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FULL PAPER

High-Resolution Dynamic Speech Imaging with Joint
Low-Rank and Sparsity Constraints

Maojing Fu,1,2* Bo Zhao,1,2 Christopher Carignan,3 Ryan K. Shosted,4 Jamie L. Perry,5

David P. Kuehn,6 Zhi-Pei Liang,1,2 and Bradley P. Sutton2,7

Purpose: To enable dynamic speech imaging with high spatio-

temporal resolution and full-vocal-tract spatial coverage, lever-

aging recent advances in sparse sampling.

Methods: An imaging method is developed to enable high-

speed dynamic speech imaging exploiting low-rank and spar-

sity of the dynamic images of articulatory motion during

speech. The proposed method includes: (a) a novel data

acquisition strategy that collects spiral navigators with high

temporal frame rate and (b) an image reconstruction method

that derives temporal subspaces from navigators and recon-

structs high-resolution images from sparsely sampled data

with joint low-rank and sparsity constraints.

Results: The proposed method has been systematically eval-

uated and validated through several dynamic speech experi-

ments. A nominal imaging speed of 102 frames per second

(fps) was achieved for a single-slice imaging protocol with a

spatial resolution of 2.2 � 2.2 � 6.5 mm3. An eight-slice imag-

ing protocol covering the entire vocal tract achieved a nominal

imaging speed of 12.8 fps with the identical spatial resolution.

The effectiveness of the proposed method and its practical

utility was also demonstrated in a phonetic investigation.

Conclusion: High spatiotemporal resolution with full-vocal-

tract spatial coverage can be achieved for dynamic speech

imaging experiments with low-rank and sparsity constraints.

Magn Reson Med 000:000–000, 2014. VC 2014 Wiley Periodi-

cals, Inc.

Key words: partial separability modeling; low-rank approxima-

tion; sparsity; spiral navigation; dynamic speech imaging

INTRODUCTION

Dynamic magnetic resonance imaging (MRI) has recently
been recognized as a powerful tool for speech imaging,
especially for monitoring dynamic changes in the oro-
pharyngeal and nasopharyngeal regions and capturing
articulatory gestures during the speech process. It also
has the potential to reveal the soft-tissue structures (e.g.,
pharyngeal cavity and internal musculature) and articu-
latory dynamics across arbitrarily oriented imaging
planes. This capability has facilitated a broad spectrum
of speech-related studies, such as examining the articula-
tory movement during speech production (1–3), the pro-
cess of singing in diverse forms (4,5), and the function of
swallowing under normal and pathological conditions
(6,7). It is also useful for the analysis of a variety of
physiological defects and disorders, such as cleft palate
(8), velopharyngeal dysfunction (9), motor dysfunction
(10), and sleep apnea (11). The work presented in this
article is to further enhance the capability of dynamic
speech MRI with high temporal resolution, high spatial
resolution, and broad spatial coverage.

Ideally, an effective dynamic speech imaging method
should have the following three properties: first, it
should provide high temporal resolution to capture fast-
varying speech dynamics. A common goal of many
speech imaging applications is to accurately capture the
speech process, in which the shapes and positions of
articulators experience rapid transitions over time. For
instance, it has been shown that a frame rate of 30–50
fps was necessary to observe dynamic velar retraction
and coarticulation effects during speech (12–14). Second,
an imaging method should offer high spatial resolution
to delineate fine features of the articulators, in particular
fine scale articulation in the tongue tip and velopharyng-
eal port. For example, previous work has used an in-
plane spatial resolution of 1.9 mm in order to effectively
observe and model the tongue tip motion (15). Third, an
imaging method should allow for increased coverage
through multiple imaging planes to explore soft-tissue
structures in the region of interest (ROI) in the vocal
tract. Some speech motions involve the interaction and
coordination of articulators from different spatial loca-
tions, which require multiple imaging planes to visual-
ize. Particularly, more than two imaging planes have
been used to study English fricative sounds and Arabic
pharyngeal sounds (16,17).

