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Towards the Automatic Study of the Vocal Tract through 

Magnetic Resonance Images 

 

Abstract: Over the last few decades, researchers have been investigating the mechanisms involved in 

speech production. Image analysis can be a valuable aid in the understanding of the morphology of 

the vocal tract. The application of magnetic resonance imaging to study these mechanisms has been 

proven to be reliable and safe. We have applied deformable models in magnetic resonance images in 

order to conduct an automatic study of the vocal tract; mainly, to evaluate the shape of the vocal tract 

in the articulation of some European Portuguese sounds, and then to successfully automatically 

segment the vocal tract’s shape in new images. Thus, a Point Distribution Model has been built from 

a set of magnetic resonance images acquired during artificially sustained articulations of twenty one 

sounds, which successfully extracts the main characteristics of the movements of the vocal tract. The 

combination of that statistical shape model with the grey levels of its points are subsequently used to 

build Active Shape Models and Active Appearance Models. Those models have then been used to 

segment the modelled vocal tract into new images in a successful and automatic manner. The 

computational models have thus been revealed to be useful for the specific area of speech simulation 

and rehabilitation, namely to simulate and recognize the compensatory movements of the articulators 

during speech production. 

 

Keywords: Vocal Tract’s Shape; Morphological Study; Speech Production; Speech Rehabilitation; 

Modelling and Simulation; Image Segmentation; Deformable Models. 
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1. Introduction 

Verbal communication is the most common, familiar and frequently used form of human interaction, which 

is the direct result of the organised and synchronised performance of a set of anatomic organs. The 

articulation is a result of the activity of a set of organs: the vocal tract being responsible for modifying their 

position and shape during the air expulsion (expiration) process, thereby producing different sounds and 

consequently, distinct acoustic representations [1-3]. 

The main anatomic aspects and the physiology of the vocal tract are common to all individuals. However, the 

mechanism engaged in human speech production is complex and unique by nature, due to a variety of 

anatomical structures that compose the vocal tract, which implies that any computational modelling 

developed needs to be flexible so as to allow for accurate individual characterizations [1-3]. Due to this, the 

study of the speech production is a multidisciplinary subject which involves areas as diverse as, for instance: 

Medicine, due to the anatomic and functional study of the vocal tract organs; Engineering, in particular 

biomedical engineering, more specifically, in the field of an acoustics analysis and speech processing; 

Phonetics, in terms of the study of the production and perception of speech and sounds; Speech therapy as far 

as the assessment of anatomic and physiological aspects related to communication disorders, language and 

speech are concerned; and finally Medical imaging, in terms of the improvement and application of 

computational image techniques which can be used in the study or the vocal tract during speech production 

[1-4]. 

The use of Magnetic Resonance Imaging (MRI) has produced very useful results in assessing speech and 

vocal tract’s shapes [1-3, 5-6]. This image technique allows for morphologic measurements in static [1-2, 7-

8] as well as dynamic studies [3, 9-10], in addition to being capable of representing the entire vocal tract 

along any orientation. Image quality allied with high resolution as far as soft-tissues are concerned, represent 

another key advantage of using MRI as this allows for the enhanced analyses of the vocal tract through the 

calculi of several descriptive parameters. Another imaging technique that has been used to acquire shape 

information about the vocal tract is X-ray Computed Tomography (CT) [11]. However, this imaging 

modality has the disadvantage of requiring significant ionizing radiation doses. 

https://www.researchgate.net/publication/49664578_Using_Statistical_Deformable_Models_to_Reconstruct_Vocal_Tract_Shape_from_Magnetic_Resonance_Images?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/14264414_Dynamic_magnetic_resonance_imaging_in_the_study_of_vocal_tract_configuration?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/24404425_Application_of_MRI_and_biomedical_engineering_in_speech_production_study?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/24404425_Application_of_MRI_and_biomedical_engineering_in_speech_production_study?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/24404425_Application_of_MRI_and_biomedical_engineering_in_speech_production_study?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/24404425_Application_of_MRI_and_biomedical_engineering_in_speech_production_study?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/245042873_A_revisit_to_the_Application_of_MRI_to_the_Analysis_of_Speech_Production-Testing_our_assumptions?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/37538213_Extracting_tongue_shape_dynamics_from_magnetic_resonance_image_sequences?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
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Since the mid seventies one has witnessed an extensive tradition of adopting statistical methods to analyse 

