores a novel approach to visual speech modeling. Visual speech, or a
sequence of images of the speaker's face, is traditionally viewed as a single stream of
contiguous units, each corresponding to a phonetic segment. These units are defined
heuristically by mapping several visually similar phonemes to one visual phoneme,
sometimes referred to as a viseme. However, experimental evidence shows that pho-
netic models trained from visual data are not synchronous in time with acoustic pho-
netic models, indicating that visemes may not be the most natural building blocks
of visual speech. Instead, we propose to model the visual signal in terms of the un-
derlying articulatory features. This approach is a natural extension of feature-based
modeling of acoustic speech, which has been shown to increase robustness of audio-
based speech recognition systems. We start by exploring ways of defining visual
articulatory features: first in a data-driven manner, using a large, multi- speaker vi-
sual speech corpus, and then in a knowledge-driven manner, using the rules of speech
production. Based on these studies, we propose a set of articulatory features, and
describe a computational framework for feature-based visual speech recognition. Mul-
tiple feature streams are detected in the input image sequence using Support Vector
Machines, and then incorporated in a Dynamic Bayesian Network to obtain the final
word hypothesis. Preliminary experiments show that our approach increases viseme
classification rates in visually noisy conditions, and improves visual word recognition
through feature-based context modeling.
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Chapter 1

Introduction

A major weakness of current automatic speech recognition (ASR) systems is their

sensitivity to environmental and channel noise. A number of ways of dealing with

this problem have been investigated, such as special audio preprocessing techniques

and noise adaptation algorithms [3]. One approach is to take advantage of all available

sources of linguistic information, including nonacoustic sensors [40], to provide greater

redundancy in the presence of noise. In particular, the visual channel is a source that

conveys complementary linguistic information without being affected by audio noise.

Using the images of the speaker's mouth to recognize speech is commonly known as

lipreading. Long known to improve human speech perception [53], lipreading has been

applied to ASR extensively over the past twenty years. The result is the emergence of

two closely related fields of research. The first, Visual Speech Recognition, sometimes

also referred to as automatic lipreading or speechreading, uses just the visual modality

to recognize speech. The second, Audio- Visual Speech Recognition (AVSR), combines

both the audio and visual modalities to improve traditional audio-only ASR. Current

AVSR systems are able to achieve an effective signal-to-noise (SNR) gain of around

10 dB over traditional audio-based systems [47].
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1.1 Motivation

Overall, automatic lipreading promises to add robustness to human-machine speech

interfaces. In practice, however, the visual modality has yet to become mainstream

in spoken human-computer interfaces. This is partly due to the increased processing

and storage demands, and partly to the relative novelty of the field. In particular, the

lack of large, commonly available audio-visual corpora has hindered the development

of practical algorithms. Furthermore, the reliance of current systems on high-quality

video, recorded in controlled environments where the speaker is always facing the

camera, is a major issue in practice. In fact, in field situations where acoustic channel

noise can become a problem, it is possible that the visual channel will also become

corrupted by noise, for example, due to inferior quality of recording equipment.

The need for improving the robustness of visual feature extraction algorithms is

starting to attract attention in the research community. A recent study compared the

performance of a state-of-the-art AVSR system on a typical "visually clean" studio

database and a more realistic database recorded in offices and cars using an inexpen-

sive web camera [46]. The results show that, although the visual modality remains

beneficial even in such challenging conditions, the visual-only word error rate (WER)

approximately doubles when moving from the studio to the office environment, and

triples on the automobile data. This brings up an interesting research question of how

to adapt systems trained on clean studio data to the varying levels of visual noise

encountered in practice.

One of the other open problems in AVSR is the joint modeling of audio and

visual information. There is an on-going debate about whether Early Integration

(EI), which assumes conditional dependence between the modes, or Late Integration

(LI), which assumes their conditional independence, is the correct model. It has been

shown that, for certain architectures, asynchronous modeling of audio and visual data

streams outperforms synchronous modeling. In order to allow for this observed audio-

visual asynchrony, various extensions of the multi-stream HMM have been proposed.

Such models normally assume that there is an underlying "visual process" generating

14
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Figure 1-1: Human speech production.

the visual observations, and an underlying "acoustic process" generating the acoustic

observations. The two processes correspond to the two hidden-state streams of the

HMM. However, this view conflicts with the fact that a single underlying articulatory

process generates both streams of observations. Thus, it seems incorrect to assume

the existence of a strictly "visual" process that only influences visual observations. As

this is still an area of active research, the question of what is the optimal audio-visual

integration model remains to be settled.

1.2 Distinctive Features

The majority of automatic speech recognition systems developed in the past twenty

years subscribe to the so called "beads-on-a-string" model of speech. In particular,

they assume that speech consists of a sequence of contiguous basic units, or phonemes.
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In the case of visual speech, the basic units correspond to the visually distinguishable

phonemes, also known as visemes.

The above view is consistent with the early theory of generative phonology. How-

ever, it is being questioned as research moves away from laboratory-recorded corpora

toward noisier, more spontaneous speech. The alternative view, as proposed by lin-

guistic theory, is that distinctive features are the more fundamental atomic units of

language. Distinctive features capture the natural classes in phonology. The exis-

tence of such classes has been motivated by several different phenomena: (i) acoustic

regularities among speech sounds (e.g. [21]); (ii) phonemes behaving as a class as

they participate in phonological processes (e.g. [7]); (iii) articulatory commonalities

between phonemes (e.g. [25]); and (iv) the block diagonal structure of confusion

matrices in human perception experiments (e.g. [38].)

Feature-based or acoustic phonetic approaches to automatic speech recognition

were attempted in the 1970's. However, most systems used a rule-based recognition

framework and were therefore not successful in dealing with the inherent variability

of speech. Recently, the approach has been revisited using a more modern statistical

learning framework (see [52], [27], [28], [31], [55], and [23] for some recent examples.)

In general, distinctive features may be defined in terms of acoustic or articula-

tory features. One particular theory describes speech as the combination of multiple

streams of hidden articulatory features (AFs) [26]. Articulation is the process of

changing the shape of the vocal tract using the articulators, i.e. the glottis, velum,

tongue, lips and jaw (see Figure 1.2,) to produce different sounds [15]. From the

point of view of articulation, each speech sound is described by a unique combina-

tion of various articulator states, for example: the presence or absence of voicing,

the position of the tongue body and tongue tip, the opening between the lips, and

so on. A word can be viewed as a sequence of articulator targets. Note that, in

the phoneme-based approach to speech modeling, a simplifying assumption is made

that words can be broken up into a sequence of phonemes, each of which maps to a

canonical articulatory configuration.

Several motivating factors have been identified for the use of distinctive (or artic-

16
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ulatory) features in speech recognition systems [41]. One is a belief that distinctive

features will minimize extra-linguistic variability related to speaker identity and sig-

nal distortion. Another is that features provide better modeling of co-articulation and

pronunciation. A third motivation is the ability to represent sounds of any language

using a compact set of distinctive features. Thus, existing models become portable

to a new language, where a phoneme model would have to be re-trained.

One of the advantages of representing speech as multiple streams of articulatory

features is the ability to model each feature independently, and even to allow them to

de-synchronize. It has been noted that spontaneous, conversational speech is difficult

to transcribe in terms of conventional phoneme units, and presents a challenge for ex-

isting ASR systems [16]. On the other hand, feature-based pronunciation models have

been shown to be better at accounting for the types of pronunciation variations that

occur in spontaneous speech, partly due to their ability to model the asynchronous

nature of articulation [30].

Another advantage of AF-based modeling is its robustness in noisy environments.

Experiments in acoustic speech recognition have shown that articulatory-feature sys-

tems can achieve superior performance at high noise levels [27]. The de-compositional

nature of the approach can help increase robustness in two main ways. First of all, it

combines several sources of information about the underlying speech process, derived

independently via parallel classifiers. Therefore, it can take advantage of the fact that

some of the features may be easier to classify than others under conditions of image

corruption, low resolution, or speaker differences. Confidence values can be used to

assign each feature a different weight, effectively reducing the overall number of dis-

tinguishable classes. The second advantage is that, because there are fewer possible

values for each feature class than there are phonemes, the training data set generates

more instances of each feature class value than each phoneme. This, in turn, leads to

a larger amount of training data per feature value.

17



1.3 Overview of Proposed Approach

As described in the previous section, articulatory feature modeling is a promising

alternative to the "beads-on-a-string" model that is actively being explored by re-

searchers for acoustic ASR. It would be interesting to see if the AF approach also has

potential to improve robustness, or to help model pronunciation, in the case when

the input is visual. And, if the input is audio-visual, perhaps a hidden feature model

is a better underlying structure for A/V integration? With these questions in mind,

we propose to study the application of the AF approach to visual speech recognition.

In the rest of this section, we provide a general overview of the proposed approach,

which is derived from human speech production and inspired in part by the distinctive

feature models described in the previous section. Our hypothesis is that the benefits

of feature-based recognition will also apply in the case of visual speech.

1.3.1 A Production-based Model of Visual Speech

Rather than using visemes as basic recognition units, we suggest representing visual

speech classes in terms of the underlying articulatory processes, or articulatory fea-

tures. The features are associated with articulatory gestures and have both visual

and acoustic consequences. Both the low-level viseme units and the higher-level word

units can be represented as a combination of multiple streams of such features.

Of course, since we are dealing with the visual modality, we are limited to the

modeling of visible articulators. From the video of the speaker's lower face region, we

can obtain information about the position and relative configuration of the jaw, lips,

teeth, and tongue. Also, in addition to static features, the video contains dynamic

articulatory features, for example, lips closing and opening, tongue protruding and

retracting through teeth, lower lip touching upper teeth, lips protruding, and so on.

However, the rest of the articulators are not visible under normal circumstances.

The typical process of visual speech recognition goes through three stages, illus-

trated in Figure 1-2: 1) face detection and mouth tracking, 2) low-level image feature

extraction, 3) categorization into viseme classes, and 4) the combination of frame-

18
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Figure 1-2: Articulatory-Feature approach to visual speech recognition.

level scores over time in order to find the most likely word sequence. We introduce an

extra step after the initial preprocessing of the image, but before the viseme scores are

computed. In this step, the input data are classified in terms of several articulatory

features by a set of parallel statistical classifiers. Afterwards, the lexical search can

either proceed right away, using the obtained articulatory feature scores, or follow an

additional step of classification into the higher-level visemic categories.

Our approach is in many ways identical to the multi-stream articulatory-feature

approach to audio speech modeling. We are essentially proposing to model visual

speech as multiple streams of visible linguistic features, as opposed to a single stream

of visemes. In fact, most of the articulatory events described above have direct

equivalents in the feature set used for pronunciation modeling in [30]. For example,

the visual feature of the lips closing and opening corresponds to the LIP-OPEN

feature. Therefore, an integrated AF-based audio-visual speech recognizer can use

the same underlying feature set. However, due to the complementary nature of the

two modalities, some features may be easier to derive from the audio stream, and

others from the video stream, especially in the presence of noise. For instance, it is
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Figure 1-3: Full bilabial closure during the production of the words "romantic" (left)
and "academic" (right).

known from perceptual studies that acoustic noise affects the detection of place of

articulation (e.g. glottal, bilabial) more than voicing [38]. On the other hand, since

place information is highly distinguishable visually, it might be less affected by visual

noise than other features.

