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Abstract—We study the qualitative and quantitative informa-
tion acquired from dynamic audiovisual sources storing image
and sound signals recorded during human speech. Our main tool
is machine learning, which connects data arising from records
made by ultrasound and magnetic resonance imaging techniques.

Index Terms—machine learning, neural networks, tongue con-
tour tracking, ultrasound and MRI records, human speech

I. INTRODUCTION

Machine learning has become a more and more popular
apparatus in the treatment of complex systems having a large
number of variables and parameters. Nowadays, the technique
has been coming increasingly into the limelight in the field
of speech research, as well, as it is commonly used for both
speech recognition and speech synthesis.

For instance, the hidden Markov model is often used for
speech and speaker recognition [1], and the Gaussian mixture
model is also favorable in speech emotion recognition [2].
Classification of speech patterns is a crucial task during speech
recognition, which can be well realised by support vector
machine models [3].

The conventional trend of speech synthesis is based on text-
to-speech systems that can be implemented by the application
of neural networks [4]. Moreover, also visual information
can be used for generating acoustic signals. The visual and
articulatory movement data describing the vocal organs can
be gained from different sources to train the given network
[5]. The simplest technique is electromagnetic articulography
(EMA) which employs different sensors to measure the po-
sition and movement of the vocal organs in the oral cavity.
Applying EMA, the acoustic-articulatory conversion can be
carried out in both directions, by the reconstruction of speech
from sensor data [6], or by the estimation of articulatory
trajectories from acoustic data [7].

Besides sensor-based techniques, also imaging methods can
be strong and supporting grounds of the study of human
speech. Accordingly, such neural networks can be constructed
that are trained by data acquired by ultrasound (US) procedure
[8], [9]. In addition, also magnetic resonance imaging (MRI)
can be highly helpful in speech research, however, it is not so
spread in connection with machine learning.

There are a few publications that combine US and MRI
sources by different methods [10], [11], but, as far as we
know, there is a gap in the literature for the joining of the two

sources by machine learning. Even this was the motivation of
the present article.

II. SUBJECTS OF MACHINE LEARNING

The fundamental framework of our present work is given
by audiovisual sources that record dynamic image and sound
information of human speech simultaneously. In the moving
images, one can observe the continuous movement of the
active vocal organs (e.g. lips, tongue, soft palate, epiglottis)
and the static positions of the passive vocal organs (e.g. hard
palate, glottis), as well. The sound as a speech signal is
adjusted to the series of the corresponding images, resulting
in synchronized sound and image packages belonging to the
uttering.

The techniques we utilized produce two-dimensional
records made by ultrasound (US) and magnetic resonance
imaging (MRI). In the first case, mostly the region of the
oral cavity can be monitored from outside by dint of a US
transducer that can be fixed to the head of the speaker under
the chin. In the US pictures, only the motion of the tongue
and the epiglottis can be followed, but the other vocal organs
are hidden for the viewer, as the glottis and lips are out of
the scanning region, while the hard and soft palate can not
be detected due to the special reflections of US waves in the
oral cavity. Furthermore, the hyoid bone and the mandible
are not transparent against US beams, therefore they shield
the back part and the tip of the tongue, emerging as dark
ranges in the image. MRI frames, however, can cover a more
extended region of the human head since the complete voice
box is visible and no screening effects disturb the imaging.
Thus, the lips, the tongue, the hard and soft palate, the
epiglottis, and the glottis can be easily identified. A great
advantage of both methods is the good spatial and temporal
resolution, although making MRI records always demands
clinical conditions that are sometimes difficult to be ensured.
The US package was recorded by the Micro system of the
MTA-ELTE Lendület Lingual Articulation Research Group,
and the MRI package was selected from the freely available
database of the University of Southern California. In the US
records, sentences containing vowel-consonant-vowel (VCV)
and consonant-vowel-consonant (CVC) sound connections are
uttered by a Hungarian female speaker, while, in the MRI
records, only VCV structures are articulated by an American
English male speaker.



Fig. 1. A US (a.) and an MRI (b.) frame with the fitted tongue contours.

The basic tools for the implementation of machine learning
were tongue contours that we fitted to the surface of the tongue
displayed by the above mentioned US and MRI frames by
dynamic contour tracking algorithms developed in MATLAB.
The surface of the tongue appears as a bright zone in the US
images and it can be determined as a contrast between the
bright domain of the tissue of the tongue and the dark domain
of the air above the tongue in the MRI frames. Consequently,
contour tracking means searching for the pixels of maximal
brightness designating the curve of the surface of the tongue in
both cases. Parts a.) and b.) of Fig. 1 show a US and an MRI
frame in the case of sound u together with the fitted tongue
contours drawn by red curves. In the US frame, the tip of the
tongue is on the right side of the image.