data from speech production. For example, in [12] the authors used component analysis to identify an 

adequate set of articulatory features for the tongue shapes of ten English vowels. One year later, the 

statistical analysis of real data to describe the position of the articulatory organs was used [13]. Additionally, 

in another study, [14], a factor analysis of the lateral shapes of the vocal tract was described. Thereafter, a 

principal component analysis to examine sagittal tongue contours for five English vowels from ultrasound 

images was put into practice [15]. Yet, despite all the work that has been extensively carried out in the area, 

the application of statistical deformable models to characterize and reconstruct speech sounds with MR 

images has only just become a reality. Thus, information concerning this important research subject is still 

incredibly scarce, particularly in the case of the European Portuguese (EP) language [1-3, 16-17]. 

The use of deformable models is one of the image analysis approaches which has produced interesting 

results in innumerable unrelated applications. Active contours, deformable templates, physical models and 

point distribution models are the most relevant techniques in the extraction of the characteristics of an object 

from images based on deformable models [18]. Active contours, more commonly known as snakes in the 

field of  computational vision, were the first deformable models to be used in image analysis [19]. They 

consist of an elastic set of points which may be adapted to the shape of the object being studied through the 

physical combination of internal and external forces. Recently, enhanced physical modelling approaches 

have allowed for the integration of the physical behaviour of the actual objects by taking previously acquired 

knowledge about them into consideration in the models built [20]. On the other hand, image analysis 

techniques based on deformable templates resort to geometrical shapes (templates) driven by parameterized 

functions in order to correctly identify the objects modelled in images [21]. Finally, Point Distribution 

Models (PDM) are built from a set of training images and are capable of extracting the main characteristics 

of the object through statistical techniques [22-23]. 

In this work, deformable models have been applied in the automatic study of the vocal tract from magnetic 

resonance images; mainly, to evaluate the shape of the vocal tract in the articulation of European Portuguese 

sounds and then to automatically segment the vocal tract into new images. Thus, a Point Distribution Model 

has been built from a set of magnetic resonance images acquired during the artificially sustained articulation 

https://www.researchgate.net/publication/26719954_A_review_of_algorithms_for_medical_image_segmentation_and_their_applications_to_the_female_pelvic_cavity?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/44601025_Toward_Dynamic_Magnetic_Resonance_Imaging_of_the_Vocal_Tract_During_Speech_Production?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/37650301_Segmentation_and_Simulation_of_Objects_Represented_in_Images_using_Physical_Principles?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/22250466_Factor_analysis_of_tongue_shapes?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/24404425_Application_of_MRI_and_biomedical_engineering_in_speech_production_study?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/243510686_Improved_articulatory_model?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/220659647_Feature_Extraction_Faces_Using_Deformable_Templates?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/243502629_Estimation_of_articulatory_motion_by_a_model_matching_method?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/2891547_Articulatory_Synthesis_Of_Portuguese?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/237872636_Using_principal_component_analysis_of_tongue_surface_shapes_to_distinguish_among_vowels_and_speakers?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
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of 21 European Portuguese sounds, in order to determine the main characteristics of the movements involved 

in the vocal tract. The combination of this particular statistical shape model with the grey levels of its points 

is then used to construct Active Shape Models (ASMs) and Active Appearance Models (AAMs). Next, these 

active models are used to segment the modelled vocal tract into new images. 

This paper is organized as follows: in the following section, the MRI protocol adopted is presented. Next, 

PDM and active models, in addition to the data used and the assessment performed in terms of quality 

segmentation, are then focused on. Following this, the statistical models built and their employment in terms 

of the segmentation of EP speech sounds from new MR images are presented. In the final section of the 

paper, conclusions are drawn. 

 

2. Methods 

 

2.1. MRI protocol 

Image acquisition was obtained through the use of a Siemens Magneton Symphony 1.5T system and a head 

array coil, with the subject lying in the supine position. As a result of this experimental setup, the acquisition 

of T1-weighted 5 mm thick sagittal slices were obtained by using Turbo Spin Echo Sequences, with the 

acquisition duration of approximately 10 s. Decreasing the slice thickness entails the use of a low signal 

noise ratio which makes the posterior segmentation process more complex. Subsequently, this protocol has 

resulted from a compromise required between the signal noise ratio, the number of slices acquired and the 

time needed for subjects to successfully sustain articulation during the image acquisition process. The 

following acquisition parameters were used: field of view equal to 150 mm, image matrix of 128x128 and 

image resolution equal to 0.853 px/mm. 