The difference between our method of classifying articulatory features and the

conventional method of classifying visemes is illustrated by the following example.

Suppose we were to model the phoneme /m/ in two different phonetic contexts,

romantic and academic, using a single, context-independent visual model. The image

snapshot taken at the moment of complete closure during the production of /m/ in

each context is shown in Figure 1-3. Both examples would be considered to belong to

a single viseme class (the bilabial viseme) and to have the same open/closed feature

value (fully closed.) However, their appearance is different: in the second context, the

distance between the mouth corners is roughly 25% wider. This suggests the presence

of contextual information. In fact, the preceding /ow/ in romantic causes the /m/

to be rounded, whereas the preceding /eh/ in academic does not. Thus, modeling

lip rounding and lip opening as two separate articulatory features would allow us to

recover more information than just modeling the /m/ viseme.

Our proposed method of extracting articulatory feature information from visual

input is similar in spirit to the method of extracting geometric mouth parameters often

used in automatic lipreading systems. However, there is a subtle difference between

what we call visual articulatory features and what is referred to as visual features in

the literature, for example, in [58]. In the latter work, a set of visual features, including

20
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mouth width, upper/lower lip width, lip opening height/width, etc., are extracted

by tracking a set of points on the lips. These features, plus features indicating the

presence of teeth and tongue obtained by color segmentation of the mouth region, form

the input observation vector to the HMM that performs word recognition. In contrast,

we treat articulatory features as the hidden states underlying the production of the

surface observations. Thus, our model can use the same preprocessing techniques as

the one described above to produce a surface feature vector, which can be used as

input to a statistical classifier. The classifier then assigns abstract class labels to the

input vectors that correspond to the underlying articulatory features, such as "lip-

open", "lip-rounded", "fricative", etc. One of the potential benefits of our approach

is the ability to use different low-level measurements for each articulatory feature.

For example, the classifier for "lip-rounded" could take optical flow measurements as

input, while the "teeth" classifier could use color information.

1.3.2 Feature-based Audio Visual Integration

One of the main open problems in AVSR is the joint modeling of audio and visual

information. At a high level, there are two possible approaches: 1) use models based

on human perception, and 2) use models based on human speech production. Al-

though the speech production mechanism is fairly well understood, scientists do not

yet know exactly how humans process and integrate perceived acoustic and visual

speech. Nevertheless, since the discovery of the McGurk effect in the 70's, there has

been active research in this area.

The AVSR research community has focused primarily on models motivated by

human perception. There is an on-going debate about whether Early Integration (EI),

which assumes conditional dependence between the modes, or Late Integration (LI),

which assumes their conditional independence, is the correct model. In fact, there is

perceptual evidence to support both. Several studies regarding the McGurk effect and

Voice Onset Time perception indicate that humans integrate early, before categorizing

speech phonetically. On the other hand, studies of acoustic speech perception indicate

that humans perform partial recognition independently across different frequency

21



bands. Note that the question of audio and visual stream dependence is closely

related to the concept of audio-visual asynchrony. If the audio and visual cues are

always synchronous in time, then they are temporally dependent and therefore fit into

the EI model. If the audio and visual cues are asynchronous, then they are temporally

independent and fit into the LI model.

Unfortunately, many papers in the AVSR field have not provided a lot of moti-

vation for the proposed integration models, either in the form of psycho-linguistic

studies, or models of speech production. A popular approach is to train various ex-

tensions of the multi-stream HMM on a large dataset and see which one produces

better recognition results, although, the authors claim that the extensions are based

on studies of human perception. In fact, several human intelligibility experiments

(Massaro and Cohen [34], Smeele, et al [51], etc.) do show that the human integra-

tion process is robust to artificially introduced asynchronies between the audio and

video of up to 200 ms.

In the paper titled "Asynchrony modeling for audio-visual speech recognition"

[18], Gravier, et al motivate the state-asynchronous Product HMM by the following

statement: "it is well known that, although the visual activity and the audio signal

are correlated, they are not synchronous. As a matter of fact, the visual activity

often precedes the audio signal by as much as 120 ms." This last result is from

the paper titled "Eigenlips for Robust Speech Recognition" by Bregler and Konig

[4], who studied the cross-modal mutual information between the acoustic and visual

feature vectors, offset from each other by various amounts. They found that the

maximum mutual information occurs when the visual features are offset by a negative

120 ms relative to the audio. Bregler and Konig explain their findings by the "forward

articulation" effect, which they say has been confirmed by psychological experiments

by Benoit. However, since Bregler and Konig used sequences of 3-8 spelled letters

as their training data, their result may not apply to continuous, large-vocabulary

speech. In fact, if there were silences between the letters, then the "beginning of

word" situation, where the lips start moving before any sound is made, would be

predominant. On the other hand, our own observations of continuous speech indicate

22
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that, in addition to the "forward articulation" effect, the "backward articulation"

effect is also present. Some evidence of this more general de-synchronization model

can be found in "Audio-Visual Speech Modeling for Continuous Speech Recognition"

by Dupont and Luettin [14]. Their (preliminary) studies of asynchrony between

the acoustic and visual HMM streams showed that, in some cases, the visual state

transitions were delayed, and in some cases, the acoustic transitions were delayed.

Besides Bregler and Konig's forward articulation effect and studies of human per-

ception of asynchronous signals, there is little other explanation of how the proposed

HMM variants are modeling the underlying speech process. It is normally assumed

that there is a "visual process" generating the visual observations and an "acoustic

process" generating the acoustic observations. These two processes are modeled by

the two hidden-state streams of the HMM. However, from the point of view of human

speech production, there is a single underlying articulatory process that generates

both streams of observations. It seems incorrect to assume that there is a "visual"

process that influences only visual observations.

In fact, if we view the problem from the speech production perspective, the two

"modalities" are really just two different ways to observe the same underlying process.

Thus, audio-visual speech is a multi-media rather than a multi-modal phenomenon.

The underlying process producing the observations is the behavior of the vocal tract

and the actions of several articulators, e.g. velum, lips, and tongue. Of these ar-

ticulators only some are visible, influencing the visual observations. In some cases,

such as when the vocal folds are vibrating, the visible articulators can also influence

the resulting sound, thus affecting the acoustic observations. At other times, such

as during periods of silence, the speaker can move the visible articulators in order

to anticipate the following sound, in which case they have no effect on the acoustic

observations. The above reasoning suggests that it is more appropriate to model

the independence (asynchrony) of certain underlying articulators, as opposed to the

independence (asynchrony) of the separate "visual" and "audio" processes.

If we look closely at the physiology of the speech production mechanism, we see

that the apparent asynchrony of the visual and acoustic observations is caused by 1)
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co-articulation and 2) the fact that visible articulators are not always involved in the

production of a phone. Co-articulation can be described as follows. During speech

generation the phonetic articulators move from target positions of one phone to target

positions of the succeeding phone. These movements are planned by the brain in such

a way that the effort of the muscles is kept to a minimum. If an articulator must

reach a certain target position to produce a phone and the preceding phone does not

need that articulator, then the articulator itself may anticipate its movement toward

the next target position before the production of the previous phone is finished. This

effect is known as "anticipatory coarticulation." On the contrary, an articulator may

wait to release a target position corresponding to the pronounced phone, if it is not

required by the next phone. This effect is known as "preservatory coarticulation." If,

in addition, the articulator in question is visible, but the target phone is produced

mainly by invisible articulators (eg. /n/), then the result is the apparent disagreement

of the visible and audible phone class. For example, the acoustic /n/ in "and thread"

can look like the following /th/, or, in "don't", like the preceding rounded /ow/.

In order to better relate the audio-visual information to the underlying speech

mechanisms, we may wish to model the state of the articulators, as opposed to visemes

and phonemes. This would allow us to model audio-visual asynchrony as the de-

synchronization of the underlying articulators.

1.4 Goals and Outline

To summarize, the main motivation behind this work is to develop a production-based

approach to visual speech modeling. We would like to depart from the "beads-on-

a-string" phoneme/viseme model and create a visual extension of the feature-based

framework for audio speech recognition. We hope that such a framework will provide

a better solution to the problems of noise robustness, context modeling, and audio-

visual integration.

The main goals of this work are: i) to analyze multi-speaker data in order to

determine distinguishable visual features; ii) to ascertain the influence of different
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signal representations on the features; iii) to construct articulatory features detectors;

iv) to incorporate these detectors into a word recognition system; and v) to compare

performance to the baseline viseme model.

First, Chapter 2 will present an overview of related research. Then, Chapter 3

will provide a detailed description of the proposed recognition system. Chapter 4

will deal with the issues surrounding the design of an articulatory feature set, and

Chapter 5 will describe the results of experimental evaluation. Chapter 6 will present

our conclusions and talk about future work directions.
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Chapter 2

Related Work

In this chapter, we provide an overview of previous work related to the fields of

audio-visual speech processing and feature-based speech recognition.

2.1 Audio-Visual Speech Processing

The first audio-visual speech recognizer was designed by Petajan in 1984 [44]. Since

then, over one hundred research articles have been published on the subject. Appli-

cations have ranged from single-subject, isolated digit recognition [44], to speaker-

independent, large-vocabulary, continuous speech recognition [39]. The majority of

reported AVSR systems have achieved superior performance over conventional ASR,

although the gains are usually more substantial for small vocabulary tasks and low

signal-to-noise ratios [46].

The main issues involved in the development of AVSR systems are 1) visual feature

design and extraction, 2) the choice of speech units, 3) classification, and 4) audio-

visual integration. Although the second and third issues also apply to audio-only

systems and are therefore often resolved in the same way for both modalities, the

first and the last issues are unique to audio-visual systems.
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2.1.1 Visual Feature Extraction

Visual feature design falls into three main categories: appearance-based, shape-based,

and a combination of the two. Appearance-based approaches treat all intensity and

color information in a region of interest (usually the mouth and chin area) as being

relevant for recognition. The dimensionality of the raw feature vector is often reduced

using a linear transform. Some examples of this "bottom-up" approach include simple

gray levels [17]; principal component analysis of pixel intensities [4]; motion between

successive frames [33]; transform-based compression coefficients [48]; edges [1]; and

filters such as sieves [36].

In contrast, shape-based methods usually assume a top-down model of lip con-

tours. The parameters of the model fitted to the image are used as visual features.

Some examples of shape-based features include geometric features, such as mouth

height and width [44], [1], [5], [58]; Fourier and image moment descriptors of the lip

contours [19]; snakes [24]; and Active Shape Models (ASM) [10]. In general, lip con-

tours alone lack the necessary discriminative power, so they are often combined with

appearance. For example, it was shown that the addition of appearance to shape

significantly improves the lipreading performance of the ASM [36]. The result is an

Active Appearance Model (AAM) [9], which combines shape and appearance param-

eters into a single feature vector. A similar model is the Multidimensional Morphable

Model (MMM), developed in [22].

2.1.2 Classification

Visual speech recognizers can differ in their choice of classification techniques. Due to

the dynamic nature of speech, the most common classifier used is a Hidden Markov

Model (HMM), which allows statistical modeling of both the temporal transitions

between speech classes, and the generation of class-dependent visual observations [39].