Although trade-offs exist to satisfy each of the afore-
mentioned properties by compromising others, in general
it remains challenging to simultaneously achieve
adequate performance in all three properties in dynamic
MRI. Significant efforts have been made in recent years
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to improve dynamic speech imaging methods. Combin-
ing a multishot spiral FLASH sequence with a field-
inhomogeneity-corrected reconstruction method, Sutton
et al. (18) resolved high-resolution spatial details of the
velopharyngeal mechanism at 21.4 fps. Kim et al. (16)
used interleaved multislice data acquisitions with gridd-
ing reconstructions to visualize fricative production
across three intersecting imaging planes at a frame rate
of 6.1 fps. Scott et al. (19) applied an adaptive averaging
technique to improve the signal-to-noise ratio for the vis-
ualization of velar activities on a midsagittal plane at
14.9 fps. Using radial trajectories, Li et al. (20) incorpo-
rated aggregated motion estimation into a nonlinear
reconstruction method to visualize tongue movement at
30.3 fps for a single imaging plane. Despite these advan-
ces, higher spatiotemporal resolution and broader spatial
coverage are needed for dynamic speech imaging
applications.

Dynamic speech MRI, as a specific application of
dynamic MRI, could benefit from many emerging tech-
niques developed for faster MRI. Recent advances in
fast pulse sequences (18,21) and parallel imaging
(22,23) have proven to be effective in reducing acquisi-
tion time. In addition, model-based image reconstruc-
tion methods have provided many opportunities to
achieve sub-Nyquist sampling for dynamic magnetic
resonance experiments. These model-based methods are
generally based on low-dimensional signal models. One
category of methods uses the limited spatial-spectral
support to relax the associated data acquisition require-
ments (24–27). Recently, compressed-sensing-based
techniques have successfully used sparsity constraints
to achieve high quality reconstructions despite sparse
(k, t)-space sampling (28–35). Alternatively, sparse sam-
pling methods based on the partial separability (PS)
model (36–38) and its induced low-rank constraint (39–
41) have also demonstrated effectiveness in various spa-
tiotemporal imaging applications (42–44). Although the
sampling methods were tailored based on the specific
applications, the low-rank constraint has been com-
bined with other constraints to yield improved recon-
struction quality. The complementary advantages of
low-rank and sparsity constraints have been previously
discussed in (39,40).

Expanding upon our early studies (45,46), we propose
a model-based imaging method for dynamic speech
imaging. The method effectively integrates parallel imag-
ing, spiral-navigator-based data acquisition, and con-
strained image reconstruction. The method has been
systematically evaluated through a number of dynamic
speech imaging experiments, demonstrating its great
potential in simultaneously achieving high spatial reso-
lution, high temporal resolution, and full-vocal-tract cov-
erage. Also, its practical utility is demonstrated through
a phonetic investigation of nasalization.

THEORY

PS Model

In a dynamic speech imaging experiment, the acquired
(k, t)-space data, d(k, t), can be expressed as:

dðk; tÞ ¼

Z

Iðr; tÞe�i2pk�rdrþ gðk; tÞ; [1]

where I(r, t) is the desired image series and g(k, t) repre-
sents the measurement noise. The PS model expresses
I(r,t) as (36):

Iðr; tÞ ¼
X

L

l¼1

clðrÞflðtÞ; [2]

where L is the model order, fclðrÞg
L
l¼1 denotes a set of

spatial basis functions, and fflðtÞg
L
l¼1 denotes a set of

temporal basis functions. The PS model is based on the
assumption that strong spatiotemporal correlation exists
in I(r,t). In speech imaging experiments particularly, this
assumption is often valid because (a) spatial images cor-
responding to articulations of similar sounds are highly
correlated, (b) image voxels within certain bulk articula-
tors (e.g., the tongue or velum) share similar temporal
dynamics, and (c) only a few driving muscles are
involved in the production of a specific syllable. The PS
model implies that a data matrix Î [referred to as a Casor-
ati matrix in (36)] defined over any point set
fIðrn; tmÞg

N ;M
n;m¼1,

Î ¼

Iðr1; t1Þ � � � Iðr1; tM Þ

�
.
.

.
�

IðrN ; t1Þ � � � IðrN ; tM Þ
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; [3]

has a rank upper bounded by L (36,37), where N denotes
the number of spatial encoding steps and M denotes the
number of image frames. An equivalent data matrix Ĉ
can also be defined in the (k, t)-space. Based on the low-
rank property of Î (40), we can express it as: Î ¼ UV,
where U 2 CN�L denotes a matrix with its columns span-
ning the spatial subspace of Î, and V 2 CL�M denotes a
matrix with its rows spanning the temporal subspace of Î.