The study which was carried out under the scope of this project was designed to obtain morphologic data 

about the vast majority of the articulators’ range positions with the distinct aim of characterising and 

reconstructing EP speech sounds. In view of the fact that, the sagittal data considered is particularly useful in 

the study of the entire vocal tract anatomy, as may be confirmed by Figure 1; it is possible to obtain 
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information as to the main aspects of the shape and positions of some articulators, e.g. tongue, lips and 

velum. Thus, the speech corpus consisted of a set of 25 MR images obtained during sustained articulations of 

25 EP speech sounds; that is, 1 (one) sagittal image was acquired for each sound considered. 

 

2.2. Point Distribution Models and Active Models 

 

As has been previously mentioned, Point Distribution Models have been used in the statistical modelling of 

objects to analyse their shape configurations from a set of training images. Thus, a PDM describes the mean 

shape of the object modelled, as well as the admissible variations in relation to that same mean shape [4, 23]. 

In this work, the vocal tract was statistically modelled by a PDM from a set of 21 MR images partially 

depicted in Figure 2. These images allow one to observe the vocal tract configurations during the production 

of distinct EP vowels and consonants, as well as of some oral and nasal sounds. In order to obtain a robust 

PDM, the sounds used in the training process of the model built should adequately represent the variability 

of the vocal tract’s shape. Additionally, each shape of the vocal tract that is presented in the training set 

should be described by a group of labelled landmark points conveying important aspects of the vocal tract, 

Figure 3. (In the current and subsequent images, the landmark points appear connected by fictitious line 

segments so as to enhance their visualisation). Consequently, the manual identification of the landmark 

points in the 21 training obtained images requires a comprehensive knowledge of the object in question, as 

the resultant model behaviour greatly depends on the landmark points selected. Hence, the fact that the 

manual selection of the landmark points was carried out by one of the authors who has excellent knowledge 

on medical imaging and the anatomy of the vocal tract, in addition to being cross-checked by another co-

author, in accordance with the following criteria: 

- 4 points at the lips (front and back of lips’ margins); 

- 3 points corresponding to the lingual frenulum and tongue’s tip; 

- 7 points equally spaced along the surface of the tongue; 

- 7 points along the surface of the hard palate (roof of the oral cavity) placed in symmetry with the tongue 

points; 

https://www.researchgate.net/publication/49664578_Using_Statistical_Deformable_Models_to_Reconstruct_Vocal_Tract_Shape_from_Magnetic_Resonance_Images?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
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- 1 (one) point at the velum (or soft palate); 

- 3 points equally spaced at the posterior margin of the oropharynx (behind the oral cavity). 

Hence, 25 landmark points were defined in each of the 21 MR images used to obtain the PDM of the shape 

of the vocal tract during the production of the EP sounds. 

In order to study the admissible variation of the coordinates of the landmark points of the training shapes, it 

is initially necessary to align them by using dynamic programming for instance [4, 23-27]. Hence, given the 

co-ordinates  ,ij ijx y  at each landmark point j  of the shape i  of the modelled object, the shape vector is: 

 0 1 1 0 1 1, , , , , , ,
T

i i i in i i inx x x x y y y  , 

where 1i N , with N  representing the number of shapes in the training set and n  the number of 

landmark points used. Once the training shapes are aligned, the mean shape and the admissible variability of 

the modelled object may be found. The modes of variation characterize the manner in which the landmarks 

of the modelled object tend to move together, the result of which may be obtained by applying Principal 

Component Analysis (PCA) to the deviations from the mean. Thus, it is possible to rewrite each vector ix  

as: 

 i s sx x Pb  , (1) 

where ix  represents the coordinates of the n  landmark points of the new shape of the modelled object, 

 ,k kx y  are the coordinates of landmark point k , x  is the mean position of all landmark points, 

 1 2s s s stP p p p  is the matrix of the first t  modes of variation, sip  corresponds to the most 

significant eigenvectors in a Principal Component Analysis applied to the coordinates of all landmark points, 

and  1 2

T

s s s stb b b b  is a vector of weights for each variation mode of the modelled object. Each 

eigenvector describes the manner in which linearly correlated ijx  move together over the training set, and 

due to this, it is commonly known as a mode of variation. Thus, Equation (1) represents the PDM of an 

object and may be used to generate its new shapes [4, 23]. 