Using the dynamically computed tongue contours, we aimed
to build a neural network that learns MRI tongue contours
from the data of the appropriate US tongue contours.

III. THE NEURAL NETWORK

We elaborated our machine learning algorithms in MAT-
LAB constructing a neural network that contains one hidden
layer with only 10 neurons because, as an initial attempt,

Fig. 2. The rectangular matrix structure of a US image after resampling. The
tongue contour is drawn by red.

we tried to create a very simple network in order to test
how efficiently it is capable of executing a relatively complex
training task.

The input parameters of the network were derived from US
tongue contours by selecting some feature points, which take
part in the training. We specified five different cases according
to the choice of 1, 2, 3, 4, and 5 points along the curves
with specially fixed locations. Namely, the five feature points
were positioned at 10%, 30%, 50%, 70%, and 90% of the
total length of the tongue contour in each US frame. These
percentage values are assigned to the tongue contours at an
intermediate step of image processing and contour tracking,
when, in the US frames (see Fig. 1.a), the algorithm creates
radial sections of the image, and these sections are arranged
into a rectangular matrix structure. After this resampling pro-
cess, the tongue contour is formed as a series of linear sections
joining one another in the matrix exemplified by Fig. 2.
Taking the stretched tongue contours, the above mentioned
five feature points are chosen in an equidistant manner, which
is schematically illustrated by Fig. 3. For the training, we use
only the vertical coordinates of the feature points. At the final
step of contour tracking, the stretched curves are reshaped
to the radial geometry of the US images, hence the distances
between two adjacent feature points are no longer equal, as the
stretched curve is deformed like a flexible rope. The relative
positions of the five feature points in the radial geometry are
demonstrated by Fig. 4, where the five different input cases
of the neural network are separated. So, we train the same
network by 1, 2, 3, 4, and 5 contour points, respectively, in
such a way that, starting from the point at 10% of the total
length of the tongue contour, always the next point is added
to the previous points in the set of positions fixed by 10%,
30%, 50%, 70%, and 90%.

The output data set of the neural network was acquired from
MRI tongue contours by designating the first 10 coefficients of
the discrete cosine transforms of the tongue contours. Discrete
cosine transform (DCT) is highly relevant in the shape of a



Fig. 3. The schematic arrangement of the five feature points of stretched
tongue contours in the rectangular geometry.

Fig. 4. The schematic arrangement of the feature points of the reshaped
tongue contours in the radial geometry for the five different input cases of
the neural network.

given tongue contour since it was applied for the smoothing
of the final curve produced by the contour tracking algorithm,
thus DCT coefficients carry important information about the
local characteristics of the tongue contours.

The neural network was trained for a set of speech sounds
including three vowels and three consonants by the assortment
{a, e, o, k, s, t}. The main viewpoint in the selection of
sounds was to have front and rear tongue positions, as well.
Accordingly, sounds a and o are articulated with rear tongue
position, while sound e is uttered with front tongue position.
Sound k is velar, which means that the highest point of the
tongue touches the soft palate, so it is formed in the rear part
of the oral cavity. Sound t is alveolar, thus the highest point of
the tongue touches the ridge behind the upper teeth in the front
part of the oral cavity. Sound s is postalveolar, i.e. the place of
articulation is near the alveolar region. All in all, the setting
of the above group of speech sounds ensures the possibility
to investigate the reproduction of the extremal positions of the
tongue that can be available in our US and MRI records. In
our US package, we have 1084 a-contours, 386 e-contours,

853 o-contours, 489 k-contours, 205 s-contours, and 1062 t-
contours, so the total number of input parameters is 4079. In
our MRI package, however, the number of frames belonging
to the given sound is much smaller than that of the same
sound of the US package. Therefore, in order to have the
same number of output parameters as the inputs, we picked
only one MRI tongue contour belonging to the middle frame
of each sustained sound, then we repeated the computed DCT
coefficients of the single curve as many times as desired. It
can be an appropriate method because the shape of the MRI
tongue contours locally changes slightly from frame to frame
in the case of sustained sounds. As a result, the neural network
is supplied by arrays of dimension 4079× n, where n stands
for the number of training points by n = 1, 2, 3, 4, 5, and an
array of dimension 4079× 10 appears at the output according
to the 10 DCT coefficients.

The machine learning was implemented by an algorithm that
determines the weight factors and bias values of the neural
network by the scaled conjugate gradient (SCG) method. It
is a supervised learning algorithm for feedforward neural
networks. During the optimization, the system of equations
assigned to the given problem is solved iteratively knowing
the input parameters, while the computed output parameters
converge to the prescribed values. The benefit of the method is
that a quite fast convergence can be guaranteed by minimizing
the number of steps of the iteration algorithm, so the training
can be realized in a relatively short time. The iteration steps
occur along such a direction that enables faster convergence
than the most negative gradient corresponding to the steepest
descent, while it preserves the error minimization obtained in
the previous steps.