Data Acquisition

We use the strategy proposed in (36,47) to sparsely sam-
ple two sets of (k, t)-space data in an interleaved man-
ner: a navigator dataset and an imaging dataset. For
these two datasets, the navigator data are used to esti-
mate V, whereas the imaging data is used to estimate U.
Although each dataset serves a different purpose, both
datasets contribute to reproducing Ĉ.

Due to the different functions of these two datasets
(36), separate considerations were imposed in terms of
acquisition trajectory and sampling requirements. For
the navigator dataset, we propose a new spiral-trajectory-
based technique to navigate the (k, t)-space with high
temporal resolution. Figure 1 illustrates this strategy
with a simplified pulse sequence diagram and a corre-
sponding (k, t)-space sampling pattern. Unlike the previ-
ous techniques that navigate with Cartesian readouts
(40–42), the proposed spiral navigator serves as a better
trade-off between speed, signal-to-noise ratio, and the
ability to capture temporal dynamics because (a) the spi-
ral trajectory provides high gradient efficiency compared
with other trajectories, (b) the spiral trajectory receives

2 Fu et al.



high signal-to-noise ratio due to its natural oversampling
at the center of k-space, and (c) the spiral trajectory has
the potential to cover broader k-space within certain
time constraints or slew rate limits (48,49). For the imag-
ing dataset, we use a Cartesian trajectory to acquire imag-
ing data with high spatial resolution. The use of
Cartesian imaging data not only simplifies the image
reconstruction problem, but also maintains low sensitiv-
ity to magnetic susceptibility, which can be a challenge
at a number of air-to-tissue interfaces in the oropharyn-
geal region.

Image Reconstruction

Given the acquired navigation data, the principal compo-
nent analysis or singular value decomposition is per-
formed to estimate the temporal subspace, i.e., matrix V
(36,47). Specifically, V is constructed from the L most
significant right singular vectors of Ĉ (36). With V esti-
mated, we can determine U from the imaging data by
solving a least-squares problem. By separating the esti-
mation of V and U in two steps, the proposed method
yields a convex and significantly simplified reconstruc-
tion problem (compared with methods that simultane-
ously determine U and V).

Also, it should be noted that direct determination of Û
from least-squares fitting is usually ill-conditioned, espe-
cially when a higher L is used but limited samples are
available (40). In this work, we use a spatial-spectral
sparsity constraint to regularize the ill-conditioned
reconstruction problem. The sparsity constraint has been
found effective in existing low-rank constrained recon-
struction problems (40–42). For dynamic speech MRI, in
particular, this constraint is appropriate because the (x,
f)-domain is approximately sparse, given that subjects
are using similar velopharyngeal motion for different
speech samples during experiments. The combination of
low-rank and sparsity constraint not only yields better

conditioning, but also represents a broader range of non-
periodic articulatory motion than using a sparsity con-
straint alone. It is worth noting that incorporating other
constraints can be also mathematically straightforward
(44,50).

By jointly imposing the low-rank constraint and
spatial-spectral sparsity constraint, the image reconstruc-
tion problem with sensitivity-encoded (k, t)-space data
can be formulated as

Û ¼ argmin
U2CN�L

X

Q

q¼1

jjXðFsSqUVÞ � dqjj
2
2 þ ljjvec ðUVf Þjj1;

[4]

where Q denotes the number of receiver coils, X denotes
a sparse sampling operator corresponding to the acquisi-
tion of the imaging data (and putting the data in vector
form), Fs denotes a spatial Fourier transform matrix, Sq

denotes the sensitivity map of the qth coil, dq denotes
the sparsely acquired imaging data samples from the qth
receiver coil, k denotes the regularization parameter, Vf

is obtained by applying the temporal Fourier transform
to each row of V and vec ð�Þ denotes an operator that
forms a vector by concatenating the columns of a matrix.
A numerical algorithm based on half-quadratic regulari-
zation with continuation is applied to solve Eq. 4 (40).

METHODS

Validation Experiments

Several validation experiments were performed to dem-
onstrate the effectiveness of the proposed method. The
experiments were performed on a Siemens Trio scanner
(Siemens Medical Solutions, Erlangen, Germany) with a
field strength of 3 T, a gradient strength of 40 mTm�1

and a maximum slew rate of 170 Tm�1 s�1. A 12-
channel head receiver coil and a 4-channel neck receiver
coil were jointly used to image the subject. A FLASH
sequence was developed to interleave a spiral navigation
acquisition and a Cartesian imaging acquisition with a
repetition time of 9.78 ms. The navigation and imaging
data acquisition had an echo time of 0.85 and 2.3 ms,
respectively. Other parameters were: acquisition matrix
size¼ 128 � 128, FOV¼ 280 � 280 mm2, spatial reso-
lution¼2.2 � 2.2 mm2, and a slice thickness of 6.5 mm.