Although most HMMs use a Gaussian Mixture Model classifier for the latter task,

several other classification methods have been suggested, including simple distance in

feature space [44], neural networks [29] and Support Vector Machines (SVMs) [17].
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In this work, we employ SVMs, which are capable of learning the optimal separating

hyperplane between classes in sparse high-dimensional spaces and with relatively few

training examples. Details of the SVM algorithm can be found in [57].

2.1.3 Audio-Visual Integration

In the case of audio-visual speech recognition, a major area of ongoing research is

the integration of the two modalities in such a way that the resulting recognizer

outperforms both the visual-only and audio-only recognizers. Integration algorithms

generally fit into one of two broad categories: feature fusion and decision fusion,

sometimes also referred to as early integration and late integration. Feature fusion

involves training a single classifier on the fused bimodal data vectors [56], whereas

decision fusion involves training separate single-modality classifiers and then combin-

ing their outputs, for instance, as a weighted sum [14]. Decision fusion can occur at

any level (e.g., HMM state, phoneme, word, or sentence,) although very early stage

fusion techniques are commonly referred to as hybrid fusion [47], [8].

Although we do not directly address the issue of audio-visual integration in this

thesis, the proposed articulatory-feature model could be extended to include both

acoustic and visual observations. A feature based framework has the advantage of

providing a natural common model whose parameters may be jointly estimated from

visual and acoustic cues simplifying the task of data fusion from multiple modalities

[42].

2.2 Audio-Visual Speech Corpora

Unfortunately, no common large AVSR corpus has been publicly available, making

the majority of reported algorithms difficult to compare. Several corpora have been

created by researchers in order to obtain experimental results for specific tasks. Those

made available for public use have come mostly from universities, and are generally

not as extensive as the ones collected by private research labs. Many of the former

contain recordings of only one subject [5]. Those with multiple subjects are usually
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limited to small tasks, such as isolated letters [35] or digits recognition [45], [8]. Only

two of the A/V corpora published in literature (including English, French, German

and Japanese) contain both a large vocabulary and a significant number of subjects.

The first is IBM's private, 290-subject, large-vocabulary AV-ViaVoice database of

approximately 50 hours in duration [20]. The second is the VidTIMIT database [49],

which was recently made available by LDC. It consists of 43 subjects reciting 10

TIMIT sentences each, and has been used for multi-modal person verification [50]. In

general, the freely available corpora are inadequate for evaluating large-vocabulary,

speaker-independent AVSR algorithms.

Furthermore, since most databases were recorded in carefully controlled condi-

tions, they are not suitable for evaluating the robustness of a visual feature set with

respect to image noise, lighting, and pose variation. One exception is the CUAVE cor-

pus recently collected at Clemson University. It consists of 36 English speakers who

were asked to speak digits while shifting their body position and head pose [43]. Also,

researchers at IBM published the results of benchmarking of their current AVCSR

system on two challenging visual corpora: one recorded in office conditions and the

other in a moving vehicle. The results show that, while the visual-only WER dou-

bled for the first and tripled for the second corpus [46], the visual modality remained

beneficial to ASR, at least in the case of connected digits.

In Appendix A, we describe a multi-speaker continuous-speech audio-visual corpus

that we have collected to facilitate this work.

2.3 Feature-based Automatic Speech Recognition

In the following section, we present a brief overview of three representative research

articles that have applied the distinctive feature approach to statistical speech recog-

nition in the audio domain. The feature-based systems described in these articles

show improvements in noise robustness, language portability, coarticulation modeling

and pronunciation modeling. To the best of the author's knowledge, no articulatory-

feature visual speech recognition systems have been reported in the literature.
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In [27], a hybrid HMM/ANN word recognition system was created using a set of

five features, with each feature having anywhere from three to ten values. A sep-

arate neural network was trained to classify each distinctive feature. The outputs

of the feature ANNs were then used to train another network, which learned the

mapping from distinctive features to phonemes. This distinctive-feature system had

similar performance to a baseline acoustic HMM/ANN system. When the baseline

and the distinctive-feature systems were combined at the phoneme level by multi-

plying the neural-network outputs, the resulting system achieved significantly better

word recognition rates across a range of noise levels.

In [28], a distinctive-feature HMM system was developed for consonant recognition

in English, German, Italian and Dutch. Kohonen networks were used to classify three

distinctive features (Place, Manner and Voicing) into a total of fourteen values, using

standard cepstral coefficients as input vectors. The outputs of the Kohonen networks

were then used as inputs to the HMM. The system significantly outperformed a base-

line HMM system on infrequently occurring consonants, especially language-specific

consonants.

In [12] and [13], a flexible coarticulation model was proposed based on overlapping

articulatory features. This system used five features related to articulator positions:

lips, tongue blade, tongue dorsum, velum and larynx. Five values were used for lip

positions, seven for the tongue blade, twenty for the tongue dorsum, two for the

velum and three for the larynx. Articulatory features were used as an intermediate

stage between the acoustic signal and the phonetic representation; separate HMM

states were used to model possible feature combinations. Although the feature mod-

els were context-independent, changes in the feature values were not required to

synchronize at the phoneme boundaries, allowing the system to model coarticula-

tion. Evaluation on the TIMIT corpus resulted in superior performance compared

to a context-independent baseline HMM, and similar performance compared to a

context-dependent HMM.

In [30], a flexible feature-based pronunciation model was developed using dynamic

Bayesian networks. The system explicitly models the evolution of several streams of
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linguistic features: degree of lip opening, tongue tip location and degree of opening,

tongue body location and degree of opening, velum state, and voicing state. Changes

in pronunciation were accounted for by allowing features to desynchronize and change

values, as opposed to the standard approach of allowing phone substitutions, inser-

tions, and deletions. The following synchrony constraints were imposed: i) all tongue

features are synchronized; ii) the lips can desynchronize from the tongue; iii) the glot-

tis and velum are synchronized; and iv) the glottis and velum can desynchronize from

from the tongue and the lips. A pilot study using transcriptions of the Switchboard

corpus manually converted to feature values showed an improvement over a baseline

system that employed an extensive set of phonological pronunciation rules.
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Chapter 3

AF-based Visual Speech

Recognizer

In this chapter, we describe our proposed design of a feature-based visual speech

recognition system. The first step in building the full recognition system is to create

classifiers for the articulatory features. We describe how features are detected in

Section 3.1. Then, in section 3.2, we describe how the outputs of these detectors

are integrated over the entire length of the input sequence to produce the final word

hypothesis.

3.1 AF Classification

The problem of classifying articulatory features from an input image can be cast as

that of supervised learning. We assume that we are given a set of training examples,

containing pairs of observation vectors derived from images of mouths and the cor-

responding articulatory feature labels. Since there are multiple AFs, each image will

have several discrete labels, one for each AF. We seek a function that will map novel

image observations to AF labels. The problem is similar to that of classifying visemes

from input images, except that, instead of only one category of viseme labels, there

are multiple categories of AF labels. Various machine learning techniques exist for

learning such functions from training data, including artificial neural networks, boost-
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Table 3.1: Comparison of classification rates on a single-speaker viseme classification
task achieved by two classifier architectures: an SVM with an RBF kernel and a
Gaussian classifier with diagonal covariance. The viseme set used is the same as the
one shown in Table 4.2. N is the dimension of the data vectors. SVM-S and Gauss-
S used static single-frame observations, while SVM-D and Gauss-D used dynamic
three-frame observations.

N SVM-S SVM-D Gauss-S Gauss-D
5 32% 33% 27% 28%

10 34% 34% 28% 33%

50 39% 37% 37% 37% .

75 39% 41% 36% 37% l

100 35% 41% 35% 35%

ing, etc. In the context of frame-level classification for speech recognition, Gaussian

classifiers or Gaussian Mixture Models (GMMs) are popular choices.

In recent years, the success of the Support Vector Machine (SVM) in various pat-

tern recognition applications, including object recognition from images, has lead to

its increased use for both binary and multi-class classification tasks. SVMs are pow-

erful linear learning machines capable of finding the optimal separating hyperplane

between classes in sparse high-dimensional spaces and with relatively few training

examples. In preliminary experiments, we have found that SVMs outperform Gaus-

sian classifiers on the task of viseme classification for a single speaker. Table 3.1

shows that the Gaussian classifier obtains its highest classification rate of 37% on

50-dimensional static observation vectors, while the SVM achieves a peak rate of 41%

on 75-dimensional dynamic observations. Based on their superior performance, we

have chosen to employ SVMs as the classification technique in the articulatory feature

recognizer.

In the rest of this section, we will provide an overview of support vector machines.

3.1.1 Support Vector Machines

Support vector machines employ a learning strategy that simultaneously optimizes

the empirical error and the complexity of the classifier. In the following, we assume
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that the training set contains instance-label pairs (xi, yi), i = 1, ..., , where xi E Rn

and y = 1, -1} l. Since SVMs are linear learning machines, they use a hypothesis

space of linear decision functions of the form

f(x) = wTx + b. (3.1)

f(x) is a real-valued function, therefore to classify a novel sample its output is con-

verted to either a positive or negative label using the sign function sgn(). Geomet-

rically, f(x) divides the input space X C Rn into two parts using a hyperplane, or

an n - 1 dimensional affine subspace, defined by the equation wTx + b = 0. Points

that fall on one side of the boundary are labeled as the positive class, and points

that fall on the other side are labeled as the negative class. Although the resulting

classifier is binary, it can be extended to handle the multi-class case. In this work, we

use the "one-against-one" multi-class method, which combines the decisions of binary

classifiers trained on each pair of classes using a simple voting technique [6].

An important property of the above classifier is that the hypothesis can be ex-

pressed in the dual form, or as a linear combination of the training points:

f(x) = E aiyixTx + b. (3.2)
i=l

The goal of the SVM algorithm is to find the maximal margin hyperplane, i.e.

the hyperplane that maximizes its distance to each training point. This distance, or

the margin of a point (xi, Yi) with respect to the hyperplane (w, b), is the quantity

pi = Yi(WTXi + b). A positive margin means the point lies on the correct side of the

hyperplane and was thus classified correctly.

In the case where the data set is not linearly separable, a margin slack variable

of an example (xi, yi) with respect to the hyperplane (w, b) and target margin I is

defined as (i = max(O, IL - yi(wTx + b)). Intuitively, this quantity measures by how

much a point fails to have a margin of .

Linear machines have limited computational power, however, SVMs can overcome
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this limitation by projecting the input data into a high-dimensional space and using

a linear separating boundary in that space. For example, the transformation 0(x) =

(0l (x), , N(X)) maps sample points from the input space X to a higher-dimensional

feature space F. With this mapping, the hypothesis can be written as

I

S yi(xi) T (x) + b. (3.3)
i=l

SVMs can operate in this high dimensional feature space without increasing the num-

ber of free parameters because the projection is done implicitly. Since the training

examples only appear in (3.3) as inner products, the mapping can be performed by

replacing the inner product with a kernel function of the original inputs. A kernel

is a function K such that K(xi, xj) = QO(xi)TO(x). Kernels can be derived by choos-

ing functions that satisfy certain mathematical properties. In practice, a common

approach is to use one of several well-known kernels, such as

* the linear kernel

K(xi, ,xj) = xTxj, (3.4)

* the polynomial kernel

K(xi, x) = (xTxj + r)d, > 0, (3.5)

* and the Radial Basis Function (RBF) kernel

K(xi, xj) =e- 1 xi'- xa12, 7> 0, (3.6)

Finally, a support vector machine is formally defined as the solution to the fol-

lowing optimization problem:

min I2- + C ei,
w,b,c 2 i=1 (3.7)

subject to yi(wTq(Xi) +b) 1 - , i > 0.