IV. RESULTS AND CONCLUSIONS

The constructed neural network detailed in section III con-
nects data collected from US tongue contours and information
acquired from MRI tongue contours, thus we followed the
MRI-from-US direction during machine learning. It is more
challenging than the reverse US-from-MRI way because, in the
US images, the tongue can be seen only partially, as the rear
part and the tip of the tongue are shadowed by dark zones (see
section II). In the MRI frames, however, the tongue becomes
apparent entirely. As a consequence, the neural network is fed
by a narrower input data set, and a wider output parameter set
is produced.

We evaluated our results qualitatively and quantitatively,
as well. For qualitative judgement, we visually investigated
the position and shape of the trained MRI tongue contours
compared to the original fitted MRI tongue contour in the
case of each sound of the set {a, e, o, k, s, t}. We found
that the measure of agreement between the trained and fitted
curves improves when the number of feature points of the
US tongue contours is increased. Examples confirming our
observations are presented by Fig. 5 and Fig. 6 in the case of
sounds a and t, respectively, where the trained tongue contours
drawn by red and the fitted tongue contours marked by green
are depicted in the same frame. Parts a.) show the results



Fig. 5. The trained (red) and fitted (green) MRI tongue contours with 1
training point (a.) and 5 training points (b.) of the US tongue contour in the
case of sound a.

of machine learning with 1 training point (1 feature point is
selected on each US tongue contour at position 10% of the
total length of the curve), while parts b.) represent the results
of machine learning with 5 training points (5 feature points are
selected on each US tongue contour at positions 10%, 30%,
50%, 70%, 90% of the total length of the curve).

For the quantitative description, we determined the distances
between the trained and fitted MRI tongue contours by the
application of the Nearest Neighbor Distance (NND) measure
defined mathematically by

DF,G =
1
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(
n∑

i=1

min
j

|fi − gj |+
m∑
i=1

min
j

|gi − fj |

)
.

(1)
Equation (1) is related to two different curves F and G with
arbitrary numbers of points n and m, which are not necessarily
equal to each other generally. The first contribution of (1)
expresses the sum of the minima of the distances measured
between the given point of curve G and all points of curve
F for all possible points of curve G. Similarly, the second
contribution of (1) provides the sum of the minima of the

Fig. 6. The trained (red) and fitted (green) MRI tongue contours with 1
training point (a.) and 5 training points of the US tongue contour (b.) in the
case of sound t.

distances measured between the given point of curve F and
all points of curve G for all possible points of curve F . The
total sum is normalized by the sum of the number of points of
the two curves. In our case, curves F and G play the role of
the fitted and trained MRI tongue contours with the condition
n = m.

Applying (1), we calculated the NND measures for all
trained tongue contours for each sound of set {a, e, o, k, s, t}
in the case of all the five different training inputs, then we gave
the averages of the NNDs belonging to all tongue contours of
all sounds for all input settings. The results are summarized by
Table I that quantitatively verifies our qualitative experiences
arising from the visual study of the trained and fitted tongue
contours. So, finally, we conclude that training with 5 five
feature points of the US tongue contours produces the best
match between the trained and fitted MRI tongue contours
with the lowest NND.

V. SUMMARY

In this report, we analyzed two-dimensional dynamic US
and MRI sources recording human speech signal together



TABLE I
THE AVERAGES OF THE NNDS

1 point 2 points 3 points 4 points 5 points
NND 5.6576 5.4410 4.8661 4.0224 3.7572

with the synchronized visual display of the vocal organs. We
aimed to connect the two sources by machine learning. The
basic tools for this were tongue contours fitted to the surface
of the tongue of the US and MRI frames by our automatic
contour tracking algorithms. The constructed neural network
containing one hidden layer with 10 neurons was trained by
1, 2, 3, 4, and 5 feature points of the US tongue contours at
the input, and the first 10 coefficients of the discrete cosine
transforms of the corresponding MRI tongue contours were set
as output parameters to be learned. The training was performed
for a specific set including speech sounds {a, e, o, k, s, t},
applying the scaled conjugate gradient method. The obtained
results were studied at both qualitative and quantitative levels.
Qualitatively, we checked the visual match of the trained and
fitted MRI tongue contours. We found that they are in a
very good coincidence with each other, and the measure of
agreement between the trained and fitted curves gets better
when the number of feature points of the US tongue contours
is increased. Quantitatively, we calculated the average nearest
neighbor distances measured between the trained and fitted
MRI tongue contours for all input settings. We stated that the
closeness of the trained and fitted curves is the best when the
number of feature points of the US tongue contours takes the
greatest value of 5. Finally, we were led to the conclusion
that our qualitative and quantitative results point in the same
direction, as they certify each other, so the main importance
is that complete MRI tongue contours can be perfectly trained
by partial US tongue contours.
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