The experiment protocol enabled three choices of
acquisition setups: (a) acquisition of a single midsagittal
imaging slice at a nominal frame rate of 102.2 fps, (b)
four slices at 25.5 fps, or (c) eight slices at 12.8 fps.
When acquiring data that targets a model order of around
80, as was done in this work, the acquisition time for the
single-slice, four-slice, and eight-slice experiments were
1 min 42 s, 6 min 49 s, and 13 min 38 s, respectively.

The experiment protocol allowed flexible orientations
for the imaging planes of interest. For single-slice acquis-
itions, an imaging plane was placed on the midline of
the tongue to capture articulatory motion in the upper
airway. For multislice acquisition, the imaging planes
can be contiguously positioned or arbitrarily oriented.
Specifically, eight contiguous planes centering at the
midline of the tongue formed an imaging volume that

FIG. 1. A simplified pulse sequence diagram for the proposed PS

model-based data acquisition strategy with illustration of (k, t)-

space sampling patterns. The navigator dataset is acquired using a

spiral trajectory. The imaging dataset is acquired using a Cartesian

trajectory with random phase encoding. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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covered the entire upper vocal tract. Reconstructions
from this imaging volume can be resliced to synthesize
oblique-coronal views of the vocal tract.

Accurate estimation of the receiver coil sensitivity pro-
files is important for high-quality image reconstruction.
Prior to the acquisition of the dynamic imaging data, a
pilot scan was performed to predetermine the sensitivity
profiles. The estimated sensitivity profiles were assumed to
be time-invariant for the subsequent image reconstruction.

Five volunteers participated in the validation experi-
ments. These subjects had an age range of 23–45 and
three subjects were female. Among these five subjects,
three were requested to produce /loo/-/lee/-/la/-/za/-/
na/-/za/ recurrently at their own speaking paces; another
subject was asked to produce /za/-/na/-/za/ at controlled
paces: fast (around 2 samples per second), medium
(around 1 samples per second), and slow paces (around
0.5 samples per second); the last subject was asked to
read a passage from a publicly accessible data base of
English dialects (51). The passage contains standard
reading text that is devoid of explicit repetitions of
words or phrases. This passage was chosen to demon-
strate that the proposed method does not rely on repeti-
tions in speech samples.

During acquisition, the voice of each subject was
simultaneously recorded at a sampling rate of 22 kHz
through a fiber-optic microphone with active noise can-
celation (Dual Channel FOMRI, Optoacoustics, Or
Yehuda, Israel). The head motion of each subject was
minimized by fixing the positions of the patient’s head
in the receiver coil with foam pads. Informed consents
were obtained for all subjects and the experiment was
carried out in accordance with regulations of the Institu-
tional Review Board at the University of Illinois at
Urbana-Champaign.

Application to Nasalization Studies

The proposed method was also applied to analyze the
level of nasalization during the production of a speech
sample. Particular emphasis in these experiments was
placed on velopharyngeal activity. With regard to velo-
pharyngeal activity, nasalization refers to the coupling
between the nasal and oral cavities due to velar move-
ment (52). The level of velopharyngeal coupling is influ-
enced by the fast interaction between the velum and the
velopharyngeal aperture. Previous work has indicated
the potential of dynamic MRI to examine the

FIG. 2. Midsagittal reconstruc-

tions of the upper vocal tract

during the production of /loo/-/

lee/-/la/-/za/-/na/-/za/ sounds.

The directions of the movement

of the midtongue are indicated

with arrows during (a) /l/ of the /

lee/ syllable; (b) /l/ of the /loo/

syllable; (c) /l/ of the /la/ syllable;

(d) /a/ of the /za/ syllable. [Color

figure can be viewed in the

online issue, which is available at

wileyonlinelibrary.com.]
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spatiotemporal variation in the aperture and provide
imagery basis for phonetic assessments of nasalization
level (53,54). However, analysis of velopharyngeal activ-
ity at the current temporal resolution has not been
possible.