36

___



The parameter C controls the trade-off between minimizing the empirical error and

the size of the hyperplane.

A more in-depth discussion of the SVM algorithm can be found in [57]. The SVM

implementation used in this thesis is the LIBSVM [6] library, which is freely available

online.

3.2 Word Recognition

In the previous section, we proposed to use an SVM classifier to assign articulatory

feature labels to visual data observed at a particular moment in time. If the goal

were phoneme recognition, the feature labels could be combined to obtain phonemic

labels on a per-frame basis. However, although viseme recognition is an important

problem, our ultimate goal is recognizing words and sentences. In this section, we

describe our proposed approach to feature-based visual word recognition.

While SVMs are inherently static classifiers, speech is a dynamic process. There-

fore, we need an additional statistical model to describe the evolution of articulatory

features over time. To date, the most successful model for to speech recognition is

the Hidden Markov Model (HMM.) The HMM combines acoustic, pronunciation and

language modeling into a single framework. It describes the underlying process gen-

erating the observations as a single stream of hidden variables. The hidden state that

we are interested in is articulatory gestures, such as the motions of the lips or tongue.

Therefore, if we used an HMM, we could not model the independence of the articu-

lators explicitly, as each hidden state would contain a specific combination of values

of each feature. Allowing the feature streams to evolve independently is particularly

important when combining audio and visual modalities. For example, the vibration

of the vocal cords occurs independently from other gestures.

An alternative representation suggested in [31] uses Dynamic Bayesian Networks,

which are a superset of HMMs in terms of modeling power. DBNs are capable of

representing the evolution of several hidden streams of variables over time. This

results in a more efficient representation than a single stream with a large state space.
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Also, DBNs make it possible to allow different variables to evolve asynchronously over

time. Next, we will provide a brief summary of DBNs and their applications to speech

recognition, followed by an overall description of our system.

3.2.1 Dynamic Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph whose nodes correspond to ran-

dom variables, X1 , ..., X,, and whose edges point from parent to child nodes. Missing

edges between nodes represent the conditional independence of the corresponding

variables. The joint distribution for the graph is thus simplified to

n

P(X,.Xn)= p(l .= ), (3.8)
i=l

where X i are the parents of variable Xi. A Dynamic BN has a repeating structure of

groups of nodes, with edges between the groups pointing in the direction of increasing

time or space. DBNs are particularly useful for modeling dynamic processes such as

speech.

Figure 3-1 shows the DBN structure commonly used in speech recognition ap-

plications [2]. This particular structure exhibits the explicit graphical representation

approach, where the details of the book-keeping associated with speech recognition are

represented explicitly in the graph. In comparison, an implicit representation, such as

the one used by traditional HMMs, hides these details in the implementation, or in an

expanded hidden state space [2]. In the graph, dashed edges represent true random

dependencies, while solid edges represent deterministic dependencies. Colored nodes

correspond to the observed variables, while the rest of the variables are hidden. The

variables Word and Word-Position indicate the current word and the position within

that word; together they determine the current value of Phone. Transitions between

phones inside the word and words inside the utterance are also modeled explicitly by

the Word-Transition and Phone-Transition variables. The End-of-Utterance variable

enforces the constraint that the interpretation must end at the end of a word by

having a probability distribution such that the observed value of 1 is only possible if
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Figure 3-1: An explicit DBN structure for speech recognition.

Figure 3-1: An explicit DBN structure for speech recognition.

the last frame has a word-transition value of 1.

The above phone-based model can be extended to include one hidden variable

for each of the articulatory features, as shown in Figure 3-2. For simplicity, the

book-keeping variables are omitted here. Each of the two frames shown in the figure

contains hidden features F, F2, ..., FN. The features depend on both the current

phone state P and their values in the previous frame. The visual observation variable

O is conditioned only on the feature variables. An intuitive interpretation of this

structure is that, while the articulators aim to reach their target positions for each

phone, their actual state at a particular instant in time is influenced by continuity

constraints and articulatory inertia.

3.3 System Architecture

The feature-based visual speech recognizer proposed in this thesis uses a lexical ac-

cess model similar to the DBN structure used for audio feature-based pronunciation

modeling in [30]. The main difference is that our task is automatic lipreading and,

therefore, we use a smaller set of features. We also use a hybrid architecture, where

the posterior probabilities of each observed articulatory feature are obtained from
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Figure 3-2: An AF-based DBN model.

SVM classifier outputs. The algorithm for converting SVM outputs to probabilities

is described in [6].

Figure 3-3 shows one frame of the DBN model. We use three features: LIP-LOC

(LL), LIP-OPEN (LO) and LAB-DENT (LD). The variables are:

* Word - the lexicon entry corresponding to the current word.

* LL-Pos - the position of the LIP-LOC feature in the underlying pronuncia-

tion. This variable has value 0 in the first frame, and in subsequent frames is

conditioned on Wordt_l, LL-Post_l and Word-Transt_l.

* LL - the underlying value of the LIP-LOC feature. Its distribution is determined

by the specific table defined for the current word.

* LL-Obs - the observed surface value of the LIP-LOC feature. p(LL-ObsLL)

encodes the allowed feature substitutions.

* Word-Trans - a binary variable that indicates the last frame of a word.

* LL-LO-Sync - a binary variable that enforces a synchrony constraint between

the LIP-LOC and LIP-OPEN variables. It is observed with value 1; its distri-

bution is constructed such as to force its parent LL-Pos and LO-Pos variables

obey the desired constraint.
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Figure 3-3: One frame of a DBN for a feature-based pronunciation model.

The rest of the LIP-OPEN and LAB-DENT variables are defined in a similar

manner. Pronunciation variation and context effects are modeled by allowing the ob-

served feature values to stray from the targets specified in the lexicon entry. This can

happen in two ways: due to substitution, in which an articulator fails to reach its tar-

get; and asynchrony, in which different articulators proceed through their sequences

of targets at different rates. Feature asynchrony can occur due to coarticulation. For

example, if the underlying pronunciation of the word has a fricative followed by a

rounded vowel, the lips may reach the protruded position before or during the labio-

dental gesture. We provide examples of both feature asynchrony and substitution in

Chapter 5.

Although the DBN described above uses the three features LIP-LOC, LIP-OPEN

and LAB-DENT, in general, any number and type of features can be used. In the next

chapter, we will lay out the motivation behind selecting this particular feature set,

and describe the features in more detail. Then, we will present several experiments

using the proposed approach in Chapter 5.
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Chapter 4

Articulatory Feature Design

In the previous chapter, we proposed a set of algorithms for performing word recog-

nition using multiple streams of articulatory features extracted from the visual com-

ponent of the speech signal. However, before we can build such a recognizer, we must

answer the following fundamental questions:

* what is the optimal set of features?

* what values should each feature have?

* where do the feature labels come from, i.e. should they be based on acoustic

data, visual data, or both?

In general, the set of features used in the development of a speech recognizer and

the set of values they take on depends on the specific research goals. According to one

review, about 40 different feature combinations have been used in various research

studies [11]. An example feature set proposed in [31] is shown in Table 4.1.

Ideally, the chosen features should be easily distinguishable from the visual signal.

Furthermore, features should exhibit themselves in a consistent manner not only in

isolated phoneme examples, but also in continuous, co-articulated and spontaneous

speech. Moreover, the same feature set should apply to multiple speakers.

One way of gaining some insight into what features might occur naturally is by

performing a cluster analysis of visual speech data. Another approach to designing
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a visual feature set is simply to choose one of the existing linguistically motivated

feature sets, and agree upon that subset of it which applies to the visible portion of

the vocal tract. However, it is not obvious which part of the articulatory process is

captured by the camera, and which is not. For example, while it can be said with

certainty that features such as nasality and voicing cannot be distinguished visually,

the case is not as clear with frication or retrofiection. Even if we restrict ourselves

to features that specifically describe articulator positions, such as the ones in Table

4.1, we can still only eliminate the last two features as strictly non-visual. While

we suspect that a subset of the tongue-related feature values can also be eliminated,

it is not immediately clear what that subset should be. One approach would be to

obtain labels for every possible feature, and train a machine learning algorithm on

these labels. Then, we can keep only the features that the algorithm is able to classify

reasonably well.

Once we have decided on a suitable set of articulator states to represent in our

model, the next issue is how to obtain the labels for training the SVM classifier.

To record the ground truth about articulatory gestures, subjects would either have

to wear sensors in their mouth, or have their vocal tracts scanned using x-ray tech-

nology - both expensive and impractical solutions. Alternatively, feature labels can

be derived by using phonetic audio transcriptions as the ground truth labels for the

video. However, this assumes that the audio labels retain the complete information

about the visible articulators. This is certainly true in some cases: for example, if the

audio phoneme label is /uw/, it must correspond to the visible articulatory action of

rounding the lips. However, due to coarticulation, a visible articulator can move into

position before the target phone is produced. Furthermore, while this is happening,

another, invisible, articulator can produce a phone, resulting in an acoustic label not

related to the action of the first articulator. Therefore, it may not be always possible

to tell from the acoustic labels precisely when a certain visible articulatory action

begins and ends.

In the following sections, we set out to find the answers to some of the questions

outlined above, with the ultimate goal of designing a feature set for use in the proposed

44

____ _



Table 4.1: Articulatory feature set proposed in [30].

Index Feature Name Values
0 LIP-LOC protruded, labial, dental
1 LIP-OPEN closed, critical, narrow, wide
2 TT-LOC dental, alveolar, palato-alveolar, retroflex
3 TT-OPEN closed, critical, narrow, mid-narrow, mid, wide
4 TB-LOC palatal, velar, uvular, pharyngeal
5 TB-OPEN closed, critical, narrow, mid-narrow, mid
6 VEL closed, open
7 GLOT closed, critical, wide

recognizer. Section 4.1 introduces the most commonly used visual speech unit - the

viseme - and points out potential problems with viseme-based visual speech modeling.

Section 4.2 describes the visual data representation used in the subsequent experi-

ments. Section 4.3 analyzes the separability of phonetically labeled visual speech

units into distinct feature classes using supervised clustering. Section 4.4 departs

from acoustically-derived labels and performs unsupervised clustering of visual data

in order to determine possible articulatory features. Finally, section 4.5 investigates

the trade-offs between acoustically derived feature transcriptions and manual labeling

of articulatory states from visual data.

4.1 The Existing Approach to Visual Unit Model-

ing

Traditionally, speech recognizers model speech as a sequence of basic units that are

contiguous in time. These units can be derived using either linguistic knowledge or

a statistical, data driven approach. Words, syllables and phonemes are examples

of linguistically-derived units. HMM states are an example of statistically-derived

units. In general, longer units such as words represent contextual variations more

accurately than shorter units. It is possible to use words as the speech unit for small-

vocabulary tasks, for example, digit recognition. However, in the case of general-
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Table 4.2: An example viseme to phoneme mapping, using the TIMIT phone set.