https://www.researchgate.net/publication/216389900_Matching_Contours_in_Images_through_the_use_of_Curvature_Distance_to_Centroid_and_Global_Optimization_with_Order-Preserving_Constraint?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/49664578_Using_Statistical_Deformable_Models_to_Reconstruct_Vocal_Tract_Shape_from_Magnetic_Resonance_Images?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/49664578_Using_Statistical_Deformable_Models_to_Reconstruct_Vocal_Tract_Shape_from_Magnetic_Resonance_Images?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/37650321_Algorithm_of_dynamic_programming_for_optimization_of_the_global_matching_between_two_contours_defined_by_ordered_points?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
https://www.researchgate.net/publication/26710228_Rapid_pedobarographic_image_registration_based_on_contour_curvature_and_optimization?el=1_x_8&enrichId=rgreq-d724beafb9cdd639ce26344d81351532-XXX&enrichSource=Y292ZXJQYWdlOzQ3NDQ5NDU1O0FTOjEwMTEzNDMzMzEyMDUxN0AxNDAxMTIzNzEyMjIz
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The local grey-level environment of each landmark point may also be considered in the statistical modelling 

of objects from images [23, 28]. Thus, statistical information is obtained in relation to the mean and 

covariance of the grey values of the pixels around each landmark point. Hence, this information may be used 

to evaluate the matching between landmark points with Active Shape Models, in addition to, constructing 

appearance models of objects with the aid of Active Appearance Models, as is explained further on in the 

paper. 

Active Shape Model 

The consideration of a PDM and the grey level profiles of each landmark point used in the construction of 

the PDM may be used to segment the object modelled in new images through Active Shape Models, which 

are based on an iterative technique for fitting flexible models with objects represented in images [23, 29]. 

This technique is an iterative optimisation scheme which is combined with PDMs that then refine an initial 

estimated shape, that is, the mean PDM’s shape, x , of a modelled object according to the PDM’s modes of 

variation into a new image, i.e. this process segments the modelled object in new images. The refining 

process adopted may be summarized by the following steps: 1) The displacement required to dislocate the 

model to a more appropriate position, that is, closer to the final shape which is calculated at each landmark 

point; 2) The calculus of the changes in the overall shape position, orientation and scale that most adequately 

satisfy the local displacements found in 1); 3) The obtainment of the required adjustments in the parameters 

of the model, by analysing the residual differences between the shape of the model and the final shape 

desired. 

The image segmentation process with the aid of Active Shape Models was improved in [30] due to the 

adoption of a multiresolution approach which may be summarised as follows: To begin with, a 

multiresolution pyramid of the input images is built by applying a Gaussian mask; following this, the grey 

level profiles at the various levels of the pyramid built are studied. Consequently, the ASMs is capable of 

segmenting the input images in a more rapid and reliable manner. 

Active Appearance Model 
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An image segmentation approach based on Active Appearance Models was first proposed in [3 1]. It allows 

for the building of texture and appearance models of objects from images. These models are generated by 

combining a shape variation model (a geometric model) with an appearance variations model in a shape-

normalised frame [23]. The geometric model of the object modelled is a PDM which may also described by 

Equation Error! Reference source not found.. 

To build a statistical model of the grey level appearance of an object represented in images, one needs to 

deform each training image in order for the landmark points to match the mean shape of the object. This is 

done by using a triangulation algorithm. Next, the grey level information or the intensity values, img , from 

the shape-normalised image over the region covered by the mean shape is sampled. In order to minimize the 

effect of the global light variation in the images, the average vector of the grey levels (img ) is once again 

normalized, thereby resulting in vector g . Following the application of a Principal Component Analysis to 

the previous vector g , a new linear model, called the texture model, is obtained: 

 g gg g P b  , (1) 

where g  is the mean normalised grey level vector, gP  is a set of orthogonal modes related to the grey level 

variations and gb  is a set parameters of the grey levels model. Therefore, the shape and appearance of any 

configuration of the object modelled can be defined by vectors sb  and gb . 