French was chosen as the carrier language for the stud-
ies on nasalization. Unlike the English language, French
contains nasal vowel sounds, oral vowel sounds, and
nasalization effects during speech. Therefore, it is an
especially interesting language to study in relation to the
coupling between the nasal and oral cavities to produce
nasalized speech sounds, such as the alveolar nasal con-
sonant (55–57). This experiment focused on a dialect of
French, the northern metropolitan French, due to its
prevalence. The carrier phrase was chosen as “ Il retape
X parfois,” where X denotes articulation of three nasal
vowels: /A~/, /E~/ or /O~/. A healthy female subject was
recruited for the experiment, during which she was
requested to produce the phrase recurrently. No other

requirement was imposed on the subject’s speaking
paces. This experiment was conducted in accordance
with an approved protocol through the Institutional
Review Board.

Other aspects of the experiment protocol were also
optimized to better capture the dynamics of nasalization.
First, the slice orientations of the four slices acquired
were designed to cover multiple spatial locations to
study velopharyngeal activities and their interaction
with the rest of the vocal tract during the production of
nasal vowels. Particularly, these four imaging planes
were placed from anterior to posterior regions of the
vocal tract, including a coronal imaging plane across the
midsection of the tongue, an oblique midsagittal imaging
plane across the levator veli palatini muscle, and two
axial imaging planes across the mediopharynx and lower
pharynx. These four imaging planes were acquired in a
temporally interleaved fashion with the multislice
experiment protocol described in detail earlier. Second,

FIG. 3. Multislice midsagittal reconstructions covering the entire vocal tract. The left column shows the positions and orientations of the

resliced oblique-coronal planes. The middle and right columns show resliced images. Three-dimensional articulatory motion is observed

during the production of /loo/-/lee/-/la/-/za/-/na/-/za/ sounds: (a) an oblique plane across the lower incisor teeth and the alveolar ridge;

(b) an oblique plane across the body of the lower jaw and the velopharyngeal closure point. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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the slice orientations were carefully selected to better
visualize activities of the velum and the relationship of
the timing of its movement relative to the tongue tip/
tongue blade, along with changes in the pharynx. Third,
the production of the speech samples was recorded with
a fiber-optic microphone. The audio recording and corre-
sponding imaging data were synchronized and jointly
studied in the ensuing linguistic analysis to reveal artic-
ulatory/acoustic relations.

RESULTS

Validation Experiments

Figure 2 shows reconstructions from a single-slice
experiment, in which the subject was asked to produce /
loo/-/lee/-/la/-/za/-/na/-/za/ sounds recurrently. Gestures
of the tongue at multiple time points are illustrated and
directions of tongue motion are indicated with arrows.
Specifically, Figure 2a–c show tongue gestures at the
onset of the /l/ sound in /lee/, /loo/, and /la/ syllables,

respectively. Although the same /l/ sound is produced
and the tongue tip is elevated in a similar fashion, the
tongue body bends toward different regions of the vocal
tract. By contrast, the tongue retracts to a resting position
during the production of /a/ in the /za/ syllable in Figure
2d. The proposed method captured the above motions in
fine spatial details.

Figure 3 shows reconstructions from a multislice
experiment, in which an identical speech sample was
produced as earlier. The oblique coronal reconstructions
are resliced from eight parallel midsagittal slices to ena-
ble three-dimensional visualization of articulatory
motion in arbitrary through-plane directions. Figure 3a
captures tongue tip retraction from the alveolar ridge
toward the lower jaw during the transition from /l/ to /
ee/ in the /lee/ syllable. Figure 3b exhibits the formation
of velopharyngeal opening as the velum moves toward
the root of the tongue. The anterior velum surface is first
curved to prepare for /n/ in the /na/ syllable, and later
becomes straightened to produce /a/ in the /na/ syllable.

FIG. 4. Strip plots of the production of /za/-/na/-/za/ sounds at fast, medium, and slow speaking paces. These strip plots demonstrate

the temporal dynamics along reference lines that are taken as: (a) a vertical line across the upper and lower lip; (b) a vertical line across

the roof of the mouth and the midtongue; (c) a horizontal line across the bottom of the upper lip and the upper pharyngeal wall. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Results in Figure 3 demonstrate the feasibility to capture
three-dimensional articulatory motion with full-vocal-
tract coverage.