Viseme Phonemes
1 /ax/, /ih/, /iy/, /dx/
2 /ah/, /aa/
3 /ae/, /eh/, /ay/, /ey/, /hh/
4 /aw/, /uh/, /uw/, /ow/, /ao/, /w/, /oy/
5 /el/, /I/
6 /er/, /axr/, /r/
7 /Y/

8 /b/, /p/
9 /bcl/, /pcl/, /m/, /em/
10 /s/, /z/, /epi/, /tcl/, /dcl/, /n/, /en/
11 /ch/, /jh/, /sh/, /zh/
12 /t/, /d/, /th/, /dh/, /g/, /k/
13 /f/, /v/
14 /gcl/, /kcl/, /ng/

purpose, large-vocabulary recognition, there is not enough data to train a separate

model for each word. On the other hand, smaller units such as phonemes and syllables

are vocabulary-independent and limited in number: there are only about 50 phonemes

in the English language. Although context-independent phonemes generalize well,

they are insufficient to capture the different realizations of a phoneme due to its

surrounding context, i.e. its allophones. Therefore, in practice, context-dependent

phonemes, such as biphones or triphones, are used to improve recognition accuracy.

A phoneme is defined as the minimal unit of speech sound that can distinguish one

word from another. The term phone is generally used to denote a phoneme's acoustic

realization. In order to model visual speech, researchers have defined the viseme to

be the visual equivalent of a phoneme. Since not all phonemes are visually distin-

guishable (e.g. "mat" vs "pat"), several phonemes are usually mapped to one viseme.

An example viseme-to-phoneme mapping is shown in Table 4.2, where the phoneme

labels used are from the TIMIT phoneme set. With the exception of small vocabulary

systems, where whole words are used as speech units, (context-dependent) visemes

are the unit of choice for most visual speech recognition and synthesis applications.
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Table 4.3: A commonly used mapping of consonants to visemes [17].

Table 4.4:
phone set.

The 44 phoneme to 13 viseme mapping considered in [39], using the HTK

Silence
Lip-rounding based vowels

Alveolar-semivowels
Alveolar-fricatives

Alveolar
Palato-alveolar

Bilabial
Dental

Labio-dental
Velar

/sil/, /sp/
/ao/, /ah/,/aa/, /er/, /oy/, /aw/, /hh/

/uw/, /uh/, /ow/,
/ae/, /eh/, /ey/, /ay/

/ih/, /iy/, /ax/
/l/, /el/, /r/, /y/

/s/, /z/
/t/, /d/,/n/, /en/

/sh/, /zh/, /ch/, /jh/
/p/, /b/,/m/
/th/, /dh/

/f/, /v/
/ng/, /k/, /g/, /w/
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Viseme Consonant phonemes
1 /f/, /v/
2 /th/, /dt/
3 /s/, /z/
4 /sh/, /zh/
5 /p/, /b/, /m/
6 /w/
7 /r/
8 /g/, /k/, /n/, /t/, /d/, /y/
9 /1/

PhonemesViseme

. -
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A set of visemes is normally defined through one's knowledge of linguistics and the

intuition of which phonemes might appear the same visually. For example, any pair

of phonemes that differ only in the presence or absence of voicing are mapped to the

same viseme (e.g. /t/ and /d/.) Place of articulation is another clue as to whether

or not two phonemes belong to the same visual class (e.g. /m/ and /b/ are both

bilabial.) However, in many cases, the mapping is not obvious. For instance, silence

is very difficult to define as a single visual unit, because it is not tied to any particular

configuration of the articulators. The phoneme /w/ is a less extreme example of an

ambiguous mapping, with some researchers grouping it with /r/, some with /1/ and

some putting it in a class of its own (see Tables 4.3 and 4.4 for examples.) In general,

there is no agreement in the literature on a standard set of visemes, as there is in the

case of phonemes. The mappings are somewhat ad-hoc and vary depending on the

application.

Although visemes are the standard unit of recognition, we are interested in production-

inspired visual units. One of the motivations for the existence of articulatory features

is the fact that acoustic speech sounds form natural classes. In the following, we

propose and evaluate an automatic method of defining natural visual speech classes.

In the next two sections, we use a bottom-up agglomerative clustering technique in

combination with a distance metric to come up with groupings of data. We also

explore the effects of such factors as the signal representation, the image region, and

the length of the time window on the resulting visual clusters. All experiments are

conducted on the AVTIMIT corpus described in the appendix.

4.2 Visual Signal Representation

The visual speech signal consists of raw images of the face and must be represented as

a lower dimensional set of features before further processing. In general, assuming the

mouth and chin portion of the face has been located, the actual extracted region of

interest (ROI) can vary in size and shape. The region can even be divided into several

sub-windows with measurements extracted from each separately. In this work, we
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experiment with three different sizes of rectangular regions. Once an N-by-M region

of interest has been determined, it is normalized for lighting effects using histogram

equalization. Then, a vector of measurements representing the region is extracted.

This process is commonly referred to as feature extraction, and is described below.

Finally, several consecutive frames are sometimes stacked together to obtain a more

dynamic representation.

There are two main approaches to visual feature extraction for speech recogni-

tion. The first is an appearance-based, or bottom-up, approach, in which the raw

image pixels are compressed, for example, using a linear transform, such as a discrete

cosine transform (DCT), principle component analysis (PCA) projection, or a linear

discriminant analysis (LDA) projection. The second is a model-based, or top-down,

approach, in which a pre-determined model, such as the contour of the lips, is fitted

to the data. Some approaches combine both appearance and model-based features.

It has been found that, in general, bottom-up methods perform better than top-down

methods, because the latter tend to be sensitive to model-fitting errors [39].

In this work, we use only appearance-based features. In particular, we experiment

with two representations: raw images and DCT-compressed images. In the former,

raw pixels are taken from the image. In the latter, the 16-by-16 subset of the 2-D

DCT transform matrix containing the highest-frequency coefficients is used. In both

cases, a PCA transform is applied and the top 32 coefficients retained to further

reduce the dimensionality of the data vector.

The top 32 principal components of the raw pixel data are shown in Figure 4-

1. In order to illustrate the contribution of each component, they are shown again

in Figure 4-2, this time added to the mean mouth image. For example, the first

principal component (accounting for the most variance) corresponds to the mouth

being either more or less open. Of course, not all components describe variance due

to speech-related movements.

We used 50 context-independent phonemes from our dataset, with a total of

around 130,000 samples. Since visualizing the distribution of visual data correspond-

ing to each phonemic label can help us analyze the results of clustering in the next
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Figure 4-1: The first 32 principal components.

Figure 4-1: The first 32 principal components.
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Figure 4-2: The first 32 principal components, added to the mean image.
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hh uh uw ow ae eh ey ay
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section, we plot the mean of each distribution in Figure 4-3. The lip images ares z t WIl d dcl dx : RG nFigure 4-3: Images rconstructed from the mean of 32-PCA coefficient distributions. Each

distribution corresponds to the middle frame of one phoneme. However, it is difficult

to see the differences between the images. Therefore, we also show the reconstruction

of the means just from the 32 coefficients without the overall mean in Figure 4-4.

As for the DCT signal representation, we tried using two different ROIs: a smaller

16-by-32 ROI including just the lips, and a larger 32-by-32 ROI including the lips and

the chin. The goal was to see whether varying the size of the region while keeping

the dimensionality of the feature vector constant would influence the formation of

clusters. The phoneme distributions for the smaller ROI are shown in Figure 4-5

and for the larger one in Figure 4-6. Once again, we do not add the mean vector to

enable the reader to see the differences more clearly. Also note that the phoneme set

is slightly different, with the diphthongs being split into two phonemes.
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Figure 4-4: Mean phoneme images from 4-3, with the overall mean mouth image
subtracted.
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Figure 4-5: Images reconstructed from the mean 36 PCA coefficients, extracted from

the 256 highest-frequency DCT coefficients.
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Figure 4-6: Image reconstructed from the mean 36 PCA coefficients, extracted from
the 256 highest-frequency DCT coefficients.
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Figure 4-7: Images reconstructed from the mean 36 PCA coefficients, extracted from
the 256 highest-frequency DCT coefficients taken from frame difference images.

Finally, we experiment with using differences between every other frame instead

of static frames. Taking the difference removes some of the texture unique to the

individual speaker, and also captures the dynamics of speech. In our case, the facial

images were aligned prior to R,OI extraction using correlation tracking of the bridge

of the nose, to ensure that the motion between frames is mostly due to articulator

movements. The corresponding distributions of the DCT data are shown in Figure

4-7. This time we did not remove the mean vector for presentation, since the frame

differences are already quite visually distinct.
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4.3 Clustering Using Phonetic Labels

One way to derive a set of articulatory feature units is to use a data-driven automatic

clustering approach. This method has several advantages. First of all, since most

phonetic recognizers use statistical models trained on data, it might be beneficial

to automatically learn natural classes from the data. Another advantage is that, if

a large amount of training samples is available, the data-driven algorithm can ac-

count for contextual variations and differences between speakers. This is particularly

interesting because the knowledge-based mappings are usually made with canonical

phonemes in mind, while recognition is done on continuous, co-articulated speech.

Lastly, this approach enables us to explore the influence of the signal representation

on the optimal visual units.

It is important to keep in mind that speech recognition consists of two closely

related sub-problems: segmentation and classification. Although both are equally

important, and neither has received enough attention in the context of visual speech

recognition, in this work we will focus mainly on the latter. We believe that there is

no simple one-to-one mapping between phonemic and visemic segment boundaries,

however, for the time being, we will adopt the standard approach of using acoustically-

derived phonemic boundaries to segment the visual signal into units. Therefore, we

will be mainly concerned with grouping visual data synchronous with the acoustic

segments into distinct, distinguishable classes.

In the following, we will use clustering to automatically discover speech classes

from phonetically labeled visual data, using signal representations described in the

previous section. First, we will describe the clustering algorithm.

4.3.1 Clustering Algorithm

We start with one cluster per phoneme, then use a standard agglomerative hier-

archical clustering algorithm to successively merge clusters based on the maximum

distance between them. We use the Battacharyya distance as the distance metric.

The Battacharyya distance measures the similarity of two Gaussian distributions:
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where Mi is the mean vector and Ei is the covariance matrix of class wi, for i=1,2. The

first term of Equation 4.1 gives the class separability due to the difference between

class means, while the second term gives the class separability due to the difference

between covariance matrices. The advantages of using the Bhattacharyya distance is

that it is computationally simple and provides a "smoothed" distance between the two

classes. The disadvantage is that it assumes that the data are normally distributed,

which we do not believe to be the case. The clustering technique described above was

used for phoneme clustering in [32].