Given that a correlation may exist between the variations of the shape and grey levels, a further Principal 

Component Analysis is applied to the data of the object. Thus, for each training image a concatenated vector 

is generated: 

 
  

T
s s s s

T
g g

W b W P x x
b

b P g g

            , (2) 

where sW  is a diagonal matrix of weights for each parameter of the global model built, allowing for the 

adequate balance between the models of shape and grey levels. Next, a Principal Component Analysis is 

applied to these vectors, which results in a further model: 

 b Qc , (3) 
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where Q  are the eigenvectors of b  and c  is the vector of the appearance parameters which control the 

shape in addition to the grey levels of the model built. In this manner, a new shape of the object modelled 

may be obtained for a given vector c  by generating the shape-free grey level object from vector g  and then 

deforming it by considering the landmark points provided by x . 

 

2.3. Data used and assessment on segmentation quality 

A framework in MATLAB was developed to create statistical deformable models, namely PDMs and ASMs, 

which integrates the Active Shape Models software [32]. Additionally, in the case of appearance models, 

Modelling and Search Software was used [33]. 

According to the International Phonetic Alphabet (IPA), the EP speech language consists of a total of 30 

sounds. In this work, 21 of these sounds have been considered in the construction of the statistical models of 

the vocal tract’s shape by using a MR image for each one, Figure 2. The sounds considered include the most 

representative sounds of the EP speech language. Additionally, 4 distinct MR images, related to 4 other EP 

speech sounds, were later used to evaluate the quality of the segmentation obtained by the Active Models 

built. 

Due to the inevitable variability of the speech subject, in addition to the considerable amount of sounds 

studied (speech corpus), a set of 25 MR images was acquired from one young male subject in a similar 

manner to that which has been used in other works which resort to MRI to study the vocal tract during 

speech production [1-3, 7-8, 34]. The subject was trained so as to ensure the correct production of the 

intended EP speech sounds and to reduce speech subject variability. Moreover, it should be stressed that the 

subject in question had a vast knowledge of EP speech therapy. 

In order to analyse the sensibility of the Active Shape Models in terms of the percentage of retained variance 

and of the dimensions of the profile adopted for the grey levels [23], ASMs were built with values ranging 

from 95% to 99% of retained variance and with profiles of 7, 11 and 19 pixels for the grey levels. Similarly, 

Active Appearance Models were built with identical values ranging from 95% to 99% of retained variance 

and the following values of 50000 and 10000 pixels were considered for the texture model. 
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Following the construction of the Active Shape Models and the Active the Appearance Models from the 

training set of 21 MR images, these were then used to segment the vocal tract’s shape in 4 MR images which 

were not included in the training set used. As a stopping criteria for the segmentation process, a maximum of 

5 iterations for each resolution level was taken into consideration. Due to the fact that 4 resolution levels 

were defined based on the dimensions of the images in question, this criteria meant that from the beginning 

of the segmentation process to its end, a maximum of 20 iterations could take place [23]. This maximum 

number of iterations was chosen as a result of the fact that in the concrete case of the images considered it 

lead to excellent segmentation results. Additionally, it was proven that an inferior value was not always 

sufficient to obtain satisfactory segmentations and a superior value constantly resulted in the same 

segmentation results. 

In order to assess the quality of the segmentations obtained in the new MR images for the object modelled by 

the Active Shape Models and the Active Appearance Models built, the values of the mean and standard 

deviation of the Euclidean distances between the landmark points of the final shape of the models and the 

desired segmentation shapes were calculated. 

 

3. Results and Discussion 

As has been previously mentioned, the initial task of the construction process of the active models under 

consideration is related to the manual labelling of the MR images of the vocal tract. As expected, this task 

was revealed to be difficult and extremely time consuming. This because, the considerable noise present in 

the MR images and the significant variability of the sounds under study cause the use of automatic 

approaches to be a complex process. 

In Table 1, the initial 15 modes of variation of the active shape model built and their retained percentages are 

indicated. From the values presented one may conclude that the initial 7 modes, which correspond to 14% of 

the modes of variation, are capable of explaining 90% of all variance of the vocal tract’s shape under study. 

Additionally, one may conclude that the first 10 modes, i.e. 20% of the modes of variation, represent a total 

value of 95% of all variance in addition to the fact that the initial 15 modes which correspond to 30% of the 

total modes of variation, provide an explanation for 99% of all variance. This indicates that the ASM built is 
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capable of considerably reducing the data required to represent all of the shapes that the vocal tract assumes 

in the set of training images acquired. 