Figure 4 shows spatial images and temporal profiles
from a single-slice experiment, in which the subject was
asked to produce /za/-/na/-/za/ sounds at fast, medium,
and slow speaking paces. Three single-pixel-wide strips
from the same reconstruction are plotted versus time in
Figure 4a–c: two head-foot strips across the lips and
midtongue, respectively, and an anterior–posterior strip
across the velum. Contacts between bulk articulators
(e.g., the lips, the tongue, and the velum) with the asso-
ciated boundaries are captured with fine spatial and tem-
poral details. Although temporal periodicity was
purposefully disrupted in the experiment, the proposed
method remained robust to nonperiodic articulatory
motion.

Figure 5 shows reconstructions from a single-slice
experiment, in which a subject was requested to read the
passage that is devoid of explicit repetitions. Representa-
tive spatial images and temporal profiles along various
directions are provided in Figure 5a–d, respectively. As
can be seen, the proposed method well captured the spa-

tiotemporal dynamics of each distinct syllable in the pas-
sage. Note that although the reading passage contains no
repetition of words or phrases, the proposed method still
provided high-quality reconstructions.

Application to Nasalization Studies

Figure 6 shows midsagittal images from the nasalization
study on northern metropolitan French. The proposed
method provided high spatial resolution to capture the
interaction between the velum and the pharyngeal wall.
Diverse gestures of the velum were observed and three
are given as examples. Figure 6b shows the gesture of
the velum as it retracts from the pharyngeal wall to pre-
pare for the production of the nasal sound /A~/. On com-
pletion of the /A~/ sound, as illustrated with Figure 6c,
the velum holds a relaxed position with a larger air pas-
sage. As a comparison, Figure 6d shows the closure of
the velopharyngeal port at the production of the plosive
sound /t/. The results in Figure 6 validate the effective-
ness of the proposed method in capturing nasalization
with high spatial resolution.

Figure 7 shows oblique coronal and axial images from
a multislice experiment. The proposed method allowed

FIG. 5. Midsagittal reconstructions and strip plots of the production of a reading passage that contains no repetitions of words or

phrases: (a) representative articulatory motion at four different time instances; (b) temporal profile taken along a vertical strip across the

tongue tip; (c) temporal profile taken along a vertical strip across the midtongue; (d) temporal profile taken along a horizontal strip

across the velum. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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vocal tract opening to be captured along four imaging
planes. Specifically, the vocal tract opening sizes are
compared for three nasal vowels, the /A~/, /E~/ and /O~/
sounds. In the superior portion of the vocal tract, as
illustrated with Figure 7a and b, the /A~/ sound has the
largest opening size, whereas the /O~/ sound has the
smallest. Opposite observation, as illustrated in Figure
7c, is seen in the middle portion of the vocal tract,
where /A~/ sound has the smallest opening size and /O~/
sound has the largest. Nearly identical opening sizes are
observed in the inferior portion of the vocal tract, as
illustrated in Figure 7d. The results in Figure 7 demon-
strate that the proposed method can provide sufficient
spatial coverage to capture variation of vocal tract open-
ing sizes at different spatial locations.

Figure 8 shows an integrated analysis enabled by syn-
chronizing the reconstructions with the acoustic record-
ings to fully visualize the relationship between
movement of the velum, nasalization, and the spectro-
gram of the recorded speech sample (17,58,59). For ease
of visualization of velar movement, we use the average
pixel intensity (API) time series that is extracted from

the high-spatiotemporal-resolution reconstruction. As
illustrated in Figure 8a, an API series is calculated from
a ROI where velopharyngeal closure takes place in order
to summarize the motion with one measure, while keep-
ing the ROI fixed in place. The API measures are tempo-
rally aligned with the audio and spectral signal for
comparison. As temporal variation in API is caused by
the velum motion into or out of the ROI, variation of API
captures subtle spatial motion in high temporal resolu-
tion. As illustrated in Figure 8b, an increase in API is
observed during the production of /t/ and /p/ sounds,
where velic positions are expected to be high, i.e., the
velopharyngeal port is expected to be closed. The onsets
and endings of these phonetic events are confirmed as
changes in spectral patterns in Figure 8d. Production of
the /A~/ sound is associated with a decrease in API in Fig-
ure 8b and manifests as a spectral pattern characteristic
of vowels in Figure 8d. The results in Figure 8 demon-
strate that the proposed method can accurately capture
the fast articulatory transitions associated with speech
motion and offers high-resolution spatial image series as
added information to conventional phonetic analysis.