4.3.2 Results and Discussion

We ran the algorithm on our data, using the following image encodings:

* Pixel-based PCA coefficients

- single static frame, see results in Fig. 4-8

- three consecutive static frames, see results in Fig. 4-9

* DCT-based PCA coefficients, large ROI

- single static frame, see results in Fig. 4-10

- single motion frame, see results in Fig. 4-11

- three consecutive static frames, see results in Fig. 4-12

- three consecutive motion frames, see results in Fig. 4-13

* DCT-based PCA coefficients, small ROI, Fig. 4-14

First, let us observe the general structure of the cluster trees. The bars are

proportional in length to the distance between clusters. Overall, we see that many

clusters at the lowest level are well-known visually confusable pairs, eg. {m,bcl},
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Figure 4-8: Cluster plot using Pixel PCA encoding of static frames.
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Figure 4-9: Cluster plot using a Pixel-PCA encoding of 3 stacked static frames.
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Figure 4-10: Cluster plot using a DCT-PCA encoding of static frames.
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{t,d}, f,v}, etc., although some of the immediate pairs, such as {n, ax}, are more

difficult to justify. If we look at the cluster plot using pixel-based PCA features

extracted from static frames (Fig. 4-8,) we can see that beyond the obvious confusable

pairs, the larger granularity classes are as follows:

* mouth wide open

* mouth fully closed

* rounded lips

* everything else

It is interesting to observe the high level tree structure: by drawing an imaginary

line a certain distance from the top of the tree, we can split it into arbitrarily high level

clusters. For comparison, in an acoustic graph, the two top-level clusters correspond

roughly to vowels and consonants. In the visual case, however, the top-level structure

seems to change depending on the underlying signal representation. For example,

if we look at the static pixel PCA features (Fig. 4-8), the two top-level clusters

correspond to the "wide open lips" phonemes /aa/,/aw/,/ae/,/ay/,/hh/,/eh/,/ey/,

and to the rest of the "less open or closed lips" phonemes. The situation is similar

in the case of the DCT features derived from the small ROI (Fig. 4-14.) On the

other hand, for the large ROI data (Fig. 4-10,) the two top-level clusters are more

balanced, the more "open" cluster including not only the "wide open lips" group,

but also the vowels /ah/,/dx/,/iy/, the liquid /1/ and the velar closures and bursts

/gcl/, /kcl/, /ng/, /k/, /g/. One possible explanation for this is that the jaw position

is now playing a role, so that lip position is not the only differentiating feature. In

general, using a bigger ROI results in more distinct clusters that are farther apart.

We now study the effects of using dynamic information as opposed to the static

frame. First, extracting the DCT coefficients from the motion frames instead of the

full frames has a significant effect on the clustering tree (see Fig. 4-11.) Now that

we are looking at the motion just preceding the center point of the phoneme, the

two top level clusters have changed. The first cluster now contains the "closed lips"
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phonemes /pcl/,/bcl/,/m/,/f/,/v/, which are characterized by the distinct motion

of the lips coming together quickly. It also contains the seemingly unrelated second

part of the /aw/ diphthong, /aw2/. However, noticing that /aw2/ is characterized

by the fast motion of the closing jaw, as are the /pcl/,/bcl/,/m/,/f/,/v/ phonemes

(see Fig.4-7), helps explain this fact. Further evidence that jaw movement is playing

a role in distinguishing this phoneme from the others lies in the fact that it appears

distinct in the larger ROI clustering plots (see also Fig. 4-12), but not in the smaller

ROI (not including the chin) clustering plots (see Fig. 4-9.)

Another notable change when looking at motion frame clusters is that the second

part of the /oy/ diphthong, /oy2/, is now very distinct from the other phonemes;

in fact, it alone comprises one of the four top-level clusters, which also include the

"lips closing" cluster described above and two other, more broad, clusters (Fig. 4-11.)

This is perhaps not surprising, considering how distinct the mean difference frame

for /oy2/ looks in Fig. 4-7, suggesting the action of the lip corners pulling apart and

exposing the teeth.

While some phonemes become more distinct when motion is considered, others

become less distinct and more confusable. For example, the velar bursts /g/ and /k/,

previously closely grouped together, are now clustered almost randomly, the former

with /axr/ and the latter with silence. A possible explanation is that the work in

creating a glottal burst is being done in the back of the throat, leaving the visible

articulators free to move in preparation of the next sound.

As we keep adding even more dynamic information by stacking static frames or

stacking motion frames together, we continue to observe the above two trends (see Fig.

4-12 and Fig. 4-13.) On the one hand, certain phoneme clusters are becoming more

distinct; on the other hand, the cluster of less distinguishable phonemes is growing

larger. For example, in Fig. 4-13, we observe the following distinct groups:

* /pcl/, /bcl/, /m/, /f/, /v/

* /aw2/, /ay2/, /ey2/

* /b/, /p/
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0 /oyl/, /w/

* /oy2/

* /ao/, /aa/, /ah/, /ayl/, /eh/, /eyl/, /ae/, /awl/

which can be loosely described by the following articulatory events:

* lower lip touching upper lip or upper teeth

* lower lip and jaw moving up from a wide open position

* lips coming apart quickly

* lips rounding

* mouth corners moving apart quickly

* lower lip and jaw moving down

The rest of the phonemes (a little more than half) are found in one large cluster.

In particular, the velar bursts /g/,/k/ are now both closely grouped with silence.

Since, in our database, silence corresponds half of the time to a closed mouth and

half of the time to an open mouth, we conclude that /g/,/k/ must be just as variable

in terms of their motion.

One of the reasons why the above clusters are so easy to differentiate with the

stacked motion frame representation may be the speed of the articulator movements.

For example, the bilabial burst happens very quickly, certainly within three frames.

One suggestion for future work would be to study longer sequences in order to uncover

slower distinctive articulatory events. Another reason may be that some of them are

the second part of a diphthong, meaning that they always occur in the same context.

Overall, these clusters show that, when it comes to the dynamic content of visual

speech, the most distinctive visual units seem to be closely tied to the physical motion

of the articulators.
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Figure 4-15: K-means clustering using two clusters.

4.4 Unsupervised Clustering

In the previous section, we used a supervised clustering technique to determine nat-

ural clusters of phonemes that might correspond to visible articulatory features. In

this section, we depart from the standard technique of finding distinctive visual units

through alignment with acoustically determined phoneme labels. The motivation

behind this departure is that we would like to be able to recognize the underlying

gestures associated with articulation. While these gestures are certainly correlated

with the produced sounds, and, consequently, with the phonemes derived from either

a manual or an automatic segmentation of the audio signal, some articulatory infor-

mation may be lost in the process. For instance, the fact that the video and audio

speech signals exhibit some amount of asynchrony indicates that an acoustically de-

rived segmentation may not be appropriate. In addition, as we saw in the previous

section, grouping together visual frames labeled with the same phoneme sometimes

yields very variable clusters.

In general, our goal is to discover the natural building blocks of visual speech

without necessarily restricting them to be synchronous with audio segments. As a
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Figure 4-16: K-means clustering using four clusters.
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preliminary investigation, we try an unsupervised clustering approach using the K-

means algorithm. This is the simplest technique, and depends on having a fixed

number of clusters. The results of K-means clustering of visual frames for each of

four different speakers is shown in Figure 4-15. In this case, two clusters were used,

and the means of each cluster are displayed. It is evident from the figures that the

algorithm separates the mouth images according to the degree of opening. This leads

to the observation that the lip/jaw opening and closing is the most distinguishable

articulatory feature, and is consistent across different speakers. Note, however, that

the actual appearance of cluster centroids varies from speaker to speaker.

Figure 4-16 shows the results of K-means clustering using four clusters. We can

observe that the four most salient articulatory configurations are more of less con-

sistent across different speakers. If we look at the distribution of phonetic labels for

each cluster, they fall into the following lip-opening categories: 1) closed lips, 2) a

narrow opening between the lips, 3) a medium opening, and 4) a wide-open mouth.

The obvious limitation of this approach is that the number of clusters must be

specified in advance.

4.5 Manual Labeling of Articulatory Features

Ideally, the ground truth for the articulator trajectories should be obtained through

accurate tracking each of the articulators. This can be achieved, for example, by

attaching sensors to the speaker's vocal tract organs, as is done in Electromagnetic

Articulography (EMA.) EMA provides two-dimensional kinematic data of most of

the articulatory structures of interest, i.e. lips, jaw, tongue and velum, in readily

analyzable form. Other monitoring devices include the x-ray microbeam system and

MRI. Alternatively, since we do not have access to such devices, we could utilize com-

puter vision techniques for tracking objects in video. For example, several methods

for tracking lip contours have been proposed. The disadvantage is that such methods

usually require the initialization and training of models, often requiring the user to

click on mouth contour points; they also frequently suffer from tracking failures. Since
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a manual initialization step seems inevitable, it may be useful to forego the tracking

step altogether and instead label the articulatory features directly. This is, in fact,

the approach we take in this section.

Manual labeling of speech data is the most commonly used technique for anno-

tating acoustic speech corpora. Normally, transcription is done by trained linguists

following a set of guidelines. However, as mentioned above, visual corpora are nor-

mally labeled using acoustic forced alignments, therefore, no analogous guidelines

exist for visual speech transcription. Nevertheless, one might imagine a lipreading

expert being able to assign either phoneme (viseme) or gesture labels to a sequence

of facial images.

First, we must decide what set of labels to use in the transcription. Note that

we choose to label the absolute state of the lips, jaw, and tongue at a particular

instant in time, rather then their movements. Motion labels can then be inferred

from the absolute labels. Also, note that articulators go through a continuous range

of positions, while phoneme labels are discrete. We use a similar discretization of the

space of all possible positions into a small set of feature values.

After visually inspecting recorded video sequences from the AVTIMIT database,

we arrived at the feature set shown in Table 4.5. We used the analytically derived

feature set shown in Table 4.1 as the basis, taking into account the following consid-

erations: i) the features should describe all the articulations that the human labeler

can distinguish from the video; ii) however, the number of features and their values

should be small to avoid increased computational complexity. Notice that we did not

use any tongue features. There are two reasons for this. The first one is that, since

the tongue is partially hidden from view, its position is difficult to judge and must be

inferred most of the time. The second reason is that we wanted to keep the number

of features small in order to conduct the initial proof-of-concept experiments.

We have broken up the LIP-LOC feature into two binary features: LIP-LOC,

which indicates lip protrusion, and LAB-DENT, which indicates the lower lip pressing

up against the upper teeth. The reason for having two separate features is that it

gives us more information in the case when the lips are in the labio-dental position
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Table 4.5: The proposed articulatory feature set.

Index Feature Name Values
0 LIP-LOC unrounded (U), rounded (R)
1 LIP-OPEN closed (C), narrow (N), medium (M), wide (W)
2 LAB-DENT non-labio-dental (N), labio-dental (Y)

and also protruded.

The third feature, LIP-OPEN, has four values, indicating four different degrees

of openness of the lips: labial, or completely closed lips, narrow, or slight opening

between the lips, wide, or very wide opening, and medium, or all other degrees be-

tween narrow and wide. We chose to partition the space of degree of opening into

these particular four categories based on visual inspection, and also on the results of

unsupervised clustering in the previous section. We could, of course, have more levels

of opening, however, this would increase the parameter space.

We compare our manual transcriptions to labels generated automatically by map-

ping a phonetic transcription to feature values using Table 4.6. Figure 4-17 shows

the alignment of the manual labels for each feature with the automatically generated

mapped labels for fragments of the following three utterances: (a) "Don't ask me to

carry an oily rag like that", (b) "Barb's gold bracelet was a graduation present", and

(c) "A chosen few will become generals." The manual and mapped transcriptions

differ: for example, in the automatic transcription for LIP-OPEN in (a), every visual

frame for the initial /ae/ segment is labeled wide, while in the manual transcription

the last three frames are labeled medium.