The effects of varying the first 6 modes of variation are depicted in Figure 4. This figure allows one to 

conclude that the first mode is associated with the movements of the tongue from the high front to the back 

positions of the oral cavity. In respect to the second mode of variation, it is possible to observe the vertical 

movement of the body of the tongue towards the palate. On the one hand, the variations of the third mode are 

related to the opening of the lips and tongue’s movement to a backward position. On the other hand, the 

fourth mode of variation reflects the movement of the tongue tip from the central position of the tongue to 

the alveolar ridge of the palate. Additionally, the fifth mode of variation represents the opening of the lips 

and the overall lateral enlargement of the vocal tract. Finally, the sixth mode is related to the movement of 

the body of the tongue from back to front and downward positions. 

Next, 4 MR images of 4 distinct EP speech sounds, which had not been previously considered in the set of 

training images used, were segmented by the active shape models built. In Figure 5, one of the segmentations 

which was obtained is depicted. In this Figure one may observe the evolution of the segmentation process 

through the actual active shape model which is built: the process begins with a rough estimate as to the 

localization of the vocal tract in the image (1st iteration), then moving downwards to each multiresolution 

level (4th and 9th iteration) until it converges into the vocal tract’s shape that is to be segmented after 14 

iterations. This segmentation was obtained by considering an active shape model capable of explaining 95% 

of all variance of the vocal tract’s shape under study and adopting a grey level profile length of 7 pixels, that 

is by considering 3 pixels from each side of the landmark points [23]. Similarly, the segmentation results 

obtained by using this model on the 4 MR images tested are presented in Figure 6. 

In Table 2, the values of the mean and standard deviation, which reflect the quality of the segmentation 

obtained in each testing MR image through the active shape models built, are put forward. (For a more 

comprehensive understanding of the data presented in this table, the models are named as: 

Asm_varianceretained_profiledimension.). As has been previously said, active shape models with a grey 

level profile of dimensions equal to 11 and 19 pixels were also built. However, these active shape models 

were not able to successfully segment the modelled organ in the testing images. This failure is due to the 
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relatively small size of the images considered: during the segmentation process, at each landmark point a 

segment of 22 (or 38) pixels long has been considered in the active search process. This result in the fact that 

the model built can easily diverge [23]. 

As has been formerly indicated, active appearance models are also capable of segmenting the objects 

modelled in new images. By considering 95% of all the shape’s variance and 10000 pixels in the 

construction of the texture model, a total of 9 modes of shape variation were extracted corresponding to 18% 

of the modes of variation, 17 texture modes, i.e. 34% of the modes of variation and 13 appearance modes, 

which sums up to 26% of the modes of variation. Additionally, if an active appearance model is built using 

99% of all the shape variance in addition to considering the same number of pixels, then 15 shape modes 

(30%), 20 texture modes (40%) and 18 appearance modes (36%) are obtained. 

The effects of varying the initial 3 modes of variation in terms of the texture and appearance of one of the 

active appearance models built are depicted in Figure 7. This figure clearly demonstrates that the first mode 

is associated with tongue’s movements from the high front to backward positions. On the other hand, one can 

verify that the second mode of variation is related to the vertical movement of the tongue towards the palate. 

Finally, the third mode of variation corresponds to the lips’ and the tongue’s movement to a backward 

position. It should be stressed that these modes of variation also provide information as to the appearance. As 

such, the intensity profiles associated with each structure of the vocal tract have also been considered. 

Figure 8 presents the segmentation result obtained using one of the active appearance models built on a MR 

testing image. In this figure, it is possible to observe the evolution of the active search required to correctly 

segment the organ modelled: the process is begun with a rough estimation as to the localization of the vocal 

tract in the image (1st iteration), moving downwards to each multiresolution level (7th and 12th iteration) until 

it converges into the desired vocal tract’ shape after a total of 20 iterations. Similarly, the segmentation 

results using the same model on the all testing MR images are depicted in Figure 9. Additionally, the values 

obtained for the mean and standard deviation, which translate the quality of the segmentation obtained in 

each testing MR image by the active appearance models built, are presented in Table 2. (For a clearer 

understand of the data indicated, the models have been named: Aam_varianceretained_npixelsused). 
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As a result of the analysis of the data presented in the Table 2, one may conclude that active appearance 

models lead to superior results to those obtained by active shape models. Furthermore, the use of a larger 

number of modes of variation leads to superior results when the active appearance models are used. Once 

again this contrasts with the segmentation results obtained by using active shape models. In the latter case, 

the use of more modes of variation (retained percent) does not necessarily correspond to improved results. 