FIG. 6. Velar movement within a

18 pixel � 18 pixel ROI as illus-

trated in (a). b: An air passage is

formed between the velum body

and the pharyngeal wall during

the production of the nasal

vowel /A~/. c: The relaxed velum

creates maximum velopharyng-

eal opening during the breathing

period. d: The velum seals the

velopharyngeal port during the

production of the plosive /t/.

[Color figure can be viewed in

the online issue, which is avail-

able at wileyonlinelibrary.com.]
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DISCUSSION

The proposed method provides broad spatial coverage to
capture speech movements across multiple imaging
planes. Sufficient spatial coverage is critical for phonetic
studies that investigate the relations between multiple
regions in the vocal tract. For example, traditional pho-
netic analysis has taken for granted that the superior
region of the vocal tract undergoes a greater level of
motion compared with the inferior region. However,
imaging evidence has been lacking. In this work, this
hypothesis is verified by applying the proposed method
to examine movements at different levels of the vocal
tract and the results are summarized in Figure 6. As can
be seen, the opening sizes of these cavities vary signifi-

cantly in the superior vocal tract but remain nearly iden-
tical in the inferior portion. The results confirm the
above hypothesis and may suggest a pivot-like structure
of muscle motion: the superior vocal tract may be more
deformable, whereas the inferior vocal tract may be more
stable. Further investigation of the physiological basis
and the clinical implications of this observation is
necessary.

The proposed method offers high temporal resolution
for some phonetic studies on nasalization. These studies

usually involve controversy over the opening of the velo-

pharyngeal port (60), asking questions such as: what

sounds can tolerate velopharyngeal opening? To address

this, a spectrogram of the acoustic signal and the API time

FIG. 7. Comparison of oblique coronal reconstructions for nasal vowels /A~/, /E~/ and /O~/. a: /A~/ has the largest distance between the

median portion of the tongue and the palate. b: /A~/ has largest velopharyngeal opening size. c: /A~/ has the smallest opening between

the root of the tongue and the pharynx. d: Three vowels have nearly identical opening between the epiglottis and the pharyngeal wall.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Dynamic Speech Imaging with Low-Rank and Sparsity Constraints 9

http://wileyonlinelibrary.com


series are jointly used. Note that this analysis is valid only

when the temporal frame rate of the image series is com-

parable to the time scale of changes in spectral properties.

An example of this analysis is provided in Figure 8, where

the changes in spectral patterns match well with that in

the API series. In particular, a slightly increased API value

is observed for /t/ and /p/ sounds, with corresponding

spectral pattern changes. Phonetically, this may reflect

that the body of the velum is pulled toward the pharyn-

geal wall enabling air pressure to build up. Upon the com-

pletion of the /t/ and /p/ sounds, a decreased API value is

observed. This may suggest that air pressure is released on

completion of these sounds. Through this example, the

proposed method demonstrates great potential to assist

phonetic analysis that requires high temporal frame rate.
Although the proposed method has demonstrated a

number of merits in retrieving practical phonetic infor-
mation, several aspects of the method may interact with
the quality of reconstruction. First of all, rigorous quanti-
fication of resolution is important for the proposed
method, although we empirically use the nominal frame
rate to describe the imaging speed in this work. The
resolution for conventional linear and shift-invariant
reconstruction methods can often be measured via the
point spread function. However, the proposed method is
a nonlinear reconstruction method, for which defining a
meaningful point spread function can be nontrivial. This
is because the inherent nonlinearity often renders the
impulse response function spatiotemporal-location-
dependent and imaging-object-dependent. Although
there exist some empirical ways (61) to quantify the reso-

lution for nonlinear reconstructions, in-depth investiga-
tion is still needed in future research.

As demonstrated in Figure 5, the proposed method
works well for nonperiodic speech imaging tasks,
although the (x, f)-sparsity constraint is used in the prob-
lem formulation. This is mainly due to the complemen-
tary roles of the low-rank and sparsity constraints (40):
the low-rank model provides strong power to represent
spatiotemporal dynamics (temporal periodicity is not
required), while the (x, f)-sparsity constraint effectively
regularizes the ill-conditioning issues associated with
the highly undersampled temporal subspace.