Although it is difficult to quantitatively compare manual and automatic transcrip-

tions, we can at least observe how they affect the classifier. We trained two sets of

SVM classifiers for LIP-OPEN and LIP-LOC, using mapped labels in the first set

and manual labels in the second. The classifiers achieve 89-90% accuracy on training

data using mapped labels, and 95-96% using manual labels, indicating that perhaps

the manual labels are more consistent and therefore easier to recognize. We show a

sample of the outputs of the classifiers for LIP-OPEN in Figure 4-18 and for LIP-LOC
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Table 4.6: Mapping from phonemes to articulatory feature values.

phone LIP-LOC LIP-OPEN LAB-DENT
aa U M N
ae U W N
ah U M N
ao R M N
awl U W N
aw2 R M N
ax U M N
axr R M N
ayl U M N
ay2 U M N
b U N N
bcl U C N
ch U M N
d U M N
dcl U M N
dh U M N
dx U M N
eh U M N
el U M N
em U C N
en U M N
er R M N
eyl U M N
ey2 U M N
f U N Y
g U M N
gcl U M N
hh U M N
ih U M N
iy U M N
jh U M N
k U M N
kcl U M N
1 U M N
m U C N
n U M N
ng U M N
owl R M N
ow2 R M N
oyl R N N
oy2 U M N
p U C N
pcl U N N
r R M N
s U M N
sh U M N
t U M N
tcl U M N
th U M N
uh R M N
uw R N N
v U N Y
w R N N
y U M N
z U M N
zh U M N
epi U M N
sil U M N
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in Figure 4-19. In each of the figures, the top part shows outputs of the mapped label

classifier, and the bottom part the outputs of the manual label classifier. Upon visual

inspection, the manual label classifiers seem to be assigning more correct labels.

4.6 Conclusion

In the first half of this chapter, we analyzed visual data corresponding to the center of

acoustically labeled phonemes, using an agglomerative clustering technique. The goal

was to investigate the basic structure of continuous, multi-speaker visual speech. The

results show that, although this method can be used to map phonemes to visual units,

the optimal mapping depends on the region of interest, on whether one uses motion

or static frames, and possibly on the length of the time window. This suggests that

different signal representations can be used to provide complementary information.

Furthermore, while some of the clusters corresponding to conventional visemes and

are stable across representations (eg. {bcl,pcl,m}, or the bilabial viseme,) others are

unstable and much less distinct. Overall, the results indicate that it may be better

to think of visual speech units in terms of articulatory gestures, such as lips closing

together, jaw moving up, and so on, rather than groups of visually similar phonemes.

In the last half of this chapter, we proposed a set of articulatory visual features

that will be used in our recognizer. We attempted to learn these features in an

unsupervised manner from the visual database, however, more research is needed

in this direction before an algorithm for visual data driven unit extraction can be

proposed. Therefore, to facilitate the evaluation of our model in the next chapter, a

manual transcription procedure was carried out.
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(a) LIP-OPEN

(b) LIP-LOC

(c) LIP-FRIC

Figure 4-17: Alignment of manually labeled (top) and automatically labeled (bottom)
features.
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Figure 4-18: Outputs of SVM classifiers for LIP-OPEN trained on (a) mapped labels
and (b) manual labels.
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Figure 4-19: Outputs of SVM classifiers for LIP-LOC trained on (a) mapped labels
and (b) manual labels.
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Chapter 5

Experimental Evaluation

In this chapter, we compare the performance of AF-based visual speech recognition

to conventional viseme-based recognition. We conduct two different types of experi-

ments. In Section 5.1, we test an AF-based viseme classifier on visually noisy data,

and show that it can lead to improved viseme classification rates in the presence of

image noise. As this is still very much a work in progress, we have only limited ini-

tial experiments to report. Nevertheless, they indicate that our approach increases

classification rates on a simple task, and, therefore, merits further investigation.

In Section 5.2, we evaluate our AF-based word recognizer on manually transcribed

visual speech data for one speaker in the AVTIMIT database. We demonstrate how

the recognizer handles context effects by allowing feature asynchrony and substitution.

5.1 Viseme Classification in the Presence of Visual

Noise

5.1.1 Experimental Setup

In this section, we conduct our initial proof-of-concept experiments on a small two-

speaker audio-visual speech corpus previously collected in our lab. The corpus consists

of continuous repetitions of a nonsense utterance designed to provide a balanced cov-

erage of English visemes. In order to facilitate the accurate extraction and tracking of
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Table 5.1: Viseme to feature mapping.

Viseme LIP-OPEN LIP-ROUND
/ao/ Wide Yes
/ae/ Wide No
/uw/ Narrow Yes
/dcl/ Narrow No

the mouth region, the first speaker's lips were colored blue. A color histogram model

was then used to segment the lip region of interest. The second speaker's lips were

not colored, but rather segmented using correlation tracking, which resulted in im-

perfect ROI localization. Viseme labels were determined from an audio transcription,

obtained automatically using an audio speech recognizer, via the mapping described

in Table 5.1. Figure 5-1 shows some sample viseme images taken from the center of

the corresponding phonetic segments. In this case, each viseme corresponded to a

single phoneme.

Prior to classification, the original 120x160 sample image was scaled down to 10x14

pixels in size and then vectorized to form a 140-element data vector. The decision

to use very simple image features (pixels) as input to the SVM was intentional.

When applied to other pattern recognition tasks, SVMs have achieved very good

results using only such simple input features. Furthermore, we wanted to allow the

discriminative power of the SVM determine those parts of the image that are key

to a particular feature without making any prior assumptions. We used a training

set consisting of 200 samples per viseme, and a separate "visually clean" test set of

100 samples per viseme. The "visually noisy" test sets we created by either adding

random Gaussian pixel noise to the down-sampled test images, or blurring the original

images with a Gaussian filter to reduce their effective resolution.

As a start, we applied our approach to the task of viseme classification. For this

experiment, we used only four visemes, corresponding to the phonemes /ao/, /ae/,

/uw/ and /dcl/. We chose the viseme set so that it could be completely encoded

by the cross product of two binary articulatory features, in this case, LIP-OPEN
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4rJ

Figure 5-1: Sample viseme images for Speaker 1, from left to right:
/uw/ and /dcl/. The original high-resolution images (top row); resized
used for training (2nd row); with added 50% pixel noise (3rd row); and
Gaussian kernel of size 10 (bottom row).

/ao/, /ae/,
clean images
blurred with
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and LIP-ROUND. Table 5.1 shows the mapping from the visemes to the articulatory

feature values. In the general case, there would be on the order of a few dozen visemes,

and so the number of features would necessarily increase. Note that we could have

used more features, such as the visibility of teeth or the tongue position, making the

feature set redundant.

A separate SVM classifier was trained for each viseme, as well as for each of the two

features, using LIBSVM software [6], which implements the "one-against-one" multi-

class method. We used the radial basis function (RBF) kernel in all experiments, as

we found it to give the best performance with the fewest free parameters. The RBF

is defined as follows:

K(xi, j) = e-7llzi-xill2 y > 0, (5.1)

where xi, xj are training samples. Therefore, in addition to the penalty parameter of

the error term, C, the RBF SVM has another free parameter, y. To find the optimal

values for these two parameters, we performed v-fold cross-validation on the training

data. Figures 5.1.2 and 5.1.2 show the contour plots obtained from a grid search on

C and 7 for the 4-class "viseme" SVM and the two binary articulatory feature SVMs.

The red star indicates the smallest parameter values at which the peak accuracy was

achieved. Note that while the optimal parameters for the "viseme" and LIP-ROUND

SVMs are similar, the optimal LIP-OPEN SVM parameters are lower, suggesting

that it may have better generalization in the presence of noise, since a smaller value

of g means a wider Gaussian. During classification, feature labels were converted to

viseme labels using the mapping shown in Table 5.1. This is the simplest possible

combination rule. Another alternative would have been to train a second-level viseme

classifier that takes the concatenated probabilities of the two features obtained from

the two first-level classifiers as input.

5.1.2 Results

Figure 5-2 shows the classification rates obtained by each classifier across several levels

of random pixel noise, averaged over 20 training and testing runs. The horizontal
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Figure 5-2: Comparison of viseme classification rates obtained by the AF-based and
viseme-based classifiers on test data with added random pixel noise.
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Table 5.2: Classification rates on pixel noise data for Speaker 1.

Noise Level Viseme OPEN ROUND Combined
None 99 100 99 99

30% 69 100 99 99

35% 50 100 98 98

40% 38 100 96 96

45% 27 100 84 84

50% 25 100 60 60

55% 25 94 51 48

60% 25 74 50 37

axis shows the percentage of Gaussian noise that was added to the test images. The

vertical axis shows the correct viseme classification rate. Results for each speaker are

shown on separate plots.

Tables 5.2 and 5.3 show the classification rates obtained by each classifier across

several levels of random pixel noise in one particular run of training. The first column

shows the percentage of Gaussian noise that was added to the test images. The second

column shows the viseme classification rate using the viseme classifier, and the next

two columns show the respective LIP-OPEN and LIP-ROUND feature classification

rates. The last column shows the viseme classification rate obtained by combining the

results of the individual feature classifiers. Table 5.4 shows the classification results

on the low-resolution test data for Speaker 1. The first column shows the size of the

Gaussian kernel used to blur the original high-resolution images. One interesting fact

is the resilience of the SVM to significant amounts of noise and blurring. This could

be attributed to the fact that the four chosen visemes can be distinguished using

mostly low-frequency information. The same result may not hold for other visemes

that can only be distinguished by high-frequency information, such as a small opening

between the lips, etc. Overall, the results of our preliminary experiments clearly show

the advantage of using articulatory feature modeling for viseme recognition from

noisy images. While the viseme classifier's performance degrades significantly with

increasing noise levels, the combined feature-based classifier retains a high recognition

rate.
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Figure 5-3: Contour plots of cross-validation accuracy as a function of the C and
y parameters for the "viseme" (top), "LIP-OPEN" (middle) and "LIP-ROUND"
(bottom) SVMs for Speaker 1.
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Figure 5-4: Contour plots of cross-validation accuracy as a function of the C and
.y parameters for the "viseme" (top), "LIP-OPEN" (middle) and "LIP-ROUND"
(bottom) SVMs for Speaker 2.
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Table 5.3: Classification rates on pixel noise data for Speaker 2.

Noise Level Viseme OPEN ROUND Combined
None 100 100 100 100

30% 100 100 100 100
35% 99 100 100 100

40% 93 100 100 100

45% 59 100 100 100

50% 49 100 97 96

55% 37 99 82 81

60% 25 79 54 43

Table 5.4: Classification rates on low-resolution data for Speaker 1.

Kernel Size Viseme OPEN ROUND Combined
None 99 100 99 99

9 97 100 99 99

10 90 99 99 98

5.2 Word Recognition Using Manual

tions

5.2.1 Experimental Setup

Transcrip-

In this section, we describe our preliminary experiments using the proposed DBN

model for articulatory feature-based word recognition (see Figure 3-3.) The goal of

these experiments is two-fold. First of all, we would like to evaluate the feasibility

of the proposed DBN structure. Although a similar model has been successfully

used for feature-based lexical access in [30], the frame rate, the feature set and, of

course, the modality are all different in this case. The second goal is to compare the

performance of a multi-stream feature DBN to a viseme-based word recognizer. In

our experiments, the latter is implemented by forcing the features to be completely

synchronous and by not allowing any substitutions. Thus, the observed features are

simply mapped to visemes, which are then used in lexical access. In the proposed
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DBN, both feature asynchrony and substitution are allowed.