 

4. Conclusions 

In this work, statistical deformable models were applied to Magnetic Resonance Images so as to study the 

shape of the vocal tract in the articulation of a number of European Portuguese sounds, Furthermore, the 

models built were used to segment the shape of the vocal tract’s shape in new MR images. 

The use of MR images permits the non-invasive study of the entire vocal tract with the required safety and 

high quality imaging of the soft tissues. However, the main drawback of this procedure is the amount of 

noise that is usually presented in the images acquired. Nevertheless, this drawback was overcome by the 

models built and satisfactory segmentation results have been obtained. 

From the experimental results obtained, one may conclude that the point distribution model built can 

successfully extract the main characteristics of the movements of vocal tract from magnetic resonance 

images. Furthermore, one may verify that the active shape models and the active appearance models can be 

used to segment the modelled vocal tract in new MR images in an efficacious and automatic manner. 

Therefore, the models built are accurate and efficient tools to be used in terms of the automatic study of the 

vocal tract from magnetic resonance images during speech production. 

The knowledge obtained in this work has resulted in a better understanding of the articulatory movements 

during the phonation process, which is extremely useful for the assessment of speech disorders in addition to 

speech simulation. Additionally, these findings may also be used as a supplementary tool for therapeutic 

planning and follow-up by both physicians and speech therapists. 
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In the near future, MR volumetric data will be used by the generation of 3D models in order to obtain more 

accurate representations of the vocal tract during speech production. Moreover, the statistical models adopted 

in this work will be employed in the analysis and segmentation of that same data. 
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FIGURE CAPTIONS 

Figure 1: MR sagittal slice with the indication of the organs of the vocal tract. 

Figure 2: Examples of the training images used to build the models of the vocal tract’s shape. 

Figure 3: Training image a), landmark points used b) and training image with the overlapped landmark 

points used c). 

Figure 4: Effects of varying each of the first 6 variation modes of the model built for the vocal tract’s shape 

 2sd . 

Figure 5: Testing image with the initial position of the overlapped mean shape of the model built and 

following 4, 9 and 14 iterations of the segmentation process through an active shape model. 

Figure 6: Testing images overlapped with the initial position of the shape model built (a-d) and the final 

results of the segmentation process through an active shape model (e-h). 

Figure 7: First three modes of the texture (left column) and appearance (right column) variation of the active 

appearance model built for the vocal tract’s shape  2sd . 

Figure 8: Results after the 1st, 7th, 12th and 20th iterations of the segmentation process using one active 

appearance model built for the vocal tract’s shape. 

Figure 9: Testing images overlapped with the initial position of the mean shape model built (a-d) and the 

final results of the segmentation process obtained through an active appearance model (e-h). 
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TABLE CAPTIONS 

Table 1: Initial 15 modes of variation of the model built for the vocal tract’s shape and their retained 

percentages. 

Table 2: Average and standard deviation errors of the segmentations obtained from testing images using the 

statistical models built. 
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TABLES 

Table 1 

Mode of variation Retained Percentage Cumulative Retained 
Percentage 

1  45.349% 43.349% 

2  13.563% 58.912% 

3  9.672% 68.584% 

4  9.123% 77.707% 

5  6.716% 84.423% 

6  4.674% 89.097% 

7  2.262% 91.359% 

8  1.872% 93.231% 

9  1.442% 94.673% 

10  1.367% 96.040% 

11  0.979% 97.019% 

12  0.701% 97.720% 

13  0.507% 98.227% 

14  0.494% 98.721% 

15  0.396% 99.227% 
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Table 2 

Model Image 1 Image 2 Image 3 Image 4 

Asm_95_p7 9.99 5.76  9.89 4.43  11.54 6.36  14.23 7.66  

Asm_99_p7 9.97 6.27  10.65 3.45  fail 12.25 5.86  

Aam_95_5000 4.90 2.42  10.21 5.09  8.98 4.80  9.91 3.95  

Aam_99_5000 6.77 3.18  9.73 4.56  8.80 4.88  9.83 4.48  

Aam_95_10000 4.94 2.45  10.19 5.07  8.98 4.78  10.56 4.00  

Aam_99_10000 4.35 2.30  9.71 4.60  8.80 4.89  10.06 4.58  

 

 