The proposed acquisition strategy uses spiral-
trajectory-based navigation. For single-slice experiments,
this trajectory captures high-frame-rate dynamics effi-
ciently. For multislice experiments, however, our current

approach uses a separate navigator acquisition for each
slice. This is beneficial for nonparallel slice prescrip-

tions (as shown in Fig. 7). For parallel slice prescrip-
tions, however, this approach may reduce the available

temporal information. In this case, a single, three-
dimensional navigator may be preferable. For example,

we have investigated a cone-trajectory-based navigation

technique (46) to improve imaging speed for parallel,
contiguous multislice experiments. Systematic analysis

of this technique is under investigation and will be pre-
sented in future work.

The proposed method requires selection of the model

order L. In this work, L is chosen based on visual inspec-
tion of image quality (e.g., signal-to-noise ratio, reconstruc-

tion artifacts, and temporal blurring). However, it should

FIG. 8. Linguistic analysis integrating imaging information with acoustic properties. Colored rectangles represent temporal windows cor-

responding to the production of different sounds. a: Illustration of a 5 pixel � 5 pixel ROI where the average image intensity (API) in (b)

is calculated. b: Temporal evolution of API in the square region of (a). c: The recorded acoustic signal. d: The spectrogram of the acous-

tic signal calculated with an window width of 10 ms.
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be noted that the proposed method offers relatively robust
performance over the selection of L due to the sparsity reg-

ularization (40). To demonstrate this, we reconstructed a
dataset (identical with the one used in Fig. 4) using a

range of L and the results are shown in Figure 9. As can
be seen, reconstruction performance is robust for L ranging

from 40 to 80, although a “too-low” (e.g., L¼20) or “too-

high” (e.g., L¼ 120) model order can lead to suboptimal
performance. Despite the above observations, it is still

important to explore quantitative metrics to enable auto-
matic selection of L. For example, some information-

theoretic metrics (62,63) could be used, although they may

lead to suboptimal reconstructions (64). Also, a resolution-
based metric could be an interesting alternative (61),

although in-depth investigation is still needed.
The proposed method also requires the experimenter

to determine the regularization parameter k. In this
work, we assign different k for different reconstructions
based on the discrepancy principle (40), which consis-
tently yields good empirical results in the speech imag-
ing and other dynamic imaging applications (40,41).
Alternative methods, such as SURE-based methods (65),
could also be used for selecting regularization parame-
ters, which may result in better performance.

FIG. 9. Reconstruction of an experiment dataset using different model orders. The first column shows representative midsagittal recon-

structions with model orders: (a) L¼20, (b) L¼40, (c) L¼80, and (d) L¼120. The second column shows corresponding strip plots

taken from a vertical line across the roof of the mouth and the midtongue. Variations of spatiotemporal dynamics on the strip plots are

indicated by arrows. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The proposed method uses pilot scans to predetermine
the sensitivity maps. Similar to many dynamic imaging
applications, we assume that the estimated sensitivity
maps are time-invariant in reconstruction. However, it is
possible to use the proposed method with time-varying
sensitivity maps (66), which may lead to improved per-
formance. Systematic exploration of this extension will
be carried out in future research.

The proposed method may pose a computational bur-
den for some research experiments and clinical applica-
tions due to the large-scale optimization problem
involved. For instance, computation time for reconstruc-
tion of a single midsagittal slice for 10,404 time frames
at 102 fps from a 16-channel receiver coil was around 34
min on a 24-core SUN workstation without code optimi-
zation. It is worth noting that a decoupled computational
structure (40) may potentially improve the computational
efficiency. In addition, iterative image reconstruction
algorithms on graphical processing units have already
been optimized for structural MRI image reconstruction
and achieved an acceleration factor of up to 150-folds
(67). The proposed method may benefit from similar
implementation leveraging the massively multicore
power of the graphical processing units, although con-
siderations on computational efficiency and algorithmic
optimization are beyond the scope of this work.

CONCLUSIONS

A new method has been proposed for dynamic speech
imaging with high spatiotemporal resolution and broad
spatial coverage. The proposed method is characterized
by (a) an acquisition strategy based on spiral navigators
and (b) an image reconstruction method based on joint
low-rank and sparsity constraints. The proposed method
has been validated in speech imaging experiments,
achieving a nominal imaging speed of 102 fps with a
spatial resolution of 2.2 � 2.2 � 6.5 mm3 for a single-
slice imaging protocol, and a nominal imaging speed of
12.8 fps with the identical spatial resolution for an eight-
slice protocol. The proposed method has demonstrated
potential in assisting phonetic analysis on nasalization.
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