The recognizer takes as input the values of the observed feature variables LL-Obs,

LO-Obs and LD-Obs. In this case, these values were obtained from manual feature

transcriptions described in Section 4.5. In the future, manually transcribed labels

will be replaced with SVM classifier outputs. Additionally, these hard decisions will

be converted into posterior probabilities. However, for now, the main goal is to do

a feasibility study of the general approach, so we use the transcriptions, keeping in

mind that the actual classifier outputs will not be as accurate.

Eleven utterances from the AVTIMIT corpus, taken from a single speaker, were

transcribed with the three feature values. Out of the resulting 162 words, the 139

words that remained after excluding words with fewer than 4 frames (a GMTK re-

quirement) were used in the experiment. The total vocabulary size was approximately

1800 words.

5.2.2 Results

In general, we would not expect to achieve a very good word recognition rate from

only visual observations on such a relatively large vocabulary. Also, we are only

using three articulatory features in our model. Therefore, it is not surprising that

the baseline model recognized only 9 words out of 139. The feature-based model

recognized 13 words correctly, which is an improvement over the baseline. However,

it may be more informative to look at the distribution of the ranks of the correct

word, plotted in Figure 5-5. The cumulative distribution for the feature-based DBN

is significantly higher than that for the baseline DBN. This means that, given the

top N highest-ranked word hypotheses, the probability of having the correct word

among that list has improved. In other words, where the baseline model may give

the correct word a low probability score, our model is giving it a higher score, which

is encouraging.

To illustrate the type of variability in the visual realization of a word that our

DBN is modeling better than the baseline DBN, we show two sample feature stream

alignments in Figure 5-6. The top part of each figure shows the spectrogram of the
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utterance; the four bottom lines are aligned transcriptions of (from top to bottom):

the phonemes, and the LIP-OPEN, LIP-ROUND and LAB-DENT features.

The top figure is an excerpt from the utterance "A chosen few will become gen-

erals." In the canonical representation, the words "few will", map to the phoneme

sequence "/f/ /y/ /uw/ /w/ /ih/ /1/", which in turn maps to the LIP-ROUND fea-

ture values of "U U R R U U". However, in the actual realization of the sentence,

we observe that the feature is has spread and has the value R for almost the entire

length of the segment. This example falls under the category of context-dependent

feature substitution, and is handled by the model by allowing the feature value to

change from U to R. Also, note that in the word "generals," the LIP-ROUND feature

continues to have the value R for one extra frame after the LIP-OPEN feature has

already switched to the value M. This is an example of feature asynchrony and is

handled by the DBN by allowing the features to proceed at different rates.

The bottom example is an excerpt from the utterance "Barb's gold bracelet was

a graduation present." Notice that in the word "graduation," the LIP-OPEN feature

has the value closed during the production of /n/. This is due to the effect of artic-

ulatory anticipation of /pcl/ in "present," which causes most of the velar /n/ to be

produced with closed lips. This is another example of feature asynchrony, where the

lips got a ahead of the velum.

One of the limitations of the current system is that it assumes that the features

will synchronize at the beginning and at the end of each word. Therefore, while it

can model cross-phone asynchrony, it cannot model cross-word asynchrony. However,

the system will still be able to explain some instances of cross-word feature spreading

as feature substitution. For example, in the word "few", it could model the rounding

of the initial /f/ as the substitution of the value of the LIP-ROUND feature. This

also applies to the "graduation" example above. This limitation will be remedied in

a future version of the model.

Figure 5-7 shows a sample alignment for the word "supervision." It demonstrates

how system aligns the underlying feature values, as determined by the dictionary and

the phone-to-feature mapping tables, to the observed feature values.
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Figure 5-5: Rank of correct word, cumulative distribution.
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Figure 5-6: Aligned feature transcriptions for two utterances.
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Figure 5-7: Sample alignment for the word "supervision".
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we began laying the groundwork for feature-based visual speech model-

ing. We analyzed the natural clustering of visual phoneme segments and showed that,

like their acoustic counterparts, visual units can be grouped according to articulatory

features. We proposed a set of articulatory features for use in a feature-based visual

speech recognizer, and conducted some initial experiments showing the robustness of

feature-based classification at high levels of noise. We also trained and evaluated a

feature-based word recognizer on manual feature transcriptions, demonstrating the

feasibility of the visual DBN model.

6.2 Future Work

As this research is still in its early stages, there are many interesting open issues to

pursue in the future. We would like to investigate automatic methods for labeling

articulatory features, and to expand the number of features to cover the set of all

possible visemes. Also, we used an SVM classifier for our experiments, however, we

would like to explore whether other classifiers benefit from the articulatory feature

modeling approach as well.

Since different feature detectors tend to have different levels of robustness, we
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would like to be able to selectively ignore feature detectors that are unreliable in the

process of lexical access. That way, recognition using a partial feature specification

may be possible even in the face of severe degradation of the visual signal.

In addition, it has been noted that using articulatory features overlapping in time

leads to advantages in context modeling over traditional multi-phone models [54].

Since the feature spreading property is particularly noticeable in the lip features, it

would be interesting to evaluate this approach to context modeling in visual speech,

and compare it to the traditional multi-phone approach. We would also like to extend

the DBN to handle cross-word asynchrony.

Finally, the merits of the feature approach in an integrated audio-visual speech

recognizer should be explored.
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Appendix A

The AVTIMIT Corpus

A.1 Corpus Collection

To provide an initial corpus for our research in audio- visual speech recognition we col-

lected a new corpus of video recordings called the Audio-Visual TIMIT (AV-TIMIT)

cor- pus. It contains read speech and was recorded in a rela- tively quiet o ce with

controlled lighting, background and audio noise level. The main design goals for this

corpus were: 1) continuous, phonetically balanced speech, 2) mul- tiple speakers, 3)

controlled o ce environment and 4) high resolution video. The following sections will

describe each aspect of the data collection in detail.

A.1.1 Linguistic Content

Because of size and linguistic exibility requirements, we decided to create a corpus

of phonetically rich and balanced speech. We used the 450 TIMIT-SX sentences

originally designed to provide a good coverage of phonetic contexts of the English

language in as few words as possible [17]. Each speaker was asked to read 20 sentences.

The rst sentence was the same for all speakers, and is intended to allow them to

become accustomed to the recording process. The other 19 sentences di ered for each

round. In total, 23 di erent rounds of utterances were created that test subjects were

rotated through. Each of the 23 rounds of utterances was spoken by at least nine di
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erent speakers.

A.1.2 Recording Process

Recording was completed during the course of one week. The hardware setup included

a desktop PC, a GN Netcom voice array microphone situated behind the keyboard,

and a high-quality SONY DCR-VX2000 video camcorder. The camera was mounted

on a tripod behind the computer dis- play to record a frontal view of each subject. A

blue cur- tain was hung behind the chair to reduce image background noise; however,

users were not told to restrict their move- ments. The audio quality was generally

clean, but the micro- phone did pick up some noise from a computer fan. The av-

erage signal-to-noise ratio within individual utterances was approximately 25 dB, with

a standard deviation of 4.5 dB. After being seated in front of the computer, the user

was instructed to press and hold the "Record" button on the interface while reading

each prompted utterance from the screen. Upon button release, the program echoed

the recorded waveform back, so that the user could hear his/her own recording. To

help ensure that the speech matched the orthographic transcription, an observer was

present in the room to ask the user to re-record a sentence if necessary. For the

last ve sentences, extra side lighting was added in order to simulate di erent lighting

conditions (see Figure 1). Figure 2: Examples of tracked mouth regions from the

AV-TIMIT corpus. The bottom row shows tracking failures.

A.1.3 Database Format

Full color video was stored in uncompressed digital video (DV) AVI format at 30

frames per second and 720x480 reso- lution. In addition to the audio track contained

in the video les, the audio was also saved into separate WAV les, sam- pled at 16

KHz. The total database duration is approxi- mately 4 hours.
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A.1.4 Demographics

The majority of volunteers came from our organization's community. The nal audio-

visual TIMIT corpus contained 223 speakers, of which 117 were male and 106 were

female. All but 12 of the subjects were native speakers of English. Different ages and

ethnicities were represented, as well as people with/without beards, glasses and hats.

A.2 Annotation

A.2.1 Audio Processing

Time-aligned phonetic transcriptions of the data were cre- ated automatically using

a word recognition system con- gured for forced-path alignment. This recognizer

allowed multiple phonetic pronunciations of the spoken words. Al- ternate pronun-

ciation paths could result either from a set of phonological variation rules or from

alternate phonemic pro- nunciations speci ed in a lexical pronunciation dictionary.

The acoustic models for the forced-path alignment pro- cess were seeded from models

generated from the TIMIT corpus [17]. Because the noise level of the AV-TIMIT cor-

pus was higher than that of TIMIT (which was recorded with a noise-canceling close-

talking microphone), the initial time-aligned transcriptions were not as accurate as

we had desired (as determined by expert visual inspection against spectrograms). To

correct this, the acoustic models were it- eratively retrained on the AV-TIMIT corpus

from the initial transcriptions. After two re-training iterations, a nal set of transcrip-

tions were generated and deemed acceptable based on expert visual inspection. These

transcriptions serve as the reference transcriptions used during the phonetic recog-

nition evaluation presented in Section 4.

A.2.2 Video Processing

The video was annotated in two di erent ways. First, the face region was extracted

using a face detector. In order to eliminate any translation of the speaker's head, the

face sequence was stabilized using correlation tracking of the nose region. However,
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since we also needed a reliable way to locate the speaker's mouth, we then used a

mouth tracker to extract the mouth region from the video. The mouth tracker is part

of the visual front end of the open source AVCSR toolkit available from Intel [6].

Although the front end algorithms were trained on di er- ent corpora than our own,

they performed relatively well on the AV-TIMIT corpus. The mouth tracker uses two

clas- si ers (one for mouth and the other for mouth-with-beard) to detect the mouth

within the lower region of the face. If the mouth was detected successfully in several

consecutive frames, the system entered the tracking state, in which the detector was

applied to a small region around the previously detected mouth. Finally, the mouth

locations over time were smoothed and outliers were rejected using a median ter.

For more details about the algorithm, see [8]. The system performed well on most

speakers; however, for some it pro- duced unacceptable tracking results (see Figure 2).

Two possible reasons for such failures are side lighting and ro- tation of the speaker's

head, both of which the system had di culty handling. Facial expressions, e.g. smiling,

also seemed to have a negative e ect on tracking. Another pos- sibility is that the

xed parameters used in the search did not generalize well to some speakers' facial

structure. To obtain better tracking in such cases, the search area for the mouth in

the lower region of the face was adjusted manually, as was the relative size of the

mouth rectangle.

With these measures, most of the remaining tracking fail- ures were in the rst

few frames of the recording, before the speaker started reading the sentence. The nal

tracking re- sults, consisting of a 100x70 pixel rectangle centered on the mouth in

each frame, were saved to a separate le in raw AVI format.